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ABSTRACT

MULTIDIMENSIONAL HYDRODYNAMIC SIMULATIONS OF MASSIVE STARS AND
THEIR EXPLOSIONS

By

Carl Edward Fields

Massive stars play a crucial role in galactic chemical evolution, compact object formation, and

stellar feedback. Computational models of massive stars and their explosions have progressed over

the decades in concert with astrophysical observations to advance our theoretical understanding of

stellar evolution and transient phenomena. Stellar models have been used to constrain supernova

progenitor masses of observed explosions, estimate the age of globular clusters, and determine

properties of the interior of the Sun. However, despite these advances, stellar models are subject to

uncertainties that can qualitatively alter the outcome and often disagree with observation. Among

the sources of uncertainties in stellar models are thermonuclear reaction rates, the treatment of

mixing and heat transport via convection, and pre-supernova structure in core collapse supernova

simulations. The consequences of these uncertainties directly impact theoretical models of massive

stars and their explosions.

In this Thesis, I explore these areas of uncertainty and consider the implications they have on our

theoretical understanding of massive stars and stellar transients. I begin by considering the impact

of nuclear reaction rate uncertainties on the evolution of massive stars using 1D stellar evolution

models. In this work, I sample 665 nuclear reaction rates according to their temperature-dependent

uncertainties in a grid of 2000 stellar models to identify key reaction rates at five evolutionary

epochs. Next, I present results of a 15 M� stellar model evolved in 2D and 3D for the final seven

minutes prior to iron core collapse. In this work, I characterize the Si- and O-shell convective

properties and compare them to predictions from 1D models. Following this, I present work

considering 3D simulations of stellar Si- and O-shell convection in a 14-, 20-, and 25 M� model.

These models are simulated for the final ten minutes prior to iron core collapse and represent

the largest set of 3D pre-supernova models in the literature. Following this work, I consider the



implications that models of 3D pre-supernova perturbations have on CCSN explosion properties.

I present the results of 1-, 2-, and 3D neutrino-radiation-hydrodynamic CCSN simulations of a 15

M� using 2D/3D initial conditions. This work investigates the role that non-radial perturbations

in the progenitor might have on multi-messenger signals produced in models of CCSNe. Lastly,

I conclude with a brief discussion of MESA-Web: an online web interface to the stellar evolution

toolkit, MESA. I discuss the current capabilities of this tool, the impact it has had over the past five

years since its inception, and the future plans to continue to increase its utility as a scientific tool

and resource for astronomy education. The data products as a result of this Thesis are publicly

available online.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The explosion of a massive star can produce ripples through spacetime and drive the creation

of the elements needed for life. Their deaths can also give birth to a neutron star or black hole,

providing clues into the evolution of galaxies. Simulations of massive stars and their explosions

can allow us to unlock secrets about properties deep within the stellar interior, a region inaccessible

to direct observation. However, simulations are subject to uncertainties that can qualitatively alter

the outcome and disagree with astrophysical observations.

In this Thesis, I explore areas of uncertainty in stellar models and consider the implications

they have on our theoretical understanding of massive stars and stellar transients. I will present

work investigating uncertainties due to thermonuclear reaction rates, the treatment of mixing and

heat transport via convection, and pre-supernova structure in core collapse supernova simulations.

Decades of technological advancement and new experimental constraints provide new components

in constructing next-generational stellar models. The simulations presented in this Thesis represent

a step forward in our fundamental understanding of massive stars and their explosions.

1.2 Evolutionary Phases of Massive Stars

1.2.1 The Main Sequence

Stars will spend the majority of their lifetime on the Main Sequence (MS). The MS corresponds to

the time in which a star is undergoing hydrostatic core H-burning. For a 15 M� star, this process

takes on the order of τMS ∼ 11 Myr, compared to a star like the Sun which will have a MS lifetime

much larger of τMS ∼ 1100 Myr (Iben, 1967; Woosley et al., 2002). In Figure 1.1 we show a

Hertzsprung-Russell (HR) diagram for theoretical stellar models at 10 evolutionary points from

Iben (1967). The first point (1) represents the zero-age MS (ZAMS), start of the MS, while the (2)
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Figure 1.1: Evolutionary paths in the HR diagram of stars with initial mass MZAMS=0.25 to 15
M� . Dashed lines denote estimated evolutionary tracks. Figure from Iben (1967).

label denotes the approximate terminal age MS (TAMS), the point at which the star has exhausted

its fuel of core hydrogen.

1.2.2 Core He-Burning

After leaving the main-sequence, the core begins to contract as their is no nuclear energy generation

via thermonuclear reactions to produce a pressure source. The overall contraction phase proceeds
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from points (2) and (3) in Figure 1.1. At point (3), a new energy source is established as H-burning

continues in a shell above the newly formed He-core, moving outward in mass to process the

remainder of H left in the core. A portion of the energy generated in the shell is absorbed by the

envelope leading to significant expansion. In the case of the 15 M� model, the star becomes a

Supergiant. The He-core grows in mass due to the H-shell burning until reaching the approximate

Schönberg-Chandrasekhar limit, (
M

Mic

)
= 0.37

(
µe
µic

)2
(1.1)

the maximum mass for an inert isothermal core to support an overlying envelope (Schönberg &

Chandrasekhar, 1942). Once this limit is reached, core contraction and a subsequent increase in

temperature proceeds rapidly until conditions are met for core He-burning to occur. At point (6)

He is ignited in the core at a temperature of T ∼ 2 × 108 K. For a 15 M� star, this burning phase

lasts approximately 2 Myr. During this time, the star moves through the red supergiant phase of

the HR diagram, points (6) - (10).

1.2.3 Carbon Burning

Once He is depleted in the core, helium continues to burn in a shell beneath the H-shell burning

region and above the nascent CO core. The core contracts and again increases in density and

temperature until the conditions for core C burning is met. The ashes of core He burning are

primarily are 12C and 16O. The lowest Coulomb barrier of the possible reaction sequences is 12C

+ 12C and thus initiates the C burning phase of the stars life. The primary products of this burning

phase are 16O, 20Ne and 24Mg. For a 15 M� model this process takes place over a few kyr. This

phase is also the first burning stage where energy losses due to thermal neutrino processes such as

pair-annihilation become relevant (Fowler & Hoyle, 1964; Itoh et al., 1996a). These neutrino losses

contribute significantly to increasing the core temperature and reducing the burning timescales as

the star continually tries to maintain hydrostatic equilibrium (Deinzer & Salpeter, 1965).
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1.2.4 Advanced Nuclear Burning

Following C-burning, massive stars will continue to burn heavier elements on shorter timescales

and at higher temperatures. At this point in time, the nuclear burning timescales make the use of

the HR diagram less useful as the dynamical timescale, τdyn. ≈
(
G ρ̄

)−1/2, is much larger near the

surface. Of the advanced nuclear burning stages Si burning is worthy of mention due to its complex

nature.

Silicon burning in the core of a massive star proceeds differently than the other advanced

burning stages. Fusion reactions of two 28Si (or 28Si + 32S) nuclides are unlikely due to the large

Coulomb barrier. Photodisintegration, a process by which a high energy gamma ray removes a

neutron, proton, or alpha particle from a nucleus, in massive stars it operates to break up some

of the available 28Si and residual lighter nuclei to produce a surplus of free particles. These free

nuclei are quickly captured by the remaining 28Si to form heavier elements of 32S, 36Ar, and 40Ca

up an alpha chain until reaching 56Ni. Here, the term alpha chain represents a sequence of (α, γ)

reactions that build heavier nucleons through the continued capture of alpha particles onto lighter

nuclei. In some reduced reaction networks used in stellar models, these channels are the only ones

that are followed allowing simulations to reduce computational memory requirements of storing

information about adjacent, less significant isotope in each cell (Timmes et al., 2000). Nuclei near

an the iron peak, atomic mass number of A = 56, are the most tightly bound nuclei with the largest

binding energy per nucleon. The result is that the conditions in the core of a massive star lead to the

formation of a core composed of iron peak elements. As Si-burning proceeds in a shell above the

iron core, the core grows in mass and approaches the effective Chandrasekhar mass limit (Baron &

Cooperstein, 1990),

MCh,eff. ≡ 5.76Y2
e ×


1 − 0.057 +

(
se
πYe

)2
+ 1.21

( se
A

)
M� , (1.2)

the fate of the star grows near.
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1.3 Evolutionary Fates

1.3.1 Electron-Capture Supernova Explosions

The fate of massive stars in the range of MZAMS ≈ 8 − 11 M� have been a topic of discussion for

years due to their complex nature (Woosley & Heger, 2015). These stars are massive enough to

reach the conditions necessary to ignite carbon in the core often followed by off center C-burning

episodes to produce an O-Ne-Mg core (Farmer et al., 2015). However, for models within this mass

range the question becomes whether or not the O-Ne-Mg core will grow sufficiently in mass to reach

conditions to ignite Ne and proceed towards iron core collapse as our 15 M� model. Below a critical

O-Ne-Mg core mass of M ≈ 1.37 M� (Nomoto, 1984), the star will follow an evolutionary path

expected to form an O-Ne-Mgwhite dwarf. Alternatively, some stars that fail to eject their envelope

and that are below this mass threshold are expected to collapse as electron-capture supernovae.

In degenerate O-Ne-Mg cores, electron captures onto 20Ne and 24Mg act to effectively decrease

the specific electron fraction and thus the effective Chandrasekhar mass (Equation 1.2). In doing

so, the core eventually becomes gravitationally unstable and collapse ensues. During collapse,

O is ignited, but due to the rapid rate of electron captures, collapse is able to overcome the O

deflagration and continue unimpeded until the central density reaches a few times nuclear density.

The properties of electron-capture supernovae (ECSNe) progenitors differ from more massive stars

and as such they can help explain different observational properties otherwise not possible with

more massive models (e.g., in producing heavy r-process elements (Wanajo et al., 2011)). In

Figure 1.2 the fates of massive star stellar models in the mass range of 7-11M� are summarized.

For the remainder of this Thesis we will focus on the majority of massive stars above a mass of 11

M� which we expect to form an iron core.

1.3.2 Core-Collapse Supernova Explosions

Stars with an initial mass greater than≈ 11 M� will evolve to build an inert core primarily consisting

of nuclei near the iron peak. Si-shell burning occurs outside of the iron core increasing its mass
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Figure 1.2: Evolutionary fates for a sample of stellar models in the mass range of 7-11 M� . For this
particular set of models, stars below 7 M� form CO WDs, stars from 7-8 M� ignite C off-center
whereas from 8-9 M� it ignites centrally. For models in the mass range 7-9 M� a degenerate
O-Ne-Mg core is produced that cools to a WD if the envelope is lost or results in a ECSNe if
envelope remains. Stars above 9M� ignite Si either off-center (up to ≈ 10.3 M� ) or centrally
(above 10.3M� ) to end in iron core-collapse. Figure from Woosley & Heger (2015).

towards its effective Chandrasekhar limit. Near this limit, the increasingly degenerate material

experiences thermal pressure support being removed from the core via photodisintegration. Core

contraction starts to occur due to the thermal support loss. This contraction leads to an increase in

density and temperature within the stellar core accelerating the capture of electrons onto protons

further removing pressure support provided by electron degeneracy and decreasing the adiabatic

index, the core begins to contract further. The reduction of the required adiabatic index to maintain

hydrostatic equilibrium causes a gravitational instability and dynamical collapse of the core ensues.

Core-collapse is halted when the inner core reaches a density of ρ ∼ 6 × 1014 g cm−3 and the

strong nuclear force becomes repulsive. The inner core collides with the infalling material and

recoils to cause the formation of a pressure wave traversing outward that quickly steepens into a

shock. The shock travels outward at speeds of v ∼ 0.25c continually losing energy due to the

photodisassociation of the supersonic free-falling outer iron core and due to inward momentum of

the material leading to ram pressure. On the timescale of a few hundred ms, the shock stalls at an

approximate radius of 200 km, the location where the pressure from the shock and the infalling

matter are balanced.

The delayed neutrino heating mechanism (Bethe & Wilson, 1985; Janka & Mueller, 1996)

proposes one possible solution for revival of the stalled shock. The mechanism in its current form

suggests that the neutrinos emitted by the newly formed proto-neutron star (PNS) can be reabsorbed
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at a larger radius corresponding to the location where the net energy loss rate is less than the local

rate of energy deposition by neutrinos. Above this radius and outward to the location of the standing

shock is known as the gain region. Within this region, net heating by neutrinos can facilitate thermal

pressure support to drive the shock outward and launch a successful explosion.

CCSNe play a critical role in many areas of astronomy. Galactic chemical evolution models

require accurate explosion energies predicted for a given progenitor (Timmes et al., 1995; Kobayashi

et al., 2020). Nucleosynthetic yields and remnant properties rely on fallback material and mixing

dynamics (Chan et al., 2020). Observations of superluminous supernovae (SLSNe) such those

found by the Zwicky Transient Facility depend on properties of the PNS for a central engine or

shock interaction with the interstellar medium hypothesis to explain the unusually bright transients

(Eftekhari et al., 2019; Lunnan et al., 2020).

Observations of CCSNe are categorized by the features of the optical spectra. Some of those

features include peak brightness and particular atomic absorption or emission features. The most

common explosion type is classified as a type-II supernova owing to strong H line features. Beyond

this classification many further sub-classes are established. Two primary classes are based on a

plateau (Type IIP) or linear decline of the light curve (Type IIn). These two sub-classes make

up ≈ 59% and 3% of all CCSN explosions, respectively (Smartt et al., 2009). Identifying CCSN

progenitors has been a goal of observational efforts to help constrain theoretical models of red

supergiants (RSGs) and explosion models. In Figure 1.3 we show a cumulative frequency plot

of observationally derived progenitor masses for Type IIP supernova explosions (Smartt, 2009).

Progenitor masses can be determined by using theoretical stellar models to determine a final

luminosity to be compared to the observational value placing an upper limit of the initial mass.

1.4 Motivating New Models of Massive Stars and CCSNe

1.4.1 Nuclear Reaction Rates

At the heart of computationalmodels of stellar structure and evolution are nuclear reaction rates. The

low transmission probabilities at astrophysically relevant energy ranges have presented a challenge
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Figure 1.3: A cumulative frequency plot of the masses of II-P progenitors of observed supernovae.
The solid line represents a Salpeter IMF best fit to the observed data with a minimum mass of
8.5M� and maximum mass of 16.5M� while the dashed line has a maximum mass of 30M� . The
right axis is a cumulative count of events within these two limits. The events are colored according
to the metallicity used in model ranging from the composition of the Large Magellanic Cloud to
Solar. The supernovae are grouped in metallicity bins log O/H + 12 = 8.3-8.4 (gold), 8.5-8.6 (red),
8.7-8.9 (purple). Figure from Smartt (2009).

for direct measurements of nuclear cross sections - a key component in determining reaction rates.

The astrophysical S factor, a rescaling of the nuclear cross section can be measured near 100 keV

to 1 MeV. However, most temperatures experienced in stellar environments are at energies of 0.1 to

100 keV and thus require theoretical models or extrapolation in the absence of experimental data.

Key nuclear reaction rates can have different impacts on stellar evolution properties. For

example, the 14N(p, γ)15O is the slowest nuclear reaction rate in the CNO cycle. As such, the
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Figure 1.4: Nuclear reaction rate for 12C(α, γ)16O normalized compared to two rates over a range
of Helium burning conditions. Figure from deBoer et al. (2017).

reaction rate can alter the MS turnoff time estimated for a stellar population. Recent direct

measurements of the cross section for this reaction down to energies of 70 keV were performed by

LUNA Collaboration et al. (2006a). The result of the updated nuclear reaction rate led to change

in turnoff age and surface properties for stellar models above 1 M� (Tognelli et al., 2011). Of

particular interest to massive stars is the 12C(α, γ)16O nuclear reaction. This reaction can operate

at different times during the life of a massive star but of particular importance is when it competes

with the triple-α reaction during core He-burning. West et al. (2013) investigated the impact

of these two nuclear reactions when multiplied by their median values within their experimental

uncertainties. They evolved a grid of stellar models to the end of core He-burning and found that

they can produce ranges of central 12C mass fractions of Xc(12C) ≈ 0-0.42.
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Recent progress on determining the 12C(α, γ)16O reaction rate was performed by deBoer et al.

(2017) using an R−matrix analysis informed by past measurements and experimental uncertainties.

In Figure 1.4 we show the 12C(α, γ)16O compared to three other tabulated rates used in past

studies. As a part of this Thesis work, I have implemented the updated tabulated reaction rate into

the starkiller-astro microphysics routines 1 and within the FLASH simulation framework (the

StarKiller Microphysics Development Team et al., 2019). The starkiller-astro project is a

collection of microphysical routines commonly used together with AMReX codes which include

the fully compressible hydrodynamics code, CASTRO (Almgren et al., 2010). In Chapter 2, we

present work building on these efforts that utilize temperature-dependent uncertainties in evaluating

the impact of nuclear reaction rates on massive star models.

1.4.2 Stellar Convection

The Schwarzschild criterion describes a region is stable against convection if

∇rad. < ∇ad. , (1.3)

where ∇ad. is the adiabatic (no heat exchange) temperature variation of a fluid element undergoing

a change in pressure. This is defined as

∇ad. =
dlogT
dlogP

. (1.4)

The quantity ∇rad. is the actual gradient of the temperature for a star in hydrostatic equilibrium in

a region where the only means of energy transport is via radiation. An alternative criterion is the

Ledoux criterion where Equation 1.3 becomes

∇rad. < ∇ad. + ∇µ , (1.5)

for an ideal gas. This modified equation takes into account spatial gradients in the mean molecular

weight,
1
µ
=

∑
i

(Zi + 1)Xi
Ai

. (1.6)

1https://github.com/starkiller-astro
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Figure 1.5: Profiles of the different gradients that determine convective stability in a 16 M� 1D
stellar evolutionmodel. The quantity X is the hydrogenmass fraction and∇L is the Ledoux gradient,
the sum of the radiative and mean molecular weight gradients. The gray shading represents regions
that are convective. Figure from Paxton et al. (2018).

In chemically homogenous regions, this equation reduces to the Schwarzschild criterion. Additional

mixing processes can occur at the boundaries of radiative and convection mixing. Among these

processes are thermohaline, semi-convection, and convective boundary mixing (Langer et al., 1983;

Brown et al., 2013; Davis et al., 2018). In Figure 1.5 we show profiles of the various gradients in

a stellar evolution model of a 16 M� star using MESA (Paxton et al., 2018). At low specific mass

coordinate, corresponding to the center of the stellar model, the radiative gradient is large due to

the energy generation rate exceeding the condition for convection to occur.

Spherically symmetric stellar evolution calculations usemixing length theory (MLT) to describe

energy transfer via convection (Cox & Giuli, 1968). MLT has been shown to accurately represent

convection in 1D models when calibrated to radiation hydrodynamic simulations of surface con-

vection in the Sun (Trampedach et al., 2014). Despite the utility of MLT in 1D, multidimensional

effects in the late stages of nuclear burning in the life of a massive star can lead to conditions that

differ significantly from spherical symmetry (Arnett et al., 2009; Arnett & Meakin, 2011; Viallet

et al., 2013). Moreover, additional mixing processes that are subject to free parameters in 1D

might operate at the edges of stellar convective and radiative boundaries. These processes can

alter internal structure of stars in advanced burning stages (Davis et al., 2018). The situation is
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Figure 1.6: Volume rendering of the silicon mass fraction for a 3D hydrodynamic simulation of
O-shell convection of a 18 M� star at the onset of collapse. Figure from (Müller et al., 2016b).

further complicated in models including rotation and magnetism as these models also include free

parameters only operating in the presence of rotation. An accurate description of the convective

properties of a massive star is crucial to our understanding of stellar structure and transient phenom-

ena. In Figure 1.6 we show a volume rendering of the silicon mass fraction for a 3D hydrodynamic

simulation of O-shell convection of a 15 M� star at the onset of collapse (Müller et al., 2016b). In

this work they found that in the final moments prior to collapse, a large scale ` = 2 mode emerged

in the power spectrum for the spherical harmonic decomposition of the radial velocity. Such a large

scale mode observed at the onset of collapse in a massive star could have favorable implications for
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the explodability of a particular progenitor model (Hanke et al., 2012; Couch et al., 2015; Couch

& Ott, 2015).

Current simulations of CCSNe can now include General Relativity (Roberts et al., 2016),

neutrino transport via multidimensional two-moment schemes such (Shibata et al., 2011; O’Connor

& Couch, 2018a), and grid schemes that allow for higher spatial resolutions (Nagakura et al.,

2019). However, the majority of these simulations utilize progenitor models taken from 1D stellar

evolution codes at the start of iron core-collapse and followed through to a time of about 5-10

ms post bounce in 1D. This process cannot adequately take into account the scale of convection

or provide information about the chaotic, convective nuclear shell burning expected to take place

in massive stars approaching core-collapse (Meakin & Arnett, 2007). The turbulent non-radial

motions observed in multidimensional simulations of massive stars could potentially provide a

means for achieving successful explosion in otherwise weak or failed CCSN explosion models.

Couch & Ott (2013) investigated the impact of progenitor perturbations in 3D CCSN models.

They found that their when inducing velocity perturbations, motivated by multidimensional simu-

lations of Si-shell burning (Arnett & Meakin, 2011), their perturbed 3D CCSN model was either

able to achieve explosion or evolve closer to explosion than the unperturbed counterparts. The per-

turbations led to a significant increase in anisotropic kinetic energy within the gain region. Couch

et al. (2015) evolved a 3D simulation for the last ∼ 3 minutes before iron core-collapse of a 15M�

star using a 21 isotope nuclear reaction network. This 3D model showed significant non-radial

kinetic energy prior to collapse that was amplified during the collapse phase. In their 3D CCSN

models they found that the 3D progenitor model exploded earlier and more energetically than the

1D angle-average counterpart. The implication of these results is that 3D progenitor models have

a crucial and qualitative impact on CCSNe. In Chapter 3 and Chapter 4, we present work building

on these efforts that develop multidimensional models of stellar convection in massive stars.
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Figure 1.7: Predicted gravitational wave strain for 3D rotating CCSN explosion models (left)
and power spectrum density of gravitational wave emission compared to the design sensitivity of
Advanced LIGO and Einstein Telescope (and J Aasi et al., 2015). Figure from (Radice et al., 2019).

1.4.3 Multi-messenger Signals Produced by Massive Star Explosions

Multi-messenger (electromagnetic, gravitational wave, and neutrino) signals are a natural outcome

of a CCSN explosion, or the failed explosion (O’Connor & Ott, 2011), of a massive star. In the case
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of rotation, 2D/3D simulations of CCSNe show that their are many ways in which the explosion

can produce gravitational wave (GW) emission. Rotation can produce a bounce signal due to the

centrifugal readjustment of the collapsing PNS that can lead to a burst of GW emission (Richers

et al., 2017). Convection in the gain region during explosion can excite oscillations in the PNS that

can contribute GW emission at later times (Pajkos et al., 2019). Instabilities such as the standing

shock accretion instability (SASI) can also produce signature periodic GW strain signals as well

(Andresen et al., 2019).

CCSNe generate GW emission and for nearby sources are detectable by current and next

generation GW detectors (e.g., aLIGO, VIRGO)(Gossan et al., 2016; Pan et al., 2020). Figure 1.7

shows the plus polarization of the gravitational wave strain for models in the mass range of 9 -

60 M� compared to the noise curves of detectable events for Advanced-LIGO and the Einstein

Telescope at 10 kpc (Radice et al., 2019). In most cases, the CCSN explosion models show high-

frequency emission within the aLIGO band for a very nearby source at D = 10 kpc. O’Connor &

Couch (2018a) also show that the 3D progenitor structure can alter the GW spectrum to cause an

increase in the GW amplitude over the non-perturbed models and thus impact our predictions for

GW emission from CCSNe (Andresen et al., 2019). Gound-based neutrino detectors such Super-

Kamiokande will also be able to detect a few thousand events from a Galactic CCSN explosion.

Neutrino emission could be combined with GW signals to determine properties of the progenitor

like never before (Warren et al., 2020). In Chapter 5, we present work performing multidimensional

neutrino-radiation-hydrodynamic simulations of CCSN explosions using 2D/3D progenitormodels.

1.5 Computational Tools and Methods

Our two primary software instruments used throughout the work presented here are the stellar

evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) (Paxton et al., 2011,

2013, 2015, 2018, 2019) and the FLASH simulation framework (Fryxell et al., 2000; Dubey et al.,

2009). In the following subsections, we discuss these software instruments in more detail.
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1.5.1 Modules for Experiments in Stellar Astrophysics - MESA

MESA is an open-source stellar evolution toolkit based on the EZ stellar evolution code (Eggle-

ton, 1971; Paxton, 2004). MESA solves the 1D stellar structure and evolution equations in their

Lagrangian formulation (mass as an independent spatial variable),

dlogP
dm

= −
Gm

4πr4ρ
, (1.7)

dlogT
dm

=
dlogP

dm
∇ , (1.8)

dlogr
dm

=
1

4πr3ρ
, (1.9)

and
dL
dm
= εnuc − εν −

Du
Dt
+

P
ρ2

Dρ

Dt
, (1.10)

where P is the pressure, G the gravitational constant, r radius, ρmass density, T temperature, εnuc

the nuclear energy generation rate, ε ν the energy loss rate due to neutrinos, u is the velocity, and m

is the Lagrangian mass coordinate. MESA solves these equations along with those governing nuclear

reactions in a fully coupled manner. The code offers adaptive mesh refinement based on changes in

the stellar structure and sophisticated timestep controls. Since its inception in 2010, MESA has been

a valuable tool in the field of astronomy and astrophysics with an active network of contributors

building on its capabilities. In the following subsections, we will briefly discuss some of the core

components of MESA and how they affect the simulations presented in this Thesis.

1.5.1.1 Nuclear Burning

In practice, computational models utilize nuclear reaction rate libraries which are comprised of

tabulated reaction rates as functions of temperature. The reaction rate tables are then interpolated

to give a rate for a cell at a given temperature. These libraries are comprised of experimentally

derived nuclear reaction rates when possible and theoretical rates if necessary. Some libraries
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instead provide polynomial coefficients for codes to utilize in a fit to a given nuclear reaction. MESA

allows for users to choose a specific nuclear reaction rate library from its available options. The

default rate library is the Nuclear Astrophysics Compilation of REaction rates (NACRE) library

(Angulo, 1999; Xu et al., 2013). Nuclear burning is implemented in MESA using a set of sparse-

matrix, semi-implicit ODE solvers. MESA uses a variable-order Bader-Deuflhard semi-implicit time

integration algorithm along with the MA28 linear algebra package. This combination was found

to represent the best balance between efficiency and accuracy (Timmes et al., 2000).

In its current form, MESA utlizes a variety of different nuclear reaction network sizes. For the

models presented in Chapters 3 and Chapters 4, we use the aprox21.net network. This network

is a hard-wired (specific reaction channels are pre-determined) alpha-chain network that has been

shown to provide an inexpensive network that gives an approximate match to the nuclear energy

generation rates predicted by larger networks (Timmes et al., 2000). This choice of reaction network

was used to maintain consistency between the MESA input models used in our FLASH simulations.

1.5.1.2 Equation of State

MESA uses ρ and T as independent variables to determine thermodynamic properties with the help

of different tables across different ρ − T ranges. For the most relevant ρ − T conditions for the

models considered in this work, MESA uses the Helmholtz equation of state (EoS). The Helmholtz

EoS is an electron-positron EoS based on table interpolation of the Helmholtz free energy (Timmes

& Swesty, 2000). The table has been used widely for many different astrophysical simulations on

account of its balance of speed, thermodynamic consistency, and accuracy.

1.5.2 FLASH Simulation Framework

FLASH is an adaptive mesh refinement (AMR) hydrodynamics code to model astrophysical ther-

monuclear flashes (Fryxell et al., 2000). Since its inception, FLASH has been extended to simulate

a variety of astrophysical problems including neutrino-radiation hydrodynamics of core-collapse

supernova explosions and stellar convection. In this Thesis, we focus on these two capabilities of
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FLASH. In the following subsections, we summarize some of the key methods implemented and

utilzed in the FLASH simulation framework.

1.5.2.1 Hydrodynamics

The hydrodynamics module in FLASH solves the Euler equation’s for compressible gas dynamics.

In terms of conserved variables and negelecting nuclear reactions and source terms, the equations

can be written as

∂ρ

∂t
+ ∇ · (ρv) = 0 , (1.11)

∂ρv
∂t
+ ∇ · ρvv + ∇P = ρg , (1.12)

∂ρE
∂t
+ ∇ · (ρE + P)v = ρv · g , (1.13)

where ρ is the fluid density, v the velocity, P the pressure, g the gravitational acceleration, and

E is the total (internal + kinetic) energy. Lastly, for reactive flows an additional advection equation

is solved

∂ρXl
∂t
+ ∇ · ρXlv = 0 , (1.14)

where Xl is the mass fraction of the l-th species. The current version of FLASH offers many

methods of solving these equations. In the simulations presented in this Thesis, we utilize two

different methods for two different astrophysical applications.

For modelling stellar convection, as will be discussed in Chapter 3 and Chapter 4, we utilize

the directionally unsplit third order Piecewise Parabolic Method (PPM) solver (Lee, 2013). The

PPM solver is an extension to the Godunov Scheme, a finite-volume scheme for solving partial

differential equations. Recent efforts in modelling stellar convection have utilized methods built

on PPM in simulations of O-shell convection (Jones et al., 2017; Andrassy et al., 2020). For
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our CCSN explosion simulations, we utilize a weighted essentially non-oscillatory (WENO) finite

volume scheme that demonstrates fifth-order spatial convergence rates.

1.5.2.2 Radiative Transfer

Some of the first three-dimensional models of core-collapse supernova explosions used simplified

methods for neutrino transport such as light-bulb approximations that helped reduced the com-

putational cost (Nordhaus et al., 2010). These models suggested that 3D simulations required

less driving neutrino luminosity (≈ 40 − 50%) than their 2D and 1D counterparts and would ex-

plode more promptly (≈ 50 - 100 ms earlier) as a result. Other groups, failed to reproduce these

trends in their 1-,2-, and 3D models using a similar approximation for neutrino transport (Couch

& O’Connor, 2014). The results from their work suggested a more complicated picture where the

3D models exploded later than the 2D models owing in part to the difference in the nature of the

turbulent convection. They found that in 2D, the inverse turbulent energy cascade pushes energy

towards larger physical scales that are more favorable for explosion (Hanke et al., 2012).

In Chapter 6 of this Thesis, we perform neutrino-radiation hydrodynamic simulations of core-

collapse supernova explosions. For these simulationswe utilize themultidimensional, two-moment,

energy-dependent, multispecies, neutrino radiation transport scheme, so called M1 as implemented

in FLASH . The details of this implementation are described in O’Connor & Couch (2018b). Here

we summarize the main points.

The M1 scheme for neutrino radiation hydrodynamics evolves the zeroth and first angular

moments of the neutrino distribution function. The scheme is then closed with an analytical

approximation for the higher moments of the distribution function (Shibata et al., 2011). In this

scheme, three species of neutrinos are followed, νe, ν̄e, and νx, electron, anti-electron, and heavy

type neutrinos. The heavy type neutrinos are a combination for µ and τ type neutrinos are their anti-

counterparts. Neutrinos are described by a distribution function which characterizes the number of

neutrinos in a phase-space volume element and which obeys the relativistic Boltzmann equation,

d xµ

dτ
∂ f
∂xµ
+

d pi

dτ
∂ f
∂pi = (−pµuµ)S(pµ, xµ, f ) , (1.15)
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where τ is the affine parameter of the neutrino trajectory, uµ is the four-velocity of the medium,

and pµ the four-momentum of radiation (Shibata et al., 2011). The term S(pµ, xµ, f ) describes the

emission, scattering, and absorptions terms of the neutrinos. In natural units, ~ = c = 1, the zeroth,

first, and second moments of the distribution function in momentum space are, the energy density

Eν =
∫

ε f (pµ, xµ)δ(hν − ε )d3p , (1.16)

the radiation flux,

F j
ν =

∫
p j f (pµ, xµ)δ(hν − ε )d3p , (1.17)

and the radiation pressure,

Pi j
ν =

∫
pi p j f (pµ, xµ)δ(hν − ε )d3p/ε . (1.18)

The analytic closure mentioned above is obtained under the following assumptions. In regions

where the radiation is isotropic, the second moment is given as

Pi j = Pi j
thick = δ

i j E/3 , (1.19)

while in regions far from the source,

Pi j = Pi j
thin = E(FiF j )/F2 . (1.20)

For the regions in between these limits, an interpolation is performed, giving a relation for the

second moment as,

Pi j =

[
3(1 − χ)

2
δi j

3
+
3χ − 1)

2
FiF j

F2

]
E . (1.21)

The quantity χ is taken to be,

χ =
1
3
+

2
15

[
3 f 2 − f 3 + 3 f 4

]
, (1.22)

where f =
√

(FiFi/E2) is the flux factor. For isotropic radiation, f = 0, where χ = 1/3 and

Pi j = Pi j
thick. For fully forward-peaked radiation, f = 1. The above equations are solved via operator

splitting from the hydrodynamics and first order temporal and second order spatial accuracy. For
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each hydrodynamic step, the updated variables are used to compute the matter interactions while

substeps are taken to compute the radiation fluxes. Efficient and accurate coupling is maintained

between the hydrodynamics and radiation due to the strict explicit timestep constraint by the

radiation field.

In all of our FLASH simulations of stellar convection (Chapter 3 and Chapter 4) we also utlize the

Helmholtz EoS. In Chapter 5we use the SFHoEoS (Steiner et al., 2013). Unlike MESA, FLASH solves

nuclear burning and hydrodynamics separately. In order to prevent decoupling between these units,

we impose a limit to the timestep taken by the burner such that δt = eNucDtFactorEint./Enuc.,

that is the timestep does not exceed some fraction of the ratio of the internal and nuclear energy.

Our simulations use a value of 1% of this ratio, a value also used in Couch et al. (2015). Our CCSN

simulations do not include nuclear burning. The specific details of the simulations are discussed

further in their respective chapters.

1.6 MESA-Web: An online interface to the MESA code

Stellar evolution codes can be complicated to use, sowe offerMESA-Web, aweb-based interface

to the stellar evolution code, Modules for Experiments in Stellar Astrophysics. MESA-Web can

be used for education purposes to calculate stellar models over a range of physical parameters,

extending capabilities of similar online tools such as Rich Townsend’s EZ-Web2. A large part

of the motivation behind creating and maintaining the MESA-Web online interface is to allow

educators to utilize MESA in the classroom without additional barriers that students may face in

downloading / installing MESA. The use of computational resources in astronomy is important and

has been a topic for advocacy in the need for more computational literacy (Zingale et al., 2016).

Part of my work in graduate school has been developing MESA-Web, maintaining its online status,

and improving ways in which it can be used in astronomy classrooms. This work will be discussed

in Chapter 6.

2http://www.astro.wisc.edu/ townsend/static.php?ref=ez-web
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1.7 Outline

Simulations of massive stars are subject to uncertainties that can stem from nuclear reaction

rates and the treatment of convection in 1D. Moreover, these models serve as input for multidimen-

sional radiation-hydrodynamic simulations of CCSNe. The consequences of these uncertainties

directly impact our predictive capability in leveraging theoretical models as a comparison to a

comparison to observational and experimental data. This Thesis will focus on nuclear reaction rate

uncertainties (Chapter 2) and stellar convection in multidimensional massive star models (Chapter 3

and Chapter 4), and the impact that progenitor models have on multi-messenger signals of CCSNe

(Chapter 5). Chapter 6 will cover MESA-Web an online web interface to MESA for use in astronomy

education and in the last Chapter we summarize the key findings of this Thesis.
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CHAPTER 2

THE IMPACT OF NUCLEAR REACTION RATE UNCERTAINTIES ON THE
EVOLUTION OF CORE-COLLAPSE SUPERNOVA PROGENITORS

From a little spark may burst a flame. - Dante Alighieri, (Paradiso)

This chapter is based on the published work of C. E. Fields et al 2018 ApJS 234 19.

2.1 Abstract

We explore properties of core-collapse supernova progenitors with respect to the composite

uncertainties in the thermonuclear reaction rates by coupling the reaction rate probability density

functions provided by the STARLIB reaction rate library with MESA stellar models. We evolve

1000 15 M� models from the pre main-sequence to core O-depletion at solar and subsolar metal-

licities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently

and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ re-

action network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the

core mass, burning lifetime, composition, and structural properties at five different evolutionary

epochs. At each epoch we measure the probability distribution function of the variations of each

property and calculate Spearman Rank-Order Correlation coefficients for each sampled reaction

rate to identify which reaction rate has the largest impact on the variations on each property. We

find that uncertainties in 14N(p, γ)15O, triple-α, 12C(α, γ)16O, 12C(12C,p)23Na, 12C(16O,p)27Al,

16O(16O,n)31S, 16O(16O,p)31P, and 16O(16O,α)28Si reaction rates dominate the variations of the

properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow

with each passing phase of evolution, and at core H-, He-depletion are of comparable magnitude to

the variations induced by choices of mass resolution and network resolution. However, at core C-,

Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation causing uncertainty
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in various properties of the stellar model in the evolution towards iron core-collapse.

2.2 Introduction

Core-collapse supernova (SN) explosions are one possible fate of a star with a zero age main-

sequence mass of M & 9 M� (e.g., Woosley et al., 2002; Woosley & Heger, 2007; Farmer et al.,

2015). The structure of the progenitor at the time of explosion can lead to a large variety of observed

transient phenomena (e.g., Van Dyk et al., 2000; Ofek et al., 2014; Smith et al., 2016).

For progenitors experiencing mass loss, stellar winds may strip the H-rich envelope, and

possibly some of the He-rich envelope, prior to core-collapse (e.g., Smith, 2014; Renzo et al.,

2017). Explosions of these stars are characterized by an absence of hydrogen absorption features

and weak or non-existent absorption lines of silicon in their spectra (Smartt, 2009; Dessart et al.,

2011; Smartt, 2015; Reilly et al., 2016; Sukhbold et al., 2016). Progenitors with most of the

H-rich envelope present at the end of their life are characterized as Type II supernovae that can

be sub-divided into multiple classes based on lightcurve and spectral properties (Filippenko, 1997;

Wang & Wheeler, 2008; Jerkstrand et al., 2015).

In some cases, a massive star with sufficient rotational energy at core collapse can produce a

rapidly rotating, highly magnetic proto-neutron star capable of leading to a significantly enhanced

energetic transient. Such a scenario has been postulated to explain the most energetic supernova

observed to date, ASASSN-15lh (Sukhbold & Woosley, 2016; Chatzopoulos et al., 2016b; Chen

et al., 2016), although Leloudas et al. (2016) offers on an alternative hypothesis on the nature of

ASASSN-15lh.

Alternatively, a massive star may undergo iron core-collapse but the resulting shocks are

insufficient to unbind the star, leading to accretion onto the nascent proto-neutron star and pushing

it past its maximum mass. These “failed supernovae” (e.g., O’Connor & Ott, 2011) can produce

stellar mass black holes at the rate suggested by the detection of GW150914, GW151226, and

GW170104 (Abbott et al., 2016b,a, 2017), although a broad consensus on which massive stars

produce black holes has not yet been reached (Timmes et al., 1996; Fryer & Kalogera, 2001; Heger
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et al., 2003; Eldridge & Tout, 2005; Zhang et al., 2008; Ugliano et al., 2012; Clausen et al., 2015;

Sukhbold et al., 2016; Müller et al., 2016a; Woosley, 2016; Kruckow et al., 2016; Sukhbold et al.,

2017; Limongi, 2017).

For more massive progenitors, pair-instability leads to a partial collapse, which in turn causes

runaway burning in the carbon-oxygen core (Fowler &Hoyle, 1964; Rakavy& Shaviv, 1967; Barkat

et al., 1967; Rakavy et al., 1967; Fraley, 1968). A single energetic burst from nuclear burning can

disrupt the entire star without leaving a black hole remnant behind to produce a pair-instability

supernova (Ober et al., 1983; Fryer et al., 2001; Kasen et al., 2011; Chatzopoulos et al., 2013).

Alternatively, a series of bursts can trigger a cyclic pattern of nuclear burning, expansion and

contraction, leading to a pulsational pair-instability supernova that leaves a black hole remnant

(Barkat et al., 1967; Woosley & Heger, 2007; Chatzopoulos & Wheeler, 2012; Woosley, 2017;

Limongi, 2017). A variety of outcomes is possible depending on the star’s mass and rotation.

At the heart of these evolutionary pathways are nuclear reaction rates. These rates regulate the

evolution of the star and can significantly modify the stellar structure of the progenitor star at the

end of its life. A direct consequence of uncertainties in the reaction rates can result in differences

in the nucleosynthesis and explosion properties (Rauscher et al., 2002; Woosley & Heger, 2007;

Sukhbold et al., 2016; Rauscher et al., 2016).

Most reaction rate libraries provide recommended nuclear reaction rates based on experiment

(when possible) or theory. Examples include CF88 Caughlan & Fowler (1988), NACRE (Angulo,

1999; Xu et al., 2013), JINA REACLIB (Cyburt et al., 2010), and STARLIB (Sallaska et al.,

2013). STARLIB takes the additional step of providing the median or recommended thermonuclear

reaction rate and the factor uncertainty ( f .u.) as a function of temperature. The factor uncertainty

is an estimate of the uncertainty associated with a reaction rate at a given temperature given the

available nuclear physics data. Monte Carlo (Longland et al., 2010; Longland, 2012; Iliadis et al.,

2015, 2016) or Bayesian (Iliadis et al., 2016; Gómez Iñesta et al., 2017) based reaction rates

generate probability density functions (PDFs) to provide a final median rate and a temperature-

dependent uncertainty. The availability of formally derived temperature-dependent uncertainties
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allows statistically rigorous studies on the impact of the composite uncertainty on stellar models.

Reaction rate sensitivity studies have been considered for X-ray burst models (Cyburt et al.,

2016) and massive star models through core He-burning (West et al., 2013) and for s-process

nucleosynthesis (Nishimura et al., 2017). In some of these and similar studies, temperature-

independent estimates of the reaction rate uncertainties are applied as constant multiplicative

factors on the recommended rate at all temperatures. This method can lead to an under- or over-

estimate of the reaction rate for different stellar temperatures. Another common approximation is

“post-processing” of thermodynamic trajectories from stellar models (e.g., Magkotsios et al., 2010;

Rauscher et al., 2016; Harris et al., 2017), which also usually use a constant multiplicative factor

at all temperature points. Post-processing thermodynamic trajectories neglect the feedback of the

changes in the reaction rates on the underlying stellar model.

Fields et al. 2016 (Paper F16) addresses some of the shortcomings of these approximations

by using a Monte Carlo stellar model framework with temperature-dependent uncertainties on the

reaction rates from STARLIB. Specifically, used on 3 M� stellar models evolved from the pre

main-sequence to the first thermal pulse. Each of the 1000 models uses one set of reaction rates

generated from the reaction rate PDFs. These Monte Carlo stellar models probed the effect of

reaction rate uncertainties on the structure and evolution of stars that form carbon-oxygen (CO)

white dwarfs. Paper F16 sample 26 reaction rates of the 405 total rates in the chosen reaction

network, which can bias identifying the reactions that play role in altering the stellar structure.

In this paper, we apply the sameMonte Carlo framework tomassive star models. We consider all

forward reactions in a suitable reaction network (reverse rates are calculated by detailed balance)

to eliminate potential biases from selecting a limited set of reactions. Our workflow couples

temperature-dependent reaction rate uncertainties from STARLIB (Sallaska et al., 2013) with

Modules for Experiments in Stellar Astrophysics (MESA) stellar models (Paxton et al., 2011, 2013,

2015). We sample the reaction rates independently and simultaneously according to their respective

PDFs. These sampled rates form input for 15 M� models evolved from the pre main-sequence to

core O-depletion. We focus on 15 M� models as they approximately represent the most numerous
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SNe by number for a Salpeter initial mass function with slope Γ =−1.35, and a lower limit of

9 M� for stars that become SNe (Salpeter, 1955; Scalo, 1986; Sukhbold & Woosley, 2014; Farmer

et al., 2015). We consider solar and subsolar metallicities to explore the effect of reaction rate

uncertainties on stars in different galactic environments.

This paper is novel in two ways. First, we sample a large number of reaction rates (665 forward

reactions) in a Monte Carlo stellar model framework where the rates are sampled before the stellar

model is evolved. This accounts for changes in the stellar structure due to reaction rate uncertainties,

and is fundamentally different than post-processing schemes. Second, we quantify the variation of

key quantities of the stellar models at five key evolutionary epochs. This allows determination of

(1) the most important reactions overall, and (2) when these key reactions play a crucial role in the

life of a massive star. In short, this paper presents the first Monte Carlo stellar evolution studies of

massive stars that use PDFs for the nuclear reaction rate uncertainties and complete stellar models.

In Section 2.3 we describe the input physics of our models. In Section 2.4 we discuss our Monte

Carlo stellar model framework and quantify the uncertainty of a few key nuclear reactions. Before

presenting the results of our survey, we describe the characteristics of baseline 15 M� models

evolved using median reaction rates from STARLIB in Section 2.5. In Section 2.6 we present our

main results. In Section 5.5 we compare our results to previous efforts and make an assessment of

the overall impact of the uncertainties due to nuclear reactions relative to other quantified sources

of uncertainty (e.g., Farmer et al., 2016). In Section 6.5 we summarize our results.

2.3 Input Physics

We evolve 15 M� models using MESA (version 7624, Paxton et al., 2011, 2013, 2015). All

models begin with an initial metallicity of Z = Z� = 0.0153 (“solar”, Caffau et al., 2010; Grevesse

& Sauval, 1998; Asplund et al., 2009; Vagnozzi et al., 2017) or Z=2×10−3Z�=0.0003 (“subsolar”).

Solar metallicity models use isotopic distributions from Lodders et al. (2009), while subsolar

models use the methods of West & Heger (2013)1. The metallicity-dependent isotopic distributions

1Available from http://mesa-web.asu.edu/gce.html
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from West & Heger (2013) reproduce α enhancement trends for a large sample of low Z stars in

the Milky Way halo (Frebel et al., 2010) thus motivating our choice for these distributions over

solar-scaled compositions.

Farmer et al. (2016) show convergence of key quantities in 15 M� MESA models at the ' 10%

level when the reaction network contains & 127 isotopes. Following their results, each stellar model

utilizes the in-situ nuclear reaction network mesa_127.net, which follows 127 isotopes from 1H

to 64Zn coupled by 1201 reactions. Figure 2.1 shows the 127 isotopes and their linking nuclear

reactions. The isotopic abundance distributions we use contains 288 isotopes from 1H to 238U.

We add the residual mass fraction (. 10−5) of the 161 isotopes not in the reaction network to the

initial 1Hmass fraction to maintain baryon number conservation
∑127

i=1 Xi = 1, where Xi is the mass

fraction of isotope i.

We include mass loss using the Dutch wind loss scheme (Nieuwenhuijzen & de Jager, 1990;

Nugis & Lamers, 2000; Vink et al., 2001; Glebbeek et al., 2009) with an efficiency of η=0.8. We

neglect the effects of rotation, magnetic fields, and rotation induced mass loss in this study.

We use the Ledoux criterion for convection with an efficiency parameter of αMLT = 2.0, and

the mlt++ approximation for convection (Paxton et al., 2013). We include convective boundary

mixing (overshoot, thermohaline, and semi-convection) with baseline values following Farmer et al.

(2016). For convective overshoot we use f = 0.004 and f0 = 0.001, which can reproduce mass

entrainment rates found in idealized 3D simulations of explosive O-shell burning in massive stars

(Jones et al., 2017). For simplicity, we apply the same overshoot efficiency to all boundaries. For

thermohaline mixing, we use αth = 2.0 (Traxler et al., 2011; Brown et al., 2013; Garaud et al.,

2015). Semi-convection uses an efficiency of αsc = 0.01 (Zaussinger & Spruit, 2013; Spruit, 2013).

We use the MESA control mesh_delta_coeff, δmesh, to monitor mass resolution, which

accounts for the gradients in the structure quantities to decide whether a cell should be split or

merged. The default MESA value is unity. In this work, we use δmesh=0.5. This results in ' 2300

cells at the terminal age main-sequence (TAMS), ' 4700 at core He-depletion, and ' 2100 cells

during core O-burning. Section 2.5 discusses the sensitivity of our results to mass resolution.
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We use several of MESA’s timestep controls. The parameter varcontrol_target, wt, broadly

controls the temporal resolution by restricting the allowed relative variation in the structure between

timesteps. The default value is wt=1 × 10−4. In this work, we use wt=5 × 10−5, except during

off-center C-burning where we use wt=1×10−5 to further improve time resolution. We also control

the rate of fuel depletion with the delta_lg_X* timestep controls, where the asterisk denotes a

major fuel (i.e. H, He, C, Ne, or O). In total, we observe timesteps of ∆t ' 2 × 104 yr on the

main sequence, ∆t ' 4 × 103 yr during core He-burning, and ∆t ' 12 hr during core O-burning.

Section 2.5 discusses the sensitivity of our results to temporal resolution.

For each stellar model, we sample 665 forward reaction rates from STARLIB Archived Version

5 (Sallaska et al., 2013) simultaneously and independently within their temperature-dependent

uncertainties. We calculate reverse rates directly from the forward rates using detailed balance. We

utilize the work of Alastuey & Jancovici (1978) and Itoh et al. (1979) for reaction rate screening

factors. The fitting formula of Itoh et al. (1996b) provide the thermal neutrino energy losses. Weak

reactions rates, in order of precedence, are from Langanke & Martínez-Pinedo (2000), Oda et al.

(1994), and Fuller et al. (1985).

Each stellar model evolves from the pre main-sequence until the central X (16O) ' 1×10−3. We

use 1000 solar and subsolar stellar models, for a total of 2000 Monte Carlo stellar models. All

MESA inlists and many of the stellar models are available at http://mesastar.org.

2.4 Reaction Rate Sampling

We construct a sampled nuclear reaction rate following Iliadis et al. (2015). We summarize the

key characteristics here. The STARLIB rate library provides the median reaction rate, 〈σv〉med,

and the associated f .u., over the temperature range 106−10 K. A log-normal PDF is assumed for

all reaction and decay rates, and these PDFs are described by the location and spread parameters,

µ and σ, respectively. These parameters are obtained using the median rate and f .u. tabulated in
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Figure 2.1: Proton number versus neutron excess for the adopted 127 isotope reaction network.
Thermonuclear and weak reaction rates coupling the isotopes are marked by gray lines, and
symmetric matter (N=Z) is marked by a red line.

STARLIB as σ = ln f .u. and µ = ln 〈σv〉med. These two parameters give a complete description

of the reaction rate probability density at any temperature point and form the basis of our sampling

scheme.

A sampled reaction rate is drawn from a log-normal distribution (e.g., Evans et al., 2000) for

an arbitrary quantity, x, as

xi = eµ+σpi ≡ eµ(eσ)pi . (2.1)

Using the relations for µ and σ, we obtain a sampled rate distribution as a function of temperature
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from

〈σv〉samp = eµ(eσ)pi, j = 〈σv〉med f .u.pi, j , (2.2)

where pi, j is a standard Gaussian deviate with mean of zero and standard deviation of unity. The i

index correspond to the stellar model of grid size N and the j index corresponds to the number of

reactions sampled.

We refer to pi, j as the rate variation factor for the j-th reaction. From Equation 2.2, a rate

variation factor of pi, j = 0 corresponds to the median STARLIB reaction rate. For large rate

variation factors, the extent of change of the reaction rate at a given temperature point is limited by

the factor uncertainty.

For example, for the 12C(α, γ)16O reaction rate (Kunz et al., 2002), STARLIB shows that the

largest value of factor uncertainty is f .u. = 1.403 at T = 0.4 GK. For typical extrema of a Gaussian

distribution such as those used to generate our rate variation factors, one could expect values of

pi, j = +3.5,−3.5. In such a scenario, this would represent a change in the sampled nuclear reaction

rate of 〈σv〉samp ' 3.27 × 〈σv〉med for pi, j = +3.5 and ' 0.31 × 〈σv〉med for pi, j = −3.5 at

T = 0.4 GK. At all other temperature points, the modification of the median rate may be less for

the same value of pi, j .

In Figure 2.2 we plot the f .u. for the 12C(α,γ)16O, 14N(p,γ)15O, 23Na(p,γ)20Ne, and triple-α

reaction rates over typical core He-, C-, Ne-, and O-burning temperatures. The 12C(α,γ)16O rate

has the largest factor uncertainty across the temperature ranges considered. At higher temperatures

such as those expected in more advanced burning stages post core O-burning, the uncertainty in

the 12C(α,γ)16O begins to be overtaken by the uncertainty in the triple-α reaction.

We simultaneously and independently sample 665 forward thermonuclear reaction rates. For

each reaction, we generate N=1000 random Gaussian deviates to modifying the reaction rates in

the stellar models. Our choice for the sample size is motivated by the scaling of the sampling

error for perfectly uncorrelated distributions. For such a distribution we expect a standard error of

σ/
√

N ' 3%. Since MESA calculates inverse rates directly from the forward rates using detailed

balance, we also implicitly sample the corresponding 665 inverse rates. However, the corresponding
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Figure 2.2: The factor uncertainty as a function of temperature provided by STARLIB for the
12C(α,γ)16O, 14N(p,γ)15O, 23Na(p,γ)20Ne, and triple-α reactions over different approximate core
burning temperatures.

inverse sampled rates are not independent of the forward sampled reactions.

Reaction rates derived from Monte Carlo sampling of experimental nuclear data are available

for 33 of the 665 reactions considered (Iliadis et al., 2010; Sallaska et al., 2013; Iliadis et al.,

2015, 2016). For other reactions, Monte Carlo or Bayesian derived rate distributions are not yet

available. In these such cases, median rate values and the corresponding temperature dependent

f .u. are obtained from estimates of experimental uncertainty where available. In the absence of

experimental nuclear physics input, theoretical median reaction rates are obtained from Hauser-

Feshbach model calculations with the TALYS software instrument (Goriely et al., 2008). Such

theoretical rates are given a constant uncertainty of f .u. = 10 at all temperature points.

We assume the random Gaussian deviate is independent of temperature, pi, j (T ) = constant
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Figure 2.3: Hertzsprung-Russell diagram of the baseline 15 M� solar and subsolar models. Star
symbols denote the beginning of each stellar model, triangles denote the ZAMS, circles denote the
TAMS, and diamonds denote core O-depletion. Ages at these stages are annotated.

(Iliadis et al., 2015). This simplification obtains similar levels of uncertainties as more intricate

sampling schemes (Longland, 2012). We stress that despite this simplification, the f .u. provided

by STARLIB is temperature-dependent. This allows us to follow changes in the uncertainty that

may occur due to different resonance contributions.

The sampled reaction rate distributions are then constructed using Equation (2.2). Each nuclear

reaction rate in STARLIB has a total of 60T, 〈σv〉med, and f .u. data points. A sampled reaction rate

also contains 60 data points and is then passed to MESA in tabular form. MESA interpolates between

data points to construct a smoothed sampled nuclear reaction rate defined by 10,000 reaction rate

data points as a function of T .
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2.5 Properties of the baseline 15 M� stellar models

Before presenting the results of ourMonte Carlo stellar models survey, we discuss the properties

of the baseline 15 M� solar and subsolar models. These baseline models were evolved using the

input physics described in Section 2.3 and the median STARLIB nuclear reaction rates. A median

reaction rate is obtained in our sampling scheme by a Gaussian deviate of zero, pi, j = 0.

Figure 2.3 shows a Hertzsprung-Russell diagram of the solar and subsolar baseline 15 M�

stellar models. The start of the stellar models, the zero age main sequence (ZAMS), terminal

age main sequence, and the ending point of core O-depletion are annotated. The subsolar model

is brighter and hotter than the solar model primarily because a smaller metallicity decreases the

opacity in the stellar atmosphere. At ZAMS, the subsolar model has a luminosity and effective

temperature of log(L/L�) ' 4.39 and log(Teff/K)'4.58 while the solar model has log(L/L�) ' 4.33

and log(Teff/K)' 4.50. The solar model spends' 11.2Myr on themain sequence while the subsolar

model spends ' 11.7 Myr.

The ZAMS homology relations for CNO burning, constant electron scattering opacity, and

radiative transport (Hoyle & Lyttleton, 1942; Faulkner, 1967; Pagel & Portinari, 1998; Bromm

et al., 2001; Portinari et al., 2010) are:(
Teff

3 × 104 K

)
'

(
Z

Z�

)−1/20 (
M

15 M�

)1/40
(

R
6 R�

)
'

(
Z

Z�

)1/11 (
M

15 M�

)5/11
(

L
2 × 104L�

)
'

(
Z

Z�

)−1/55 (
M

15 M�

)
.

(2.3)

The ZAMS positions of the solar and subsolar models in Figure 2.3 and commensurate with the

trends of Eq. 2.3.

At the TAMS, the nascent He-rich core is surrounded by a thin H-burning shell. The core

contracts and its temperature increases, while the outer layers of the star expand and cool. The star

becomes a red giant (e.g., Iben, 1966, 1991; Stancliffe et al., 2009; Karakas & Lattanzio, 2014).

The solar model spends ' 1.54Myr undergoing convective core He-burning and the subsolar model
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spends ' 1.27 Myr. At He-depletion, the solar model has a He-core mass of MHe-Core ' 4.24 M�

and a 12C/16O ratio of 0.34. The subsolar model has a more massive, slightly more C-rich core

with MHe-Core ' 4.80 M� and 12C/16O ' 0.36.

The trajectory of the baseline models in the T − ρ plane are shown in Figure 2.4. In general, the

tracks are qualitatively similar. The largest difference is the subsolar model undergoes hotter, less

dense core burning. This is a result of the decreased stellar envelope opacity and larger luminosity

shown in Figure 2.3. Figure 2.5 shows Kippenhahn diagrams for the baseline models post core

He-burning. The C-burning features of both baseline models are similar; they both ignite carbon

convectively at the core and undergo three convective C-burning flashes that recede outward in

mass coordinate.
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Figure 2.5: Kippenhahn diagrams for the solar (left) and subsolar (right) baseline stellar models
post core He-burning. Annotated is the He-burning shell and the convective C, Ne, and O-burning
episodes. The x-axis is the logarithmic difference between the age at O-depletion, τO-dep., and the
current age of the model, τ. Dark orange to red correspond to regions of strong nuclear burning,
light to dark purple to cooling regions, and white to regions balancing heating and cooling. Blue
shows convective regions, gray marks regions of convective overshoot. Semi-convective and
thermohaline regions are not shown.

Post C-depletion, the photodisintegration of 20Ne drives convective core Ne-burning. This

burning phase lasts ' 1.7 years for the solar model and ' 0.33 years for the subsolar model. After

Ne-depletion, core O-burning begins at Tc ' 1.8×109 K and ρc ' 9.1×106 g cm−3. The initial core

O-burning episode is energetic enough to drive a large convection region that initially extends to

' 0.9 M� . At core O-depletion, we find a composition of Xc(32S) ' 0.524, Xc(34S) ' 0.189, and

Xc(28Si) ' 0.244 for the solar model. Other isotopes show central mass fractions of Xc . 10−2.

The subsolar model has an O-depletion composition of Xc(32S) ' 0.522, Xc(34S) ' 0.175, and

Xc(28Si) ' 0.236 with other burning products having negligible central mass fractions. The central

electron fraction at this point is Ye,c ' 0.4936 and Ye,c ' 0.4942 for the solar and subsolar models,

respectively. Our choice of stopping criterion does not signify the end of O-burning.

Lastly, we consider the impact of mass and temporal resolution on key physical parameters

relevant to this paper by evolving eight additional baseline models. Figure 2.6 shows the results
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Figure 2.6: Four normalized quantities at core O-depletion as a function of the mass (left) and
temporal (right) resolution controls δmesh and wt: mass of the oxygen core - MO-Core, age - τO-dep.,
central temperature - Tc, and central density - ρc. All quantities are normalized to their values at
δmesh = 0.25 and wt = 1 × 10−5. A vertical black dash-dot line marks the resolution used for the
Monte Carlo stellar models. A black dashed horizontal line marks a value of unity, i.e. no variance
with respect to changes in mass or temporal resolution. Solid lines correspond to the solar models
and dashed lines to the subsolar models.

for δmesh = (1.0, 0.25) at our fixed baseline temporal resolution of wt = 5×10−5, and wt = (5×10−4,

1×10−5) at our baseline mass resolution of δmesh = 0.5. Otherwise the solar and subsolar models

use the same median reaction rates and input physics as the baseline models. For δmesh, the

largest variation is ' 13% in the central density for the subsolar models. All other quantities have

variations . 7% at the highest mass resolution considered. For wt, the largest variation is . 5% in

the central density, and all other quantities have variations of . 3%.

2.6 Monte Carlo Stellar Models

We evolve two grids of Monte Carlo stellar models. The first grid consists of 1000 Monte Carlo

stellar models at solar metallicity. Each model has a different set of sampled nuclear reactions;

otherwise each model has the same input physics as the baseline model. We refer to this set of

models as the “solar grid”. The second set consists of 1000 models at a metallicity of Z=0.0003,
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henceforth the “subsolar grid”. Each stellar model takes ' 60 hours on 4 CPUs. The total

computational expense is ' 0.48 M CPU hours and generates ' 1 TB of data.

Some properties of a stellar model may be more important at different evolutionary phases.

For example, the time spent on the main-sequence is a direct consequence of the 14N(p, γ)15O

reaction which modulates the rate at which the CNO cycle may proceed (Imbriani et al., 2004).

At core He-depletion, the central carbon mass fraction, temperature, or density affects whether

carbon ignites radiatively or convectively (Lamb et al., 1976; Woosley &Weaver, 1986; Petermann

et al., 2017). Such features are directly linked to key nuclear reaction rates. We thus consider

different properties of our stellar models at five evolutionary epochs: central H-, He-, C-, Ne-,

and O-depletion. The properties considered at each epoch are commonly held to be significant for

connecting presupernova stellar models to observed transients, stellar yields for chemical evolution,

or predicting SN properties (e.g., Nomoto et al., 2013; Couch et al., 2015; Janka et al., 2016; Côté

et al., 2017).

To determine the reaction rates that have the largest impact on different properties of the stellar

models at different evolutionary phases, we use a Spearman Rank-Order Correlation (SROC)

analysis. A SROC is the Pearson correlation coefficient between the rank values of two variables

(Myers & Well, 1995). The N raw scores Ai and Bi are converted to ranks rgAi and rgBi, sorted in

descending order according to magnitude, and the SROC is

rs =
cov(rgA, rgB)
σrgAσrgB

, (2.4)

where cov(rgA, rgB) is the covariance matrix of the two variables Ai and Bi, and σrgA and σrgB

are the standard deviations of A and B, respectively A SROC of rs =+1 represents a perfectly

monotonically increasing relationship, rs = 0, perfectly uncorrelated, and rs =−1, monotonically

decreasing.

2.6.1 Hydrogen Depletion

We consider six properties at core H-depletion, which we define as the time point when the

central 1H mass fraction drops below ' 10−6: the mass of the He core MHe-Core, age τTAMS,
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Figure 2.7: Probability density functions for six properties of the grid ofMonte Carlo stellar models.
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of all values obtained for that property. This quantity is then normalized to the mean of the
distribution. This distribution is referred to as the “variation”. The blue histograms correspond to
the solar models while the tan histograms denote the subsolar models. The properties shown are
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14N mass fraction. All properties are measured at H-depletion, when X(1H) . 10−6. Annotated
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central temperature Tc, central density ρc, compactness parameter, effectively the depth of the

gravitational potential well at the expected maximum mass of a neutron star, and central 14N mass

fraction Xc(14N).

2.6.1.1 Probability Distribution Functions

Figure 2.7 shows the PDFs of these six properties of the stellar models at this epoch. The x-axis

is the variation, (Xi − X̄ )/X̄, where Xi is a value of a property for a single model and X̄ is the

arithmetic mean of the distribution. The amplitude of the histogram corresponds to the fraction of

the 1000 models within a given bin. In this paper, the number of bins is chosen according to the

Rice Rule, k = 2n1/3, where k is the number of bins and n is the number of samples (Lane, 2013).

While different bin widths can reveal different features of the distribution, we find this choice of

bins sufficient for the discussion of the histograms presented here.
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Throughout this paper we use the 95% Confidence Interval (CI) limits. These are defined, for

each PDF, to be the limits corresponding to the unique cumulative distribution function containing

95% of the PDF. This allows reporting the most likely (∼ 2σ) values of a property without the

effects of outliers in the data. This definition is different than a canonical CI derived from an

assumed distribution function model of the data.

We define MHe-Core as the mass coordinate where X (1H)< 0.01 and X (4He)>0.1. The 95% CI

widths of the MHe-Core PDFs span a narrow '± 0.1% across the mean of the distribution for both

solar and subsolar models. Both PDFs show well-defined zero variation peaks of 2.80 M� for the

solar models and 2.86 M� for the subsolar models.

The 95% CI width of the τTAMS PDF for the solar models, ' ± 0.2%, is larger than the width

of the PDF for the subsolar models, ' ± 0.1%. We defer an explanation of this difference until we

discuss Figure 2.8. The solar and subsolar PDFs are symmetric about their zero variation values of

11.3Myr and 11.8Myr, respectively.

The Tc and ρc PDFs show the solar models are slightly cooler and less dense than the subsolar

models, with zero variation values of Tc ' (62.8 MK, 80.7 MK) and ρc ' (42.4 g cm−3, 88.2 g

cm−3), respectively. After H-depletion, the solar models will proceed to burn He at a cooler core

temperature but more dense core. This trend is seen in Figure 2.4. Note the subsolar models have

larger Tc and yet longer lifetimes τTAMS. In addition, the 95% CI width of the Tc PDFs are ' 1.2%,

and the 95% CI width of the ρc PDFs are ' 4%.

Traditionally ξ2.5 is evaluated at core collapse. Our motivation for measuring ξ2.5 starting at

H-depletion is to assess the evolution of the variability in ξ2.5; when do significant variations first

seed and how do the variation grow. The 95 % width of the ξ2.5 PDF at H-depletion, ' 1.2%, is

dependent upon the narrow MHe-Core PDF and the wider ρc PDF. In addition, ξ2.5 depends on the

gradient of the density profile. The zero variation values of the solar and subsolar grids show small

differences at this epoch with ξ2.5 ' (7×10−3, 8×10−3), respectively.

Nitrogen is the dominant metal in the ashes of H-burning in massive stars because the

14N(p, γ)15O rate is the smallest in the CNO cycles (e.g., Iben, 1966). This is reflected in the
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Xc(14N) PDFs by the zero variation values, 9.2×10−3 for the solar models and 1.9×10−4 for the

subsolar models, being approximately equal to the sum of the ZAMS CNO mass fractions. The

95% CI width of the Xc(14N) PDF, ' ± 1%, is consistent with the spreads in the other quantities

measured.

2.6.1.2 Spearman Correlation Coefficients

Figure 2.8 shows the SROC coefficients for the solar and subsolar grids. The coefficients for the

solar grid is shown by circles while the subsolar grid is shown by diamond markers. A positive

correlation coefficient is represented by a blue marker, while a negative coefficient is denoted by

a red marker. For each property shown, the rate identifier corresponding to the largest magnitude

SROC coefficients are marked by a vertical dashed line and label.

The 14N(p, γ)15O rate has a large impact on all the quantities we measure. For example, the

14N(p, γ)15O rate has the largest SROC coefficient for τTAMS, with rs '+0.99 for the solar and

subsolar models. Coefficients of the remaining 664 reactions are significantly smaller, O(10−2).

This suggest that τTAMS is a directly dependent on the 14N(p, γ)15O rate, with a larger rate

increasing the lifetime to core H-depletion (e.g., Imbriani et al., 2004; Weiss et al., 2005; Herwig

et al., 2006).

Increasing a reaction rate usually increases the nuclear energy generation rate, which deposits

its energy into thermal energy. The core temperature rises. Via the equation of state, the pressure

increases, which causes the stellar core to expand. This expansion decreases Tc and ρc, and thus

causes nuclear burning to proceed at a slower rate. The net result of increasing an energetically

important reaction rate is a longer burning lifetime and a decreased Tc and ρc. This is the well-

known thermostat mechanism (e.g., Hansen et al., 2004; Iliadis, 2007).

Figure 2.9 shows the age and Tc at H-depletion for the solar models as a function of the rate

multiplier applied at max f .u. for the 14N(p, γ)15O reaction. Least-square fits to the linear trends

yield the slope of the thermostat mechanism: dτTAMS/dTc, '−0.03Myr/MK. This correlation is

confirmed by the large and negative SROC coefficients between the 14N(p, γ)15O rate and ξ2.5, Tc,
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and ρc. The thermostat mechanism also causes the slightly larger zero variation of MHe-Core for

the subsolar models relative to the solar models in Figure 2.7.

2.6.1.3 Impact of the Measurement Point

To assess the impact of the choice of the measurement point, we repeat our SROC analysis during

core H-burning at the point Xc(1H) ' Xc(4He). We compare the magnitude of the SROC values

for τTAMS, Tc, ρc, and ξ2.5 for both the solar and subsolar models.

Qualitatively, 14N(p, γ)15O still drives the variation in the age with a positive correlation, and

the variations in Tc, ρc, and ξ2.5 with negative correlations. The difference of the SROC values

between the two epochs agree to . 0.01 forTc, ρc, and ξ2.5 and . 0.2 for τTAMS. This re-evaluation

suggests the PDFs vary slightly based on the chosen measurement point and identifying the key

reactions from the SROC analysis is an invariant.

2.6.2 Helium Depletion

We measure the integrated impact of the uncertainties in the reaction rates at the point when the

central helium mass fraction X(4He) . 10−6.

2.6.2.1 Probability Distribution Functions

Figure 2.10 shows the PDFs of eight properties from the stellar models at this epoch: mass of

the CO core MCO-Core, the elapsed time between H-depletion and He-depletion τHe-burn, central

temperature Tc, central density ρc, central 22Ne mass fraction Xc(22Ne), compactness parameter

ξ2.5, central 12C mass fraction Xc(12C), and central 16O mass fraction Xc(16O).

The 95% CI width of the MCO-Core PDF spans '± 2% for the solar and subsolar grids. Both

PDFs show a well-defined peak of 2.41 M� for the solar models and 2.95 M� for the subsolar

models and an extended tail for negative variations. That is, changes in the reaction rates are more

likely to produce smaller C cores than more massive C cores. This asymmetry accounts for the

PDFs not being centered at zero variation.
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Figure 2.10: Same as in Figure 2.7 except we consider MCO-Core - the mass of the CO core, τHe-burn
- the elapsed time between H-depletion and He-depletion, Tc - the central temperature, ρc - the
central density, Xc(22Ne) - the central neon-22 mass fraction, ξ2.5 - the compactness parameter,
Xc(12C) - the central carbon-12 mass fraction, and Xc(16O) - the central oxygen-16 mass fraction
all measured at He-depletion.

The solar and subsolar grid PDFs for τHe-burn have a 95% CI spread of ' ± 1%, suggesting rate

uncertainties have a smaller impact on τHe-burn. The solar PDF is slightly wider the subsolar PDF,

and both PDFs are symmetric about their respective arithmetic means.

The Tc and ρc PDFs show 95% CI widths of ' ± 1.5% and ' ± 3.5%, respectively, for both
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Figure 2.11: Same as in Figure 2.8. The quantities considered are MCO-Core - the mass of the
CO core, τHe-burn - the elapsed time between H-depletion and He-depletion, Tc - the central
temperature, ρc - the central density, Xc(22Ne) - the central neon-22 mass fraction, ξ2.5 - the
compactness parameter, Xc(12C) - the central carbon-12 mass fraction, and Xc(16O) - the central
oxygen-16 mass fraction. All quantities used here were measured at He-depletion.

solar and subsolar models. Both PDFs are centrally peaked with . 1% differences between the

arithmetic means of the solar and subsolar models. Both PDFs exhibit long tails in the positive

variation direction, indicating some combinations of the reaction rates produce cores that are '5%

hotter than the mean and '10% denser than the mean.
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Figure 2.12: Central carbon mass fraction at helium depletion for solar models as a function of
the rate multiplier at max f .u. applied to the 12C(α, γ)16O and triple-α rates. The heatmap uses
bi-linear interpolation and extrapolation of the models, which are shown by gray circles. Contour
lines of constant Xc(12C) shown by solid black lines. Also shown by a dashed line is the value of a
rate multiplier of unity for both reactions. Lastly, the black star denotes the value of Xc(12C) found
for the median reaction rates. Compare with Figure 20 of West et al. (2013).

The solar and subsolar grid PDFs for Xc(22Ne) PDF are nearly the same. However, the

arithmetic mean of the two PDFs differ by a factor of ' 50. The reason for this difference is that

most of a ZAMS star’s initial metallicity Z comes from the CNO and 56Fe nuclei inherited from its

ambient interstellar medium. The slowest step in the hydrogen burning CNO cycle is 14N(p, γ)15O,

which causes all the CNO catalysts to pile up at 14N at core H-depletion. During He-burning the

sequence 14N(α,γ)18F(β+, νe)18O(α,γ)22Ne converts all of the 14N into the neutron-rich isotope

22Ne. Thus, Xc(22Ne) at core He-depletion is linearly dependent on the initial CNO abundances.

The subsolar models have ' 50 times less initial CNO than the solar models, accounting for the

difference in the arithmetic means.

The solar and subsolar PDFs for ξ2.5 are similar in peak amplitude, 95% CI width (' 1.2%),

symmetry about zero variation, and mean arithmetic value. That is, rate uncertainties have little
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impact on differentiating between solar and subsolar metallicities. Similar to the Tc and ρc PDFs,

there are outlier models whose reaction rate combinations produce larger ξ2.5.

The largest variations occur in the Xc(12C) and Xc(16O) PDFs with 95% CI widths of '± 70%

and '± 25%, respectively. The common driver for these variations are the triple-α, 12C(α, γ)16O,

and 16O(α, γ)20Ne rates, whose roles we discuss below.

2.6.2.2 Spearman Correlation Coefficients

Figure 2.11 shows the SROCs for the 665 independently sampled thermonuclear reaction rates

against the eight quantities considered in Figure 2.10. The MCO-Core is chiefly set by the

12C(α, γ)16O rate with rs '+0.8 for both metallicity grids. Larger 12C(α, γ)16O rates build larger

CO core masses. The triple-α rate plays a smaller role with rs '−0.17 for both metallicity grids.

Similarly, τHe-burn is primarily set by the 12C(α, γ)16O ratewith coefficients of rs = (+0.92,+0.94),

respectively. The triple-α rate plays a less significant role with rs '−0.25.

In contrast, Tc and ρc are chiefly affected by the uncertainties in the triple-α rate with rs '−0.8

and rs '−0.7, respectively. These large negative SROCsmean the thermostat mechanism,discussed

for H-burning, namely larger energy producing reaction rates yield cooler and less dense cores,

operates during He burning. The 12C(α, γ)16O and 16O(α, γ)20Ne rates play smaller roles with

rs ≤ +0.4. Note that the positive correlation means larger 12C(α, γ)16O rates produce hotter cores,

in juxtaposition to the triple-α rate. This is because a larger 12C(α, γ)16O converts more carbon into

oxygen, so the core burns hotter at any given triple-α rate (which dominates the energy generation)

to satisfy the luminosity demanded by the surface of the stellar model. Outliers with positive

variations in the Tc and ρc PDFs of Figure 2.10 are caused by combinations of the 12C(α, γ)16O

and triple-α reactions. For a small triple-α rate, the model will be hotter and more dense. When

this is coupled with a large 12C(α, γ)16O rate, the stellar models at He-depletion have a hotter and

denser core with Tc increased by '+5% and and ρc increased by '+10%.

The mass fraction of the neutron-rich 22Ne isotope, is set by the competition between the triple-

α and 22Ne(α,γ)26Mg rates. The triple-α rate sets Tc and ρc, with a larger rate giving cooler and
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denser cores that favor the production of 22Ne by the sequence 14N(α,γ)18F(β+, νe)18O(α,γ)22Ne.

This is the origin of the positive SROC coefficient for the triple-α rate in the solar and subsolar

grids. On the other hand, 22Ne(α,γ)26Mg destroys 22Ne, storing the neutron excess in 26Mg. This

accounts for the negative SROC coefficient of 22Ne(α,γ)26Mg for both metallicity grids.

ξ2.5 is chiefly set by the triple-α rate with rs =−0.83 and rs =−0.74 for the solar and subsolar

models respectively. A larger triple-α rate produces a smaller ξ2.5, due to the decrease in overall

density of the stellar core. For the subsolar models the 16O(α, γ)20Ne rate plays a smaller role

(rs =−0.34), but also decreases ξ2.5 as the rate becomes larger. The solar and subsolar PDFs for

ξ2.5 shows outliers with variations up to ' 5%. These outliers form from same combination of

reaction rates that produce denser stellar models. Namely, models with high ξ2.5 have either a

depressed triple-α rate, an enhanced 12C(α, γ)16O, or both.

During quiescent He-burning the 3α-process and the 12C(α, γ)16O reaction burn with high

efficiency through pronounced resonance mechanisms (e.g., deBoer et al., 2017). In contrast, the

16O(α, γ)20Ne reaction lacks any such resonance enhancement in the stellar energy range making

its rate comparatively much lower. This essentially prohibits significant He-burning beyond 16O

and maintains the 12C/16O balance we observe today.

The 12C(α, γ)16O rate sets Xc(12C) and Xc(16O) for both solar and subsolar models with

rs '−0.95 and rs '+0.95, respectively. A larger 12C(α, γ)16O rate destroys more C and produces

more O. The triple-α rate plays a smaller role in setting Xc(12C) and Xc(16O) with rs '+0.29 and

rs '−0.28, respectively. A larger triple-α rate produces more C and less O. These results suggest

Xc(12C) and Xc(16O) are determined primarily by the uncertainties in these two reaction rates.

2.6.2.3 Triple-α and 12C(α, γ)16O

Figure 2.12 shows Xc(12C) at He-depletion for the solar models as a function of the rate multiplier

at max f .u. (over core He-burning temperatures) applied to the 12C(α, γ)16O and triple-α rates

(see Figure 2.2). A 12C(α, γ)16O rate that is small relative to median value and a triple-α rate that

is large relative to its median value produces a large Xc(12C). Conversely, a high 12C(α, γ)16O rate
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and a small triple-α rate produces a small Xc(12C). When both rates are at the median value of

their respective PDFs, unity rate multipliers in Figure 2.12, Xc(12C)' 0.26 (see Figure 2.10). The

trend is commensurate with West et al. (2013, their Figure 20).

2.6.2.4 Impact of the Measurement Point

Core He-burning is initiated by the triple-α reaction releasing ≈ 7.27 MeV of energy. At early

times, nuclear energy generation in the core is governed by this reaction rate. The emergence of

fresh 12C as a product of the triple-α reaction allows 12C(α, γ)16O to convert the 12C ashes into

16O in a race between the two reactions to consume the He fuel (e.g., deBoer et al., 2017). The

12C/16O ratio is determined by these two reaction rates.

Due to this evolution, we re-evaluate our SROCcoefficientsmidway through the coreHe-burning

process, when Xc(4He) ' 0.5. The structural properties − Tc, ρc and ξ2.5 − agree qualitatively

when comparing the midway and depletion points of the solar models. A midway measurement

point yields ' 15% stronger correlations. The triple-α rate still drives the variations with a negative

SROC. For Xc(12C) and Xc(16O) the midway and He-depletion measurement points for the solar

models differ by ∆ |rs | . 2% in the SROC values.

When measuring midway through the core He-burning process, variations in τHe-burn for the

solar models become mainly driven by the 14N(p, γ)15O rate with a positive SROC coefficient.

An increase in this rate causes the stellar core to proceed through core H-burning at lower Tc.

When measuring τHe-burn midway through He-burning, we find the 14N(p, γ)15O rate also yields

a negative SROC coefficient for Tc. Models with lower Tc proceed through He-burning at a slower

rate, hence increasing the helium burning lifetime τHe-burn.

2.6.3 Carbon Depletion

Next, we measure the integrated impact of the reaction rate uncertainties at the point when the

central carbon mass fraction Xc(12C) . 1 × 10−6.
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Figure 2.13: Same as in Figure 2.10 except we consider MONe-Core - the mass of the ONe core,
τC-burn - the elapsed time betweenHe-depletion to C-depletion,Tc - the central temperature, ρc - the
central density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(16O) - the
central oxygen-16 mass fraction, and Xc(20Ne) - the central neon-20 mass fraction. All quantities
are measured at C-depletion.

2.6.3.1 Probability Distribution Functions

Figure 2.13 shows the PDFs of eight properties of the 15 M� models at C-depletion: mass of

the ONe core MONe-Core, the elapsed time between He-depletion and C-depletion τC-burn, central
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Figure 2.14: Same as in Figure 2.10 except we consider MONe-Core - the mass of the ONe core,
τC-burn - the elapsed time between He-depletion and C-depletion, Tc - the central temperature, ρc
- the central density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(16O)
- the central oxygen-16 mass fraction, and Xc(20Ne) - the central neon-20 mass fraction. All
quantities are measured at C-depletion.

temperature Tc, central density ρc, central electron fraction Ye,c, compactness parameter ξ2.5,

central 16O mass fraction Xc(16O), and central 20Ne mass fraction Xc(20Ne).

The MONe-Core distribution has 95% CI variation limits of '+23% and '−50% for the solar

and subsolar models. This is wider than the spread in the He core mass at H-depletion (' ± 0.1%)
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or the CO core mass at He-depletion (' ± 3%). We defer explanation to Section 2.6.3.3 In addition,

the solar model PDF has a larger peak amplitude compared to the subsolar model PDF.

In contrast, the 95% CI spread of the τC-burn distribution shows about the same narrow width

of ' ± 1% as τTAMS and τHe-burn. This is chiefly due to the CO core mass to be burned laying

within a relative narrow range ('± 3%, see Figure 2.10). The solar model PDF has a zero variance

of τC-burn ' 30.7 kyr, while the subsolar model PDF has a zero variance of τC-burn ' 23.8 kyr.

This reflects the subsolar models undergoing hotter, less dense core C-burning (see Figure 2.4).

Carbon burning and the later stages of evolution in massive stars have large core luminosities

whose energy is carried away predominantly by free-steaming neutrinos. These burning stages are

thus characterized by short evolutionary time scales. When thermal neutrinos instead of photons

dominate the energy loss budget, carbon and heavier fuels burn at a temperature chiefly set by the

balanced power condition 〈εnuc〉 ' 〈εν〉. For core C-burning this gives Tc ' 0.9 GK and, assuming

aT3/ρ scaling, ρc ' 6×106 g cm−3. This is commensurate with the zero variation values annotated

in Figure 2.13. The Tc and ρc distributions show 95% CI widths of '± 15% and '± 60% for the

solar and subsolar models, respectively. This is wider than the 95% CI spreads of the Tc and ρc

distributions at H-depletion and He-depletion.

The Ye,c distributions show strong peaks at Ye,c ' 0.499 and 95% CI spreads of . 1% for the

solar and subsolar models. This is commensurate with significant neutronization not occurring

during quiescent core C-burning, and shows Ye,c is not strongly affected by the uncertainties in the

reaction rates.

C-depletion marks the first occurrence of significant variation in ξ2.5. The solar and subsolar

distributions show 95% CI widths of '± 16%. The mean value of ξ2.5 ' 6.9×10−2 for the solar

models is smaller than the mean value of ξ2.5 ' 8.6×10−2 for the subsolar models. This is due to

the smaller ρc and shallower density gradient in the subsolar models relative to the solar models.

The dominant isotopes at C-depletion are 16O and 20Ne. These two isotopes follows nearly

Gaussian profiles with 95% CI spreads of ' ±40% and ' ±70% for Xc(16O) and Xc(20Ne),

respectively. Despite this spread, the zero variation values of 16O and 20Ne for the solar and

53



subsolar models are within ' 1%.

2.6.3.2 Spearman Correlation Coefficients

Figure 2.14 shows the absolute SROCs for the 665 sampled reaction rates for the eight quantities

considered in Figure 2.13 for the solar and subsolar grid of models.

Competition between the 12C+12C and 12C+16O reaction rates largely determines the mass

of the ONe core at C-depletion. The 12C(12C,p)23Na rate have significant positive SROC val-

ues of rs = (+0.58,+0.56) for the solar and subsolar models, respectively. Protons produced

by 12C(12C,p)23Na are usually captured by 23Na(p,α)20Ne, which increases MONe-Core. Uncer-

tainties in the 12C(16O,p)27Al and 12C(16O,α)27Mg rates have significant negative SROC values,

rs '−0.40, because the main products from these reactions ultimately produce 28Si, which de-

creases MONe-Core by effectively transferring 16O to 28Si (Woosley et al., 1971;Martínez-Rodríguez

et al., 2017; Fang et al., 2017).

The 12C(α, γ)16O rate impacts the time between He-depletion and C-depletion τC-burn with

SROC values of '+0.91 and '+0.94 for the solar and subsolar models, respectively. This occurs

because this rate sets the mass of the CO core, which has a relatively narrow 95% CI range of

' ± 2% (see Figure 2.10). Smaller uncertainties in the triple-α rate (negative correlation) and the

14N(p, γ)15O rate (positive correlation) occur because these two reactions play a diminished role

in setting the mass of the CO core.

The SROC analysis for Tc and ρc shows dependencies on the 12C(α, γ)16O, 12C+12C, and

12C+16O rates for the solar and subsolar models. All these rates have negative SROCs of rs '−0.4.

These magnitude and sign are partially due to thermal neutrino losses playing a key role in the

evolution, and partially due to the thermostat mechanism, namely larger energy producing reaction

rates yield cooler and less dense cores.

The quantitiesYe,c and ξ2.5 inherit a dependence on the 12C(α, γ)16O rate fromHe-burning, with

SROCs of rs ' (+0.7, +0.5), respectively. Uncertainties in the 12C(12C,p)23Na and 12C(16O,p)27Al

rates also contribute with negative coefficients.
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Likewise, Xc(16O) and Xc(20Ne) also inherit a strong dependence on the 12C(α, γ)16O rate from

He-burning, with SROCs of rs ' (+0.9, −0.8), respectively. The Xc(16O) has a positive correlation

coefficient because duringHe-burning a larger 12C(α, γ)16O rate producesmore 16O. The Xc(20Ne)

has a negative SROC because a larger 12C(α, γ)16O rate produces less 12C, the principal fuel of

C-burning, which produces less 20Ne. Both isotopes also share a smaller dependency on the

triple-α rate uncertainty, inherited from He-burning, and a small dependence on C-burning rates.

These smaller dependencies are also anti-correlated − increases in rates that increase Xc(16O) also

decrease Xc(20Ne), and vice versa.

2.6.3.3 Impact of the Measurement Point

The 95% CI width of the MONe-Core PDF in Figure 2.13 is partly due to the measurement point.

The MONe-Core is still growing in mass due to the off-center convective C-burning episodes (See

Figure 2.5). This contrasts with H and He where convective core burning accounted for complete

mixing of the ash of the nuclear burning.

In more detail, carbon ignites centrally and convectively in these 15 M� models. The extent of

the convective core burning reaches ' 0.6 M� . Convection retreats as carbon is depleted, and by

Xc(12C) ' 10−2 the entire core is radiative. Subsequently, the first off-center convective C-burning

episode occurs when Xc(12C) '10−4 and extends from ' 0.6 M� to 1.2−2.0 M� depending on the

amount of C fuel available from core He-burning. It is the variability of the location and extent

of the off-center convective C-burning episodes, which occurs before the measurement point of

Xc(12C) . 1 × 10−6, that drives the 95% CI spread in the MONe-Core PDF.

Figure 2.15 shows the impact of the measurement point on MONe-Core as a function of Xc(12C)

for six solar grid models. The dashed vertical line shows our measurement point for C-depletion,

Xc(12C) . 1 × 10−6. Given different compositions and thermodynamic trajectories inherited

from core He-burning, some models are further along in transforming the CO core to a ONe core.

Despite the 95% CI range in the MONe-Core PDF, our SROC analysis yields qualitatively similar

results. Moreover, two models - the green and gold lines, grow larger ONe cores due to the extent
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Figure 2.15: Mass of the ONe core as a function of the central 12C mass fraction for six solar
grid models. Our adopted measurement point for C-depletion, Xc(12C) . 1 × 10−6, is shown by
the dashed vertical line. Variation in the mass of the ONe core is driven by the size and extent of
off-center convective C-burning episodes.

of convective zone of the final off-center C burning episode mixing the fuel and ash of C-burning

outward to a larger mass coordinate than the remaining three models.

2.6.4 Neon Depletion

Core Ne-depletion is the next evolutionary stage considered. We measure the integrated impact

of the rate uncertainties at the point when the central neon mass fraction Xc(20Ne) . 1 × 10−3.

This is a larger mass fraction than the 1 × 10−6 used for H, He and C-depletion. We use a larger

depletion value because a growing convective core feeds unburned neon into the core. Ne does not

deplete to 1 × 10−6 until well into core O-burning.

2.6.4.1 Probability Distribution Functions

Figure 2.16, shows the PDFs of eight properties of the stellar models at Ne-depletion. We consider

the mass of the O core MO-Core, elapsed time between C-depletion and Ne-depletion τNe-burn,
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Figure 2.16: ]
Same as in Figure 2.13 except we consider MO-Core - the mass of the O core, τNe-burn - the

elapsed time between C-depletion and Ne-depletion, Tc - the central temperature, ρc - the central
density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(16O) - the central
oxygen-16 mass fraction, and Xc(28Si) - the central silicon-28 mass fraction. All quantities are

measured at Ne-depletion.

central temperature Tc, central density ρc, central electron fraction Ye,c, compactness parameter

ξ2.5, central oxygen-16 mass fraction Xc(16O), and central silicon-28 mass fraction and Xc(28Si).

The MO-Core PDF shows a strong peak for the solar and subsolar models with zero variation
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Figure 2.17: Same as in Figure 2.14. The quantities considered are MO-Core - themass of theO core,
τNe-burn - the elapsed time between C-depletion and Ne-depletion, Tc - the central temperature, ρc
- the central density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(16O)
- the central oxygen-16 mass fraction, and Xc(28Si) - the central silicon-28 mass fraction. All
quantities are measured at Ne-depletion.

values of 1.44 M� and 1.49 M� , respectively. The 95% CI spread is ' ±30% for both sets of

models. The peaks are offset from zero due to the long tail of positive variations. The τNe-burn

PDFs show 95% CIs of ' ±1%, commensurate with the τC-burn in Figure 2.13. The 95% CI spread

of the solar grid is slightly larger than the spread for the subsolar grid. Both PDFs are symmetric
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about zero variations of 10.1 yr and 8.10 yr, respectively.

The Tc distribution has zero variation values of 1.60GK and 1.63GK for the solar and subsolar

grids, respectively. Both PDFs are symmetric about their zero variation values, and have 95% CI

widths of ' ± 6%. The ρc PDF has zero variation values of 5.12 ×106 g cm−3 and 4.42 ×106 g

cm−3 for the solar and subsolar gridss, respectively. Both PDFs have 95% CI widths of ' ± 50%.

The subsolar model PDF has a slight bimodality with equal peaks of ' 18%. The Tc and ρc PDFs

have 95% spreads that are smaller than the corresponding 95% CI widths for C-depletion.

The Ye,c PDFs for both metallicity grids strongly peak about their means, 0.498 and 0.499

respectively, with a 95% spread of . 0.25%. This is about the same 95% CI spread as at C-

depletion, reflecting that significant neutronization does not occur during Ne-burning. The ξ2.5

PDF shows a 95% CI spread of '± 20% without a strong central peak for both metallicity grids.

Xc(16O) follows a broad distribution about the mean with variations of ' (+20%,-30%). In

contrast, Xc(28Si), the other dominant isotope at Ne-depletion, follows a more centrally peaked

distribution but with a larger width of ' −120% and a slight, long tail showing variations out to

' +200% of the mean.

2.6.4.2 Spearman Correlation Coefficients

Figure 2.17 shows the SROC correlations for the eight quantities considered in Figure 2.16. Markers

and colors are the same as in Figure 2.14.

Ne-depletion inheritsmost of the reaction rate dependencies fromHe-depletion andC-depletion.

This is consistent with Ne-burning being a photodisintegration rearrangement, whose net reaction

is 2(20Ne) → 16O + 24Mg + 4.6 Mev. The nucleosynthesis products also resemble those at

C-depletion but lack 23Na and has more of the heavier nuclei 26,27Al, 29,30Si, and 31P.

The 95% CI spread of MO-Core is mainly driven by rate uncertainties in 12C(12C,p)23Na, with

rs ' +0.8 for both metallicity grids. The 12C(α, γ)16O rate also affects the O core mass but to

a lesser extent, with rs ' +0.4. The 95% CI variation of τNe-burn follows that of the spread of

τC-burn. It is affected primarily by uncertainties in the 12C(α, γ)16O rate with smaller dependencies
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Figure 2.18: Mass of the O core as a function of the central 20Ne mass fraction for the same six
solar grid models from Figure 2.15. Our adopted measurement point for Ne-depletion, Xc(20Ne) .
1 × 10−3, is shown by the dashed vertical line. Variation in the mass of the O core is driven by the
extent of the final off-center C flash prior to Ne-depletion.

on rate uncertainties in 14N(p, γ)15O (positive SROC) and triple-α (negative SROC). In general,

the SROC values are larger for the solar grid.

The Tc PDF depends mostly on the uncertainties in the 12C(α, γ)16O rate for both solar and

subsolar grids. The positive SROC implies that a larger 12C(α, γ)16O rate yields a hotter stellar

core. This is the first occurrence of an inversion of the thermostat mechanism. A small dependency

is also found for triple-α and the 12C(12C,p)23Na rates.

The central density has an SROC value of rs '+0.5 for the 12C(12C,p)23Na rate. However,

ρc is also affected by uncertainties in the 16O(16O,p)31P rate with rs '−0.3. This indicates O-

burning is beginning to take place at Ne-depletion. There is also a weaker dependence on the

16O(16O,4He)28Si rate with a negative SROC.

Uncertainties in the 12C(α, γ)16O rate drive the variations in Ye,c and ξ2.5 with SROC values

of rs '+0.6. Smaller SROCs are also found for Ye,c and the 95% CI 27Al(α, p)30Si, triple-α,

16O(16O,p)31P, 16O(16O,n)31S, and 12C(12C,p)23Na rates. Similar to ρc, the compactness of the
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stellar core is weakly affected by the inherited uncertainties from the 12C(12C,p)23Na rate.

Xc(16O) inherits a dependence on the 12C(α, γ)16O ratewith rs '+0.7 for bothmetallicity grids.

The 12C+12C and 16O+16O rates have smaller, competing affects on Xc(16O) with |rs | ' 0.25.

Xc(28Si) is slightly anti-correlated with Xc(16O), with the 12C(α, γ)16O rate having the largest

(negative) SROC. Smaller effects from the uncertainties in the heavy ion, carbon and oxygen

channels also play a role in its variation.

2.6.4.3 Impact of the Measurement Point

Some of the quantities measured at Ne-depletion partly inherit their 95% CI spread from the spread

at C-depletion. However, the spread of most quantities at Ne-depletion is larger than the 95%

CI spreads at C-depletion because of the thermodynamic conditions imposed by the depletion of

carbon.

Figure 2.15 shows the extent of the ONe core, measured at C-depletion is sensitive to the extent

of the final off-center convective carbon episode. Figure 2.18 shows MO-Core as a function of

the central 20Ne mass fraction for the same six solar grid models as in Figure 2.15. The same

two stellar models which yield larger ONe core masses in Figure 2.15, introduce larger 95% CI

variations in the O core mass measured at Ne-depletion. The variation in the ONe core mass

inherited from C-depletion can cause variations in the other measured quantities. We stress that

our analysis measures the integrated impact of the reaction rate uncertainties on the evolution of

the stellar model up to the measurement point.

2.6.5 Oxygen Depletion

The last evolutionary point we consider is core O-depletion, defined when Xc(16O) . 1 × 10−3.

We consider eight properties of the stellar model at this epoch: mass of the Si core MSi-Core, time

between Ne-depletion and O-depletion τO-burn, central temperature Tc, central density ρc, central

electron fraction Ye,c, compactness parameter ξ2.5, central silicon-28 mass fraction Xc(28Si) , and

central sulfur-32 mass fraction Xc(32S).
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Figure 2.19: Same as in Figure 2.16 except we consider MSi-Core - the mass of the Si core, τO-burn
- the elapsed time between Ne-depletion and O-depletion, Tc - the central temperature, ρc - the
central density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(28Si) - the
central silicon-28 mass fraction, and Xc(32S) - the central sulfur-32 mass fraction all measured at
O-depletion.

2.6.5.1 Probability Distribution Functions

Figure 2.19 shows the variation of these quantities in the same format as for previous depletion

epochs. The MSi-Core PDF for the solar models span '−120 to +400. Only the range ± 120 is
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shown in Figure 2.19. The full range, which is taken into account in the analysis, causes the peak

to center at '−30%. Despite the wide range, the zero variation values of 0.27 M� for the solar

grid and 0.22 M� for the subsolar grid are similar. The 95% CI spreads are ≈ 4 times larger for

O-depletion than for Ne-depletion for both the solar and subsolar grids.

The solar and subsolar τO-burn PDFs have zero variation values of 3.79 yr and 2.35 yr, respec-

tively. The 95% CI spreads of '± 1% are consistent with the 95% CI lifetimes of previous epochs.

The subsolar model PDF has a slightly larger peak amplitude and smaller range.

The solar and subsolar Tc PDFs have a 95% CI width of '± 10%. The negative variation tail

causes a '−20% shift away from the zero variation values of 2.07 GK for the solar models and

2.14 GK for the subsolar models. The ρc PDFs have 95% CI spreads of '± 60% with tails out

to '+160% for both metallicities. These tails cause the peak in the PDF to shift away from the

arithmetic means of 23.3×106 g cm−3 for the solar models and 15.1×106 g cm−3 for the subsolar

models. Commensurate with Figure 2.4, the solar models remain cooler and denser than the

subsolar models at O-depletion.

At the elevated Tc and ρc that occurs during O-depletion, the reactions 16O(16O,n)31S,

33S(e−,ν)33P, 37Ar(e−,ν)33Cl, and 35Cl(e−,ν)35S decrease Ye,c. This is reflected in the Ye,c PDF

having zero variation values of 0.492 and 0.493 for the solar and subsolar grids, respectively. Peaks

in the Ye,c PDF are shifted from these zero variation because both the solar and subsolar grids have

tails of negative variations extending to '−2%.

The ξ2.5 PDFs show 95%CI spreads of'± 20% for the solar and subsolar grids. The arithmetic

means of ξ2.5 ' 0.102 for the solar grid and ξ2.5 ' 0.139 for the subsolar grid are larger than the

arithmeticmeans at Ne-depletion, but the difference in ξ2.5 between the twometallicities are similar.

The Xc(28Si) PDF is log-normal with a peak at ' -45% with extrema extending to variations of

'−120% and '+180%. The Xc(32S) PDF is broad with tails extending to '± 80%.

The 95% CI widths of the PDFs for MSi-Core is driven by the fact that the Si-core is still forming

at the measurement point of Xc(16O) . 1×10−3. Additional dynamic range is introduced by some

models forming heavier isotopes of Si and S, and MESA only considering 28Si in the definition of the
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Si-core mass boundary. For example, the central composition at O-depletion for one of the models

in Figure 2.15 and 2.18 is Xc(28Si) ' 4.6 × 10−2, Xc(30Si) ' 3.5 × 10−1, Xc(32S) ' 4.6 × 10−2,

and Xc(34S) ' 4.4 × 10−1. This model reports a very small MSi-Core because Si is primarily in the

neutron rich 30Si. This also accounts for the negative tail in the Ye,c PDF and the dynamic range in

ρc.

2.6.5.2 Spearman Correlation Coefficients

Figure 2.20 shows the SROC coefficients for the solar and subsolar grid against the eight quantities

in Figure 2.19. The format is the same as in previous figures.

The MSi-Core has a negative correlation of rs '−0.25with the 16O(16O,α)28Si rate and a smaller

dependence on the 12C(α, γ)16O rate. Reaction rates whose uncertainty most impacts τO-burn are

inherited from previous stages, namely 12C(α, γ)16O, 14N(p, γ)15O, and triple-α.

Tc has a negative correlation with the 16O(16O,n)31S rate for the solar and subsolar grid. ρc

inherits its dependence on the 12C(α, γ)16O rate with rs ' −0.45. The other 16O+ 16O exit

channels have smaller effects on Tc and ρc. The 16O(16O,n)31S rate dominate the SROCs for Ye,c

with rs '−0.6 for both grids. ξ2.5 inherits dependencies on the 12C(α, γ)16O and 12C(12C,p)23Na

rates. The mass fractions Xc(28Si) and Xc(32S) are chiefly the result of the competition between

the 16O(16O,α)28Si and 28Si(α, γ)32S rates.

Table 2.1 summarizes the properties of the PDFs and the SROC analysis at O-depletion, along

with the results for previous depletion points of the major fuels.
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Figure 2.20: Same as in Figure 2.17. The quantities considered are MSi-Core - themass of the Si core,
τO-burn - the elapsed time between Ne-depletion and O-depletion, Tc - the central temperature, ρc -
the central density, Ye,c - the central electron fraction, ξ2.5 - the compactness parameter, Xc(28Si) -
the central silicon-28mass fraction, and Xc(32S) - the central sulfur-32mass fraction. All quantities
are measured at O-depletion.
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Properties of 15M� Solar and Subsolar Monte Carlo Stellar Models

Solar Subsolar

Property Values Key Reaction rs Values Key Reaction rs 95% CI Limits of Variation (%)

H-Depletion

MHe-Core(M�) 2.8022.8062.799
14N(p, γ)15O +0.35 2.862.8632.857 . . . +0.33 (+0.13, -0.12) (+0.12,-0.12)

τTAMS (Myr) 11.2711.2911.249
14N(p, γ)15O +1.0 11.76911.7811.759 . . . +1.0 (+0.18,-0.19) (+0.09,-0.09)

Tc (108 K) 0.6280.6350.621
14N(p, γ)15O -0.99 0.8070.8160.799 . . . -0.99 (+1.19,-1.12) (+1.07,-1.11)

ρc (g cm−3) 42.40243.91740.978
14N(p, γ)15O -0.97 88.19891.24185.122 . . . -0.98 (+3.57,-3.36) (+3.45,-3.49)

ξ2.5 0.0070.0070.007
14N(p, γ)15O -0.99 0.0080.0090.008 . . . -0.99 (+1.19,-1.14) (+1.09,-1.13)

Xc(14N) × 103 9.2349.3179.128
15N(p, γ)16O -0.56 0.1940.1950.192

14N(p, γ)15O -0.66 (+0.89,-1.15) (+0.83,-1.08)

He-Depletion

MCO-Core (M�) 2.4142.5222.347
12C(α, γ)16O +0.79 2.9523.0622.909 . . . +0.84 (+1.94,-3.10) (+1.53,-2.44)

τHe-burn (Myr) 1.5941.6961.479
12C(α, γ)16O +0.92 1.3151.3931.234 . . . +0.94 (+0.81,-0.90) (+0.58,-0.63)

Tc (108 K) 3.1263.1853.092 Triple-α -0.80 3.2073.263.171 . . . -0.77 (+1.89,-1.07) (+1.67,-1.11)

ρc (103 g cm−3) 5.5355.7565.364 Triple-α -0.69 5.0535.2654.892 . . . -0.67 (+3.99,-3.08) (+4.19,-3.20)

Xc(22Ne) × 102 1.0811.2170.887
22Ne(α, γ)26Mg -0.70 0.0210.0240.017 . . . -0.64 (+12.6,-17.9) (+15.5,-21.5)

ξ2.5 0.0310.0310.03 Triple-α -0.83 0.0310.0320.031 . . . -0.74 (+1.56,-0.97) (+1.41,-1.06)

Xc(12C) 0.2600.4670.077
12C(α, γ)16O -0.95 0.2650.4590.082 . . . -0.95 (+79.9,-70.2) (+73.1,-69.1)

Xc(16O) 0.7160.8960.512
12C(α, γ)16O +0.95 0.7310.9100.538 . . . +0.95 (+25.1,-28.5) (+24.5,-26.3)
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C-Depletion

MONe-Core (M�) 1.1101.3650.550
12C(12C,p)23Na +0.58 1.1751.4440.575 . . . +0.53 (+22.9,-50.5) (+22.9,-51.1)

τC-burn (kyr) 30.7441.8726.51
12C(α, γ)16O +0.91 23.7532.9521.00 . . . +0.94 (+0.78,-0.86) (+0.56,-0.62)

Tc (GK) 1.1581.4121.025
12C(16O,p)27Al -0.45 1.1961.5981.034

12C(12C,p)23Na -0.50 (+21.9,-11.5) (+33.6,-13.6)

ρc (106 g cm−3) 5.3178.8152.711
12C(16O,p)27Al -0.43 4.3717.2851.978 . . . -0.43 (+65.8,-49.0) (+66.7,-54.8)

Ye,c 0.4980.4990.497
12C(α, γ)16O +0.72 0.4980.5000.497 . . . +0.71 (+0.15,-0.35) (+0.15,-0.37)

ξ2.5 0.0830.0950.069
12C(α, γ)16O +0.49 0.1090.1290.088

12C(12C,p)23Na -0.54 (+14.28,-16.6) (+17.9,-19.4)

Xc(16O) 0.6220.8610.373
12C(α, γ)16O +0.91 0.6250.8690.369 . . . +0.88 (+38.4,-40.0) (+38.9,-41.0)

Xc(20Ne) 0.2660.4590.072
12C(α, γ)16O -0.79 0.2800.4740.043 . . . -0.75 (+72.4,-73.0) (+69.1,-84.5)

Ne-Depletion

MO-Core (M�) 1.4392.3681.113
12C(12C,p)23Na +0.82 1.4931.9651.157 . . . +0.79 (+64.5,-22.7) (+31.6,-22.5)

τNe-burn (yr) 10.11444.4520.493
12C(α, γ)16O +0.91 8.10337.390.143 . . . +0.94 (+0.78,-0.86) (+0.56,-0.62)

Tc (GK) 1.6031.7021.501
12C(α, γ)16O +0.80 1.6261.7271.520 . . . +0.72 (+6.15,-6.40) (+6.21,-6.52)

ρc (106 g cm−3) 5.1196.9863.485
12C(12C,p)23Na +0.50 4.4226.3222.770 . . . +0.52 (+36.5,-31.9) (+43.0,-37.4)

Ye,c 0.4980.4990.496
12C(α, γ)16O +0.59 0.4990.5000.497 . . . +0.60 (+0.19,-0.41) (+0.19,-0.41)

ξ2.5 0.0840.1010.068
12C(α, γ)16O +0.71 0.1110.1360.084

12C(12C,p)23Na -0.57 (+20.2,-19.3) (+22.5,-24.4)

Xc(16O) 0.7310.8880.503
12C(α, γ)16O +0.74 0.7350.8930.501 . . . +0.70 (+21.4,-31.2) (+21.4,-31.8)

Xc(28Si) 0.0860.2400.021
12C(α, γ)16O -0.62 0.0940.2960.018 . . . -0.59 (+179,-75.2) (+216,-81.1)
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O-Depletion

MSi-Core (M�) 0.2700.9790.012
16O(16O,α)28Si +0.32 0.2190.9650.013 . . . +0.21 (+262,-95.7) (+341,-94.2)

τO-burn (yr) 3.7867.5741.554
12C(α, γ)16O +0.91 2.3485.5460.857 . . . +0.93 (+0.76,-0.88) (+0.52,-0.61)

Tc (GK) 2.0732.2781.793
16O(16O,p)31P -0.56 2.1412.3501.860 . . . -0.47 (+9.92,-13.5) (+9.77,-13.2)

ρc (106 g cm−3) 23.3454.0610.32
12C(α, γ)16O -0.42 15.1043.067.140 . . . -0.38 (+132,-55.8) (+185,-52.7)

Ye,c 0.4920.4980.479
16O(16O,n)31S -0.67 0.4930.4990.479 . . . -0.71 (+1.18,-2.74) (+1.18,-2.88)

ξ2.5 0.1020.1220.075
12C(α, γ)16O +0.69 0.1390.1740.106 . . . +0.51 (+19.9,-27.0) (+24.98,-23.6)

Xc(28Si) 0.2630.5260.106
16O(16O,α)28Si +0.39 0.2680.5440.111

16O(16O,p)31P -0.40 (+99.7,-59.8) (+103,-58.6)

Xc(32S) 0.4330.7360.058
16O(16O,p)31P +0.61 0.4490.7780.067 . . . +0.59 (+70.1,-86.7) (+73.1,-85.1)

Table 2.1: Properties of the 15 M� solar and subsolar stellar models at five different epochs. The values given are arithmetic means,

with upper and lower limits from the 95% CI. Also listed are the min. or max. SROC coefficient values and the corresponding key

nuclear reaction. The last column are the limits of the 95% CI for the variations for the solar (left) and subsolar (right) stellar models.

Ellipses indicate the variation of a given quantity for the subsolar models is dominated by the same key reaction as the solar models.
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Figure 2.21: Percent variations of the core mass, lifetime, central temperature, central density,
compactness parameter, electron fraction, and a chosen “interesting” mass fraction (top to bottom)
at H-, He-, C-, Ne-, and O-depletion (left to right). The vertical length of each tapered uncertainty
band is the 95% CI for variations about the mean arithmetic value, listed in the last column of
Table 2.1, and the horizontal width of each tapered uncertainty band schematically represents the
underlying PDF. Solar metallicity models are shown by the orange bands and subsolar metallicity
models by the green bands. The first occurrence of significant variation in the compactness
parameter ξ2.5 occurs at C-depletion. For the mass fractions, we choose to show Xc(14N) at
H-depletion as it holds the star’s initial CNO abundances, Xc(22Ne) at He-depletion as it holds
the neutronization of the core, Xc(16O) at C- and Ne-depletion as it is dominant nucleosynthesis
product of massive stars, and Xc(32S) at O-depletion as it is a key component of the ashes of
O-burning.
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2.7 Discussion

Figure 2.21 shows the 95% CI variations listed in Table 2.1 for seven properties across five

evolutionary epochs for the solar and subsolar grids. Across these properties, the magnitude of the

95% CI spreads generally grow with each successive stage of evolution. The variations grow for

two reasons. One, each evolutionary stage inherits variations from the previous evolutionary stage

because we measure the integrated impact of the uncertainties in the reaction rates. Two, each stage

imprints its own contributions to the variations due to the uncertainties in the specific reaction rates

that impact that stage. Finally, there is a trend for the 95% CI variations of the subsolar models

to be smaller than the variations of the solar models, particularly for measurements at H-, He- and

C-depletion.

We next discuss the reaction rates identified in Table 2.1 which have the largest impact on the

variations of the core mass, burning lifetime, composition, and structural properties.

2.7.1 Key Reaction Rates

At H-depletion, Table 2.1 shows the uncertainties from the 14N(p, γ)15O reaction rate cause 95%

CI variations of ≈ ± 0.1% in MHe-Core, ≈ ± 0.2% in τTAMS, ≈ ± 1% in Tc, ≈ ± 3% in ρc, ≈ ± 1%

in ξ2.5, and ≈ ± 1% in Xc(14N) for both solar and subsolar models. The 14N(p, γ)15O reaction

rate is the slowest step in the CNO cycle and thus determines the rate at which H is depleted in the

core (e.g., Iliadis, 2007). STARLIB currently adopts the reaction rate of Imbriani et al. (2005).

The lowest positive-energy resonance of 14N(p, γ)15O is located at a center-of-mass energy of

259 keV, too high in energy to strongly influence quiescent stellar burning (e.g., LUNACollaboration

et al., 2006b). However, the strength of this resonance is often used as a cross-section normalization

for lower-energy measurements. Daigle et al. (2016) report measurements of the energy, strength,

and γ-ray branching ratios for the 259 keV resonance. Their recommended strength of ωγ =

12.6 MeV is in agreement with the previous value but more precise, and offers a more reliable

normalization. Using this result, they suggest the S-factor data of Imbriani et al. (2005) should be
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reduced by 2.3%. For this reduction of the S-factor, in our stellar models at H-depletion the largest

variation is ≈+0.2% with respect to the mean for ρc. Other properties have variations . 0.1%.

STARLIB currently adopts the triple-α reaction rate of Angulo (1999). Uncertainties in this

reaction rate dominate the 95% CI variations of ≈ ± 1.5% in Tc, ≈ ± 3.5% in ρc, and ≈ ± 3.5% in

ξ2.5, during core He-burning. Nguyen et al. (2012) combine Faddeev hyperspherical harmonics and

the R-matrix method to suggest the triple-α reaction rate is significantly enhanced at temperatures

below 0.06 GK. For an increased reaction rate in this temperature range, our analysis suggest Tc

and ρc will decrease by ≈ 2% in our MESA models.

STARLIB currently adopts the Kunz et al. (2002) reaction rate for 12C(α, γ)16O. Experimental

uncertainties in this reaction rate dominate the 95% CI variations of ≈ 2.5% in MCO-Core, ≈ ± 1%

in τHe-burn, ≈ +80/-70% in Xc(12C), and ≈ +25/-27% in Xc(16O) during core He-burning. Core C-,

Ne-, and even O-burning inherit some of these dependencies. deBoer et al. (2017) use the R-matrix

method to derive a new 12C(α, γ)16O rate. The uncertainties in the deBoer et al. (2017) rate are

smaller than the uncertainties in the Kunz et al. (2002) rate near temperatures of 0.05 . T . 1 GK

and slightly larger near T ' 1 − 3 GK. deBoer et al. (2017) show their rate can lead to changes of

'± 1.5% for MCO-Core in their 15 M� solar metallicity MESA models. This is slightly smaller than

our 95% CI spread.

STARLIB adopts the 12C+12C, 12C+16O, and 16O+16O rates and branching ratios of Caughlan

& Fowler (1988). Uncertainties in these reaction rates and branching ration dominate the 95% CI

variations of ≈ +23/-50% in MONe-Core at C-depletion and ≈+40/-35% in ρc at Ne-depletion.

The 12C+12C is one of the most studied heavy ion reactions. Despite several decades of dedi-

cated experimental efforts, the low-energy reaction rate still carries considerable uncertainties due

to pronounced resonance structures that are thought to be associated with molecular configurations

of carbon in the 24Mg excited state (e.g.,Mişicu&Esbensen, 2007) However, it has been argued that

low-energy cross section of fusion reactions declines faster with decreasing energy than projected

by common potential models (Jiang et al., 2007a; Gasques et al., 2007; Carnelli et al., 2014).

The impact of changes in the 12C+12C in 1D Geneva stellar evolution (GENEC) models are
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investigated in Bennett et al. (2012) and Pignatari et al. (2013). They find that an increase in

the 12C+12C reaction rate causes core C-burning ignition at lower temperature. This reduces the

thermal neutrino losses, which in turn increases the core C-burning lifetime. They also find an

increased 12C+12C rate increases the upper initial mass limit for when a star undergoes convective

C-burning rather than radiative C-burning (Lamb et al., 1976;Woosley &Weaver, 1986; Petermann

et al., 2017). The subsequent evolution of these more massive stars may yield a bimodal distribution

of compact objects (Timmes et al., 1996; Zhang et al., 2008; Petermann et al., 2017).

Fang et al. (2017) use a high-intensity oxygen beam impinging upon an ultrapure graphite target

to make newmeasurements of the total cross section and branching ratios for the 12C+16O reaction.

They find a new broad resonance-like structure and a decreasing trend in the S-factor data towards

lower energies, in contrast to previous measurements. For massive stars, they conclude the impact

of the new rate 12C+16O rate might be small for core and shell burning (also see Jiang et al.,

2007b), although the impact might be enhanced by multidimensional turbulence (Cristini et al.,

2017) or rotation (Chatzopoulos et al., 2016a) of the pre-supernova star during the last phases of

its stellar life.

Of the key nuclear reaction rates identified in this study, those with the largest uncertainty over

the temperature ranges consider here are heavy ion 12C+12C, 12C+16O, and 16O+16O reactions.

Due to the larger Coulomb barrier for the 12C+16O reaction it is expected to be less efficient

during carbon burning. Our results suggest that variation in this rate, especially the p exit channel,

can lead to non-negligible variations in core temperature and density during carbon burning. Our

results suggest that for a decrease in the uncertainty in these heavy ion reactions rates over stellar

temperatures, along with the 12C(α, γ)16O reaction, we can expect a decrease in variation of stellar

model properties of below the level of variations induced by uncertainties due to stellar winds,

convective boundary mixing, and mass/network resolution.
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2.7.2 Assessing The Overall Impact

Paper F16 applies the Monte Carlo framework to stellar models that form CO white dwarfs. They

evolve 3 M� solar metallicity models from the pre-MS to the first thermal pulse. They sample

26 out of 405 nuclear reactions and consider one evolutionary epoch − the first thermal pulse, a

time shortly after core He-depletion. Comparing our Figure 2.11 with their Figure 11, we find

similar results despite the different masses. The 12C(α, γ)16O dominates the mass of the CO core,

The 12C, and 16O mass fractions at He-depletion (their first thermal pulse) have similar sign and

magnitude SROC coefficients. In agreement with their CO white dwarf models, variations in the

central temperature are driven by uncertainties in the triple-α reaction rate. They report that the

central density is primarily correlated with uncertainties in the 12C(α, γ)16O rate, while we find the

variations in the central density are chiefly correlated with uncertainties in the triple-α rate. This

difference is due to the masses considered. The hotter, less dense, cores of our 15 M� models favor

the triple-α rate as the primarily source of the central density variations, whereas the cooler, more

dense 3 M� models favor 12C(α, γ)16O.

Farmer et al. (2016) explore uncertainties in the structure of massive star stellar models with

respect to mass resolution, mass loss, and the number of isotopes in the nuclear reaction network.

Farmer et al. (2016) and this paper both report results for 15 M� , Ṁ , 0, 127 isotope, solar

metallicity, MESA r7624 models. The primary difference between this paper and Farmer et al.

(2016) is the use of STARLIB reaction rates.

Our results at H-depletion can be compared with their results at He-ignition. For example,

Table 2.1 shows our mean He core mass is MHe-Core = 2.80 M� while their median He core mass

is Hecore = 2.77 M� , a difference of < 1%. Our 95% CI for MHe-Core is within 1% of their Hecore

upper and lower limits. As another example, our mean H burning lifetime is τTAMS = 11.27Myr

and their median H burning lifetime is τH = 10.99 Myr, a difference of ' 3%. In addition, our 95%

CI for τTAMS is ' 2% larger than their upper and lower bounds for τH.

Our He-depletion results can also be compared to their results at C-ignition. We find a mean

MC-Core = 2.41 M� while their median Ccore = 2.44 M� , a difference of < 1%. Our 95% CI spread
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due to uncertainties in the nuclear reaction rates is ' (+1.9%, −3.1%) while their upper and lower

bounds suggest variations of ' (+3.7%, −0.4%) due to changes in mass and network resolution. In

addition, our mean τHe-burn = 1.594Myr and their median τHe = 1.74 Myr, a difference of ' 8%.

Our 95% CI for τHe-burn is ' (+1.9%, −3.1%) while their upper and lower bounds are ' (+1.2%,

−12.1%).

Comparing ourNe-depletion resultswith theirO-ignition results, wefind amean MO-Core = 1.44 M�

while their median Ocore = 1.40 M� , a difference of . 1%. Our 95% CI spread due to uncertain-

ties in the nuclear reaction rates is ' (+65%, −23%) while their upper and lower bounds suggest

variations of ' (+0.1%, −5.6%) due to changes in mass and network resolution. In addition, our

mean τC-burn = 30.74 kyr and their median τC = 85.55 yr differs by approximately three orders of

magnitude. This large difference is due to the exact measurement points. In this work, we assumed

the time to be the difference between the age of the star at C-depletion and He-depletion. This does

not necessarily correspond to the exact burning lifetime for C as the star undergoes reconfiguration

after He-depletion for a few thousand years before conditions for C-burning are met. In Farmer

et al. (2016) they measure the time to transition to the next major fuel source. Our 95%CI for

τC-burn is ' (+1.9%, −3.1%) while their upper and lower bounds are ' (+1.2%, −12.1%).

Variations in properties of stellar evolution models can be found to be caused by other sources of

uncertainty beyond those discussed above. Renzo et al. (2017) considered uncertainties in the mass

loss prescriptions and efficiencies used in solar-metallicity, non-rotating, single stars. They find that

changes in these parameters can lead to a spread of ∆MCO ≈ 0.28 M� in CO core masses measured

at O-depletion, though defined differently in their work as the moment when Xc(16O) . 0.04. This

spread represents a variation of about ±5% variation about the arithmetic mean. The treatment of

mixing at the convective boundaries can also have a significant effect on the evolution of massive

stellar models. Davis et al. (2017) show that for their 25 M� model at Ne-ignition, they find a

variation of +5% in the ONe core mass due to changes in the efficiency of convective boundary

mixing at metal burning interfaces.

Farmer et al. (2016) find that mass resolution has a larger impact on the variations than the
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number of isotopes up to and including C burning, while the number of isotopes plays a more

significant role in determining the span of the variations for Ne-, O-, and Si-burning. Comparisons

of the coremasses and burning lifetimes suggests that at H- andHe-depletion, the variations induced

by uncertainties in nuclear reaction rates are of comparable magnitude to the variations induced by

the modeling choices of mass resolution and network resolution. At Ne-depletion the integrated

impact of the uncertainties in the reaction rates appear to be larger than the variations caused by

mass and network resolution.

The scale of variations due to different mass loss prescriptions and efficiencies were found to

be of comparable scale to those due to reaction rate uncertainties at early epochs such as H- and

He-depletion for the stellar properties considered. At early epochs, convective boundary mixing is

likely to cause significant variations in core masses and lifetimes that are of larger scale than those

due to nuclear reaction rate uncertainties. However, uncertainties in convective boundary mixing

are likely to be smaller than the integrated impact of rate uncertainties at advanced burning stages.

2.8 Summary

We investigated properties of pre-supernova massive stars with respect to the composite un-

certainties in the thermonuclear reaction rates by coupling the reaction rate PDFs provided by

the STARLIB reaction rate library with MESA stellar models. We evolved 1000 15 M� models

with solar and subsolar initial compositions from the pre main-sequence to core oxygen depletion

for a total of 2000 Monte Carlo stellar models. For each stellar model we sampled 665 forward

thermonuclear reaction rates concurrently, and used them in an in-situ 127 isotope MESA reaction

network. With this infrastructure we surveyed the core mass, burning lifetime, central temperature,

central density, compactness parameter, and key abundances at H-, He-, C-, Ne-, and O-depletion.

At each stage, we measured the PDFs of the variations of each property and calculated SROC

coefficients for each sampled reaction rate. This allowed identification of the reaction rates that

have the largest impact on the variations of the properties surveyed. Table 2.1 summarizes the

stellar properties, the reaction rates causing their variation, and the largest correlation coefficient
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(positive or negative) for that reaction rate.

In general, variations induced by nuclear reaction rates grow with each passing phase of

evolution. Relative to variations induced by mass resolution and the number of isotopes in the

nuclear reaction network, we found that variations induced by uncertainties in nuclear reaction

rates at core H- and He-depletion are of comparable magnitude to the variations induced by the

modeling choices of mass resolution and network resolution. Beyond these evolutionary epochs,

our models suggest that the reaction rate uncertainties can dominate the variation in properties of

the stellar model significantly altering the evolution towards iron core-collapse.
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CHAPTER 3

ON THE DEVELOPMENT OF MULTIDIMENSIONAL PROGENITOR MODELS FOR
CORE-COLLAPSE SUPERNOVAE

If you don’t know where you are going, any road will get you there. - Lewis Carrol

This chapter is based on the published work of C. E. Fields and Sean M. Couch 2020 ApJ 901 33.

3.1 Abstract

Multidimensional hydrodynamic simulations of shell convection in massive stars suggest the

development of aspherical perturbations that may be amplified during iron core-collapse. These

perturbations have a crucial and qualitative impact on the delayed neutrino-driven core-collapse

supernova explosion mechanism by increasing the total stress behind the stalled shock. In this

paper, we investigate the properties of a 15 M� model evolved in 1-,2-, and 3-dimensions (3D) for

the final ∼424 seconds before gravitational instability and iron core-collapse using MESA and the

FLASH simulation framework. We find that just before collapse, our initially perturbed fully 3D

model reaches angle-averaged convective velocity magnitudes of ≈ 240-260 km s−1 in the Si- and

O-shell regions with a Mach number ≈ 0.06. We find the bulk of the power in the O-shell resides at

large scales, characterized by spherical harmonic orders (`) of 2-4, while the Si-shell shows broad

spectra on smaller scales of ` ≈ 30 − 40. Both convective regions show an increase in power at

` = 5 near collapse. We show that the 1D MESA model agrees with the convective velocity profile

and speeds of the Si-shell when compared to our highest resolution 3D model. However, in the

O-shell region, we find that MESA predicts speeds approximately four times slower than all of our

3D models suggest. All eight of the multi-dimensional stellar models considered in this work are

publicly available.
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3.2 Introduction

Stars with an initial zero age main-sequence (ZAMS) mass of greater than approximately 8-10

M� may end their lives via core-collapse supernova (CCSN) explosions (Janka, 2012; Farmer et al.,

2015;Woosley &Heger, 2015;Woosley et al., 2002). Core-collapse supernova explosions facilitate

the evolution of chemical elements throughout galaxies (Timmes et al., 1995; Pignatari et al., 2016;

Côté et al., 2017), produce stellar mass compact object systems (Özel et al., 2012; Sukhbold et al.,

2016; Couch et al., 2019), and provide critical feedback to galaxy and star formation (Hopkins

et al., 2011; Botticella et al., 2012; Su et al., 2018). Hydrodynamic simulations of CCSNe have

helped inform our understanding of all of these aspects, beyond that which can be inferred directly

from current observations.

CCSN simulations now include 3D hydrodynamics as well as more accurate treatments of key

physical aspects of the problem. Many advances have been made to produce such simulations,

such as the inclusion of two-moment neutrino transport schemes (e.g., Hanke et al., 2013; Lentz

et al., 2015; O’Connor & Couch, 2018a; Vartanyan et al., 2019), a general relativistic treatment for

gravity as opposed to a Newtonian approach (Roberts et al., 2016; Müller et al., 2017), and spatial

resolutions that allow us to accurately capture the Reynolds stress (Radice et al., 2016; Nagakura

et al., 2019), a key component in the dynamics of the shock. Despite these advances, the vast

majority of these simulations rely on one dimensional (1D) initial conditions for the progenitor

star. These progenitors are typically produced using stellar evolution codes where convection is

treated using mixing length theory (MLT) (Cox & Giuli, 1968). MLT has been shown to accurately

represent convection in 1D models when calibrated to radiation hydrodynamic simulations of

surface convection in the Sun (Trampedach et al., 2014). Despite the utility of MLT in 1D stellar

models, multidimensional effects in the late stages of nuclear burning in the life of a massive star

can lead to initial conditions that differ significantly from what 1D stellar evolution models suggest

(Arnett et al., 2009; Arnett & Meakin, 2011; Viallet et al., 2013).

Couch&Ott (2013) investigated the impact of asphericity in the progenitor star on the explosion
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of a 15 M� stellar model that has been investigated in detail (Woosley & Heger, 2007). Motivated

by results of multidimensional shell burning in massive stars (Meakin & Arnett, 2007; Arnett &

Meakin, 2011), they implemented velocity perturbations within the Si-shell to assess the impact on

the explosion dynamics. They found that the models with the velocity perturbations either exploded

successfully or evolved closer to explosion where the models without the perturbations failed to

successfully revive the stalled shock. The non-radial velocity perturbations resulted in stronger

convection and turbulence in the gain layer. These motions play a significant role in contributing

to the turbulent pressure and dissipation which can supplement the thermal pressure behind the

shock and, thus, enable explosions at lower effective neutrino heating rates (Couch & Ott, 2015;

Mabanta & Murphy, 2018). Couch & Ott (2013) compared models with and without perturbations

and with either fiducial or slightly enhanced neutrino heating. Their 3D model without initial

perturbations but slightly enhanced heating (2% larger than fiducial) followed a similar trajectory

as the perturbedmodel (peak perturbationMach number ofMpert = 0.2) with no enhanced heating.

However, neither of these models were able to revive the stalled shock and both resulted in a failed

explosion. These results suggested that the multidimensional structure of the progenitor star can

provide a favorable impact on the likelihood for explosion by increasing the total stress, both thermal

and turbulent, behind the shock. Without perturbations, the progenitor star used by Couch & Ott

(2013) required more neutrino heating (5% larger than fiducial) to achieve shock revival (Couch &

O’Connor, 2014).

One of the first efforts to produce multidimensional CCSN progenitors began with the seminal

work of Arnett (1994). They performed hydrodynamic O-shell burning simulations in a two-

dimensional wedge using an approximate 12 species network. In this work, they found maximum

flow speeds that approached ≈ 200 km s−1 which induced density perturbations and also observed

mixing beyond stable boundaries. Much later, Meakin & Arnett (2007) presented the first results of

O-shell burning in 3D. They evolved a 3D wedge encompassing the O-shell burning region using

the PROMPI code for a total of about eight turnover timescales. In comparing the 3D model to a

similar 2D model they found flow speeds in the 2D model were significantly larger and also found
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that the interaction between the convectively stable layers with large convective plums can facilitate

the generation of waves. The combined efforts of these previous works all suggested the need for

further investigation into the role of the late time properties of CCSN progenitors near collapse.

Building upon previous work, Couch et al. (2015) (hereafter C15) presented the first three-

dimensional (3D) simulation of iron core collapse in a 15M� star. They evolved the model in

3D assuming octant symmetry and an approximate 21 isotope network for a total of ≈160 s up

to the point of gravitational instability and iron core collapse. Their simulation captured ∼8

convective turnovers in the Si-burning shell region with speeds in the Si-shell region on the order

of several hundred km s−1 and significant non-radial kinetic energy. They then followed the 3D

progenitor model through core collapse and bounce to explosion using similar methods as in Couch

&O’Connor (2014), i.e. parameterized deleptonization, multispecies neutrino leakage scheme, and

Newtonian gravity. When comparing the explosion of the 3D progenitor model to the angle-average

of the same model, they find that the turbulent kinetic energy spectrum ahead of the shock front (in

the accretion flow) was more than an order-of-magnitude larger for the 3D case during accretion

of the Si-shell, around post-bounce times of tpb = 125 ± 25 ms. The more turbulent accretion

flow led to enhanced total turbulent kinetic energy in the gain region by up to almost a factor of

two for the 3D initial conditions than the angle-averaged model, with most of the turbulent kinetic

energy residing at scales of ` ≈ 6 − 10, where ` is the principle spherical harmonic order. These

differences resulted in an overall more rapidly expanding shock radius and a diagnostic explosion

energy approximately a factor of two larger than the 1D initial model. However, themodel presented

in that work suffered from approximations that may have affected the results. The main issues were

the use of octant symmetry and the modification of the electron capture rates used in the simulation.

The first of these approximations can lead to a suppression of perturbations of very large scales

while the second can lead to larger convective speeds within the Si-shell region due to the rapid

artificial contraction fo the iron core.

Müller et al. (2016b) aimed to address these issues by conducting a full 4π 3D simulation of O-

shell burning in a 18M� progenitor star. Using the Prometheus hydrodynamics code they evolved
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the model in 3D for ∼294 s up to the point of iron core collapse. They alleviate the use of enhanced

electron capture rates by imposing an inner boundary condition that follows the radial trajectory

of the outer edge of the Si-shell according to the 1D initial model generated by the Kepler stellar

evolution code. In their simulation, they capture approximately 9 turnover timescales in the O-shell

finding Mach numbers that reach values of ∼0.1 as well a large scale l = 2 mode that emerges near

the point of collapse. Their results build on those of C15 with further evidence suggesting the need

for full 4π simulations. Recently, (Yadav et al., 2019) presented a 4π 3D simulation of O-shell

burning where a violent merging of the O/Si interface and Ne layer merged prior to gravitational

collapse. This simulation of an 18.88 M� progenitor for 7 minutes captured the mixing that

occurred after the merging and was found to lead to Mach numbers of ∼0.13 near collapse. All of

these efforts suggest that 3D progenitor structure increases the likelihood for explosion of massive

stars by the delayed neutrino heating mechanism.

In this paper, we present 1D, 2D, and 3D hydrodynamical simulations of Si- andO- shell burning

of a 15 M� progenitor star for the final ∼424 seconds of its life up to the point of gravitational

instability and iron core collapse. Using these models, we: 1) provide a detailed description of the

convective regions in the Si- and O- burning shells, 2) estimate key stellar evolution parameters that

may impact the explosion properties of CCSNe and compare them to their 1D counterparts, and 3)

study how the properties of these models may depend on resolution, dimensionality/symmetry, and

initial perturbations. In order to self-consistently simulate secular core contraction and ultimate

collapse, we include the iron core and both Si- and O-shell regions in our simulation. To address

the dependence of resolution, dimensionality, and symmetry on our results we consider 2D and

3D models at varying finest resolution and cylindrical versus octant symmetry, respectively. We

improve on the work of C15 by alleviating the use of accelerated electron capture rates, evolving

two 3D simulations that cover the full solid angle (4π steradian) rather than octant symmetry,

and significantly increase the timescale of the simulation. Lastly, to assess the impact of initial

conditions, our two 4π 3D models differ only in the initialization of the velocity field. Using

these models, we characterize the qualitative properties of the flow amongst different parameter

81



choices while also comparing to the predicted properties of the 1D input model for our simulations.

We present a detailed analysis of the convective properties of the 4π 3D models and discuss the

implications for the 3D state of CCSN progenitors at collapse. This paper is organized as follows.

In Section 5.3 we discuss our computational methods and input physics, in Section 5.4 we present

the results of our 2- and 3D hydrodynamical FLASH simulations, Section 5.5 summarizes our results

and compares them to previous efforts.

3.3 Methods and Computational Setup

Our methods follow closely those used in C15 in that we evolve a 1D spherically symmetric

stellar evolution model using MESA and, at a point near iron core collapse, map the model into the

FLASH simulation framework and continue the evolution in multi-D to collapse. In the following

subsections, we will describe these steps in detail.

3.3.1 1D MESA Stellar Evolution Model

We evolve a 15 M� solar metallicity stellar model using the open-source stellar evolution toolkit,

Modules for Experiments in Stellar Astrophysics (MESA) (Paxton et al., 2011, 2013, 2015, 2018,

2019). The model is evolved from the pre-main sequence to a time approximately 424 seconds

before iron core collapse, defined by MESA as the time when any location of the iron core reaches

an infall velocity of greater than 1000 km s−1. We use temporal and spatial parameters similar to

those used in Farmer et al. (2016) and Fields et al. (2018). These parameters result in timesteps on

the order of δ̄t ≈ 41 kyr during the main sequence, δ̄t ≈ 24 yr during core carbon burning, and δ̄t ≈

19 sec when the model is stopped. At the point when the model is stopped, the model has 3611 cells

with an enforced maximum ¯δm ≈ 0.01 M� . The MESAmodel uses an α-chain network that follows

21 isotopes from 1H to 56Cr. This network is chosen for its computational efficiency and to match

the network currently implemented in FLASH and used in (Couch et al., 2015). This approximate

network aims to capture important aspects of pre-supernova evolution of massive star models which

include reactions between heavy ions and iron-group photodisintegration and similar approaches
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Figure 3.1: Specific entropy, electron fraction, and mass density profiles as function of stellar mass
for the 1D MESA model at the time of mapping into FLASH . The dashed black vertical line denotes
the edge of the domain used in the FLASH simulations.

have been used in many previous studies (Heger et al., 2000; Heger &Woosley, 2010). We include

mass loss using the ‘Dutch‘ wind scheme with an efficiency value of 0.8. Mixing processes due to

convective overshoot, thermohaline, and semi-convection are considered with values from Fields

et al. (2018). We do not include rotation and magnetic fields in this model.

In Figure 3.1 we show the specific entropy, electron fraction, and mass density profiles as a

function of mass coordinate from the MESAmodel at the point which it is mapped into FLASH . The

dashed black line denotes the edge of the domain considered in the FLASH simulations. Overall,

the model used in this work has a similar structure to the progenitor used in C15 except for the case

of the lower central electron fraction in the core. This difference is partially due to the different
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network used in C15, a basic 8 isotope network that was automatically extended during evolution

compared to our static 21 isotope network used in the MESA model for this work. The input MESA

model in C15 also had a slightly smaller initial iron core mass, 1.3 M� , than the model considered

here.

Figure 3.2 shows the mass fraction profiles for some of the most abundant isotopes for the input

MESAmodel. The label ‘Iron’ denotes the sum of mass fractions of 52,54,56Fe isotopes. At the point

of mapping the stellar model has an iron core mass of approximately 1.44 M�. The Si-shell region

is located at a specific mass coordinate of m ≈ 1.53 − 1.68 M� while the O-shell region extends

from the edge of the Si-shell out to mass coordinate of m ≈ 2.26 M� . Figure 3.3 shows the time

evolution of the Brunt-Väisälä frequency (left) and convective velocity speeds (right) as a function

of mass coordinate as predicted by MESA for the 1D model evolved from the point at which it is

mapped into FLASH until core collapse. The 1D model predicts convective speeds in the O-shell

regions with a peak of approximately 100 km s−1 up to the point of collapse. In the Si-shell region,

only the inner most region is convectively active with speeds on the order of those in the O-shell.

At a time of t ≈ 200 s, the innermost Si-shell burning convective region ceases and convective

proceeds instead at a further mass coordinate of m ≈ 1.60 − 1.68 M� with speeds increasing to

values greater than in the O-shell near collapse at ≈ 160 km s−1.

3.3.2 2- and 3D FLASH Stellar Evolution Model

3.3.2.1 Overview

We perform a total of eight multidimensional stellar evolution models at various resolutions and

symmetries. All models are evolved using the FLASH simulation framework (Fryxell et al., 2000;

Dubey et al., 2009). Similar to Couch et al. (2015), we utilize the “Helmholtz” EoS (Timmes &

Swesty, 2000) and the same 21 isotope network but with an improvement to the weak reaction rate

used for electron capture onto 56Ni. The original network used tabulated rates from Mazurek et al.

(1974) while the updated rates were adopted from Langanke & Martínez-Pinedo (2000). The new

rates are enhanced by close to a factor of 5-10 alleviating any need to artificially enhance the total
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Figure 3.3: Time evolution of the 1D profile data for the MESA model. The (left) subplot shows the
Brunt-Väisälä frequency while the (right) shows the convective velocity speeds according to MLT.
The red regions denote regions that are stable against convection while gray and blue regions show
regions that are unstable to convection according to MESA.

electron capture rates in the models presented in this work and are also in agreement with the table

values used in MESA.
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3.3.2.2 Hydrodynamics, Gravity, and Domain

The equations of compressible hydrodynamics are solved using FLASH’s directionally unsplit piece-

wise parabolic method (PPM) (Lee & Deane, 2009) and HLLC Riemann solvers (Toro, 1999) with

a Courant factor of 0.8. Self-gravity is solved assuming a spherically symmetric (monopole) grav-

itational potential approximation (Couch et al., 2013). Our computational domain extends to 1010

cm from the origin in each dimension for both the 2D and 3D models. Four 2D models are evolved

with varying levels of finest grid spacing resolution of 8,16, 24, and 32 km. The 2D models use

cylindrical geometry with symmetry about the azimuthal direction. Four 3D models are evolved:

two assuming octant symmetry with two different values of finest grid resolution, 16 and 32 km,

and two full 4π 3D models at 32 km finest grid resolution, one with an initialized velocity field

and one without. All 3D models use Cartesian coordinates. The models are labeled according to

their dimensionality and finest grid spacing, and in the case of 3D according to the use of octant

symmetry or not. For example, the 3D 32 km octant model is labelled 3DOct32km for ease of

model identification throughout the remainder of this paper. The initially perturbed 4π 3D model

is labeled 3D32kmPert.

The velocity field initialization for the perturbed model follows the methods used in Müller &

Janka (2015) and extended to 3D in O’Connor &Couch (2018b). Themethod introduces solenoidal

velocity perturbations to the vr and vθ components using spherical harmonics and sinusoidal radial

dependence. We use the convective velocity profile of the 1D MESAmodel at the time of mapping to

inform our choices of parameters to initialize the velocity field. We take the innermost convective

Si-shell region to be from r1,min ≈ 2220 km to r1,max ≈ 2740 km, and choose spherical harmonic

coefficients to be ` = 5,m = 1 with a single radial sinusoid (n = 1). The second convective

Si-shell region, at r2,min ≈ 2740 km to r2,min ≈ 3760 km, uses the same spherical harmonic and

radial numbers as the first; n = 1, ` = 5,m = 1. Lastly, the O-shell region, taken to be r3,min ≈

3770 km to r3,max ≈ 26,620 km, assumes an initially larger scale flow with quantum numbers of

n = 1, ` = 5,m = 3.

All velocity amplitude scaling factors (C) for the initial perturbations were chosen to match
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approximately 1% (in the Si-shell regions) and 5% (in the O-shell region) of the convective velocity

speed as predicted by the MESA model at time of mapping. The resulting perturbations led to an

angle-averaged Mach number ofM ≈ 2 × 10−3 andM ≈ 1.3 × 10−2 in the Si-shell and O-shell

regions, respectively. For comparison, the scaling factors used in (O’Connor & Couch, 2018b) to

replicate pre-collapse perturbations were on the order of O ∼ 103 larger than values used here. In

terms of the total initial kinetic energy the perturbedmodel begins with a value of Ekin. ≈ 5.8×1045

erg, approximately 4% of the peak total kinetic energy observed at later times.

All models utilize adaptive mesh refinement (AMR) with up to eight levels of refinement. To

give an example of the grid structure for our models we consider the refinement boundaries for the

2D8km and 2D32kmmodels. In both of these models, the entire Si-shell region has a grid resolution

of 32 km with effective angular resolution of ≈ 0.9◦ to 0.5◦ at the base (≈ 2000 km) and edge

of the shell (≈ 3500 km), respectively. The resolution within the Si-shell region for these model

corresponds to an average of ≈ 5% of the local pressure scale height, Hp. The grid resolution in the

2Dmodels are representative of the respective 3Dmodels as well. The two finer resolution levels of

the 2D8kmmodel are situated within the iron core with the second highest level of refinement at the

base of the Si-shell region and down to a radius of 1000 km. In this region, the 2D8km and 2D32km

grid resolutions provide a value of ≈ 6% and ≈ 12% of Hp, respectively. The O-shell region in

these models is at 64 km resolution out to a radius of ≈ 6000 km then decreases to 128 km from

there to 10,000 km. Within these two regions the effective angular resolution ranges from 0.73◦

to 0.61◦ and corresponds to an average of ≈ 0.04Hp and ≈ 0.05Hp, respectively. In the 2D32km,

the finest resolution level goes out to a radius of 3500 km, the approximate edge of the Si-shell,

giving the model similar resolution in this and the O-shell to that of the 2D8km without the two

finer resolution levels within the iron core. The location of refinement levels used is determined

as a function of radius and chosen based on logarithmic changes in specific density, pressure, and

velocity. The refinement levels are static throughout the simulation and chosen based on the input

model.

For the 3D octant symmetry planes and the 2D axis plane we use reflecting boundary conditions
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while the outer boundaries utilize a boundary condition that applies power-law extrapolations of

the velocity and density fields to approximate the roughly hydrostatic outer envelope of the stellar

interior. The 4π 3D models use the same custom boundary condition at all domain edges. To help

reduce any artificial transients that occur from mapping from a Lagrangian to an Eulerian code

with different grid resolution, we use the approach of Zingale et al. (2002). This approach takes the

initial 1D MESA model and maps it to a uniform grid with resolution four times finer than that used

in our FLASH grid. The density in the remapped model is then slightly modified while the pressure

is held fixed to force the model into hydrostatic equilibrium (HSE), such that it satisfies

∇P = ρg , (3.1)

in the absence of initial velocities. The procedure is then closed by calling the equation of state

(EOS) for the new profile.

3.3.2.3 Nuclear Burning

During the growth of the iron core, thermal support is removed from the core due to photo-

disintegration of iron nuclei that cause the gas to cool. The subsequent contraction of the stellar

core causes an increase in the rate of electron captures onto protons therefore decreasing the

pressure support contribution from electron degeneracy. This further reduction of pressure support

in the core accelerates nuclear burning in the silicon burning shell leading to faster growth of the

iron core. In the moments prior to iron core collapse the core moves towards nuclear statistical

equilibrium while the neutrino cooling and photo-disintegration rates begin to dominate and lead

to a negative specific nuclear energy generation rate, εnuc, in the inner core. Within this cooled

material, the electron capture rates increase significantly and give rise to a positive specific εnuc

and cause the temperature to rise again. Within this region a numerical instability can occur for

calculations which employ operator split burning and hydrodynamics (Timmes et al., 2000). In

order to avoid this instability from occurring in the models considered here, we place a limiter on

the maximum timestep such that any change in the internal energy across all zones in the domain

is limited to a maximum of a 1% per timestep.
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Figure 3.4: Slices of the magnitude of the velocity field for the 2D32km (left) and 2D8km model
(right) at four different times. At t = 200 s, both models exhibit a “square” like imprint in the
velocity field that is due to the stiff entropy barrier at the edge of the Si-shell region along with
increased velocity speeds along the axis. These speeds are due to numerical artifacts common in
2D simulations assuming axisymmetry. The increased velocity along the axis causes outflows in
the positive radial direction at the top and bottom of the Si-shell region. Beyond t = 200 s, both
models become characterized by large scale cyclones in the O-shell region with convective activity
in the Si-shell having three to five times slower flow speeds.

The large and opposite specific nuclear energy generation rates within the core can also lead

to significant difficulties in solving the nuclear reaction network at a given timestep and lead to

significant load imbalance of the computational workload per MPI rank. Zones within the core

can take several hundred iterations to obtain a solution while outside of the iron core, a solution

is found in a fraction of the time. In order to help circumvent these issues, we employ a moving

“inner boundary condition” within the iron core, well below the region of interest for this paper.
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For all simulations considered here, the profiles of ρ,Ye, and P in the inner 1000 km of the models

are evolved according to the profile from the MESA model at the corresponding time. A 2D table is

constructed from the MESA profile data from the point of mapping to FLASH (≈ 424 s) until iron core

collapse. Four point Lagrange linear interpolation is then performed in time and radius to ensure

accurate values are mapped for the FLASH models, which take on the order of 100 timesteps for

every MESA timestep. This mapping effectively provides a time-dependent inner boundary condition

that ensures the model follows the central evolution of the MESA model while still allowing us to

capture the pertinent multi-D hydrodynamic behavior with FLASH .

For all models, we simulate ≈ 424 s of evolution prior to collapse capturing Si- and O-shell

burning up to gravitational instability and iron core collapse. The full 4π 3D models had an

approximate total of 46M zones, took ≈ 0.6 M core hours on the laconia compute cluster at

Michigan State University. All the multidimensional CCSN progenitor models considered in this

work are available publicly.

3.4 Multi-Dimensional Evolution to Iron Core-Collapse

3.4.1 Results from 2D Simulations

We evolve a total of four 2D simulations at 8,16, 24, and 32 km finest grid spacing resolution. In

the following subsection we consider the global properties of all of the 2D models, compare the

lowest and highest resolution model, and consider in detail the convective properties of the highest

resolution 2D model.

The structure of the flow at large scale within the shell burning regions can have a significant

impact on the CCSN explosion mechanism. Perturbations within these region can be amplified

during collapse of the iron core and aid in the development of turbulence during explosion (Lai

& Goldreich, 2000; Couch & Ott, 2013, 2015). In Figure 3.4 we show slices of the magnitude of

the velocity field for the 2D32km (left ) and 2D8km models (right ) at four different times. At early

times, we see convection developing in a similar matter for both the 8 km and 32 km models. Both

models exhibit a “square” like imprint in the velocity field that is due to the stiff entropy barrier at
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Figure 3.5: Time evolution of the maximum angle-averaged Mach number within the Si- and
O-shell for all 2D models.

the edge of the Si-shell region interacting with the Cartesian-like 2D axisymmetric grid. t = 200

s both models characterized by large scale cyclones in the O-shell region At late times, beyond

t = 350 s, the 8 km model appears to reach flow speeds in the Si-shell that are on the order of those

observed in the O-shell. In the O-shell, the scale of the convection increases as cyclones on the

order of ≈ 4000 km dominate the flow with the scale of convection within the Si-shell region being

restricted by the width of the shell. Seconds prior to collapse, the 32 km model reaches Si-shell

convective speeds that agree with the 8 km model.

To begin our assessment of the convective properties of the models, we compute the angle-

averaged maximum Mach number, defined as,

〈M〉 =

〈
|v|
cs

〉
, (3.2)

where |v| is the local magnitude of the velocity field and cs the local sound speed, and the averaging
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Figure 3.6: Time evolution of the radial and non-radial kinetic energy for the four 2D models.

is performed over solid angle. We also compute the Mach number within the Si-shell and within

the O-shell to characterize their behavior independently. The shell region for silicon-28 is defined

as the region where X (28Si) > 0.2 and X (16O) < 0.2 and for oxygen-16 X (16O) > 0.2 and

X (28Si) < 0.2.

In Figure 3.5 we show the time evolution of the maximum angle-averaged Mach number for

all 2D models. The maximum Mach number reported at the start of the simulation reflects the

initial transient as it traverses the domain. Beyond t ≈ 15 s, the transient has either traversed the

shell region or been sufficiently damped that the Mach numbers reflect the convective properties

of the shells and not the initial radial wave. The Si-shell appears to reach a quasi-steady state in

the first ≈ 80 seconds, this is seen by all models reaching a characteristic Mach number within the

shell. In the O-shell, the Mach number remains relatively flat although larger than the approximate

mean in the Si-shell, this suggests little to no convective activity in the O-shell during this time. To
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Figure 3.7: Same as in Figure 3.3 but for the 2D8km FLASH simulation. The slightly negative values
of ω2

BV denoted by the gray/light blue regions represent regions unstable to convection.

make an estimate of the time at which these two regions would be expected to reach a quasi-steady

convective state, we can estimate a convective turnover timescale for each region. The Si-shell

spans a radius of approximately 800 km with convective speeds of vSi-shell ≈ 80 km s−1 at early

times. Using this, we can estimate an approximate convective turnover time within the Si- shell of

τSi ≈ 2rSi/vSi ≈ 20 seconds. This value suggests that after the transient has traversed the Si-shell

region, a total of approximately three turnover timescales elapse before the region reaches a quasi-

steady state represented by an average Mach number oscillating on the approximate timescale of

the turnover time. A similar estimate can be made to the O-shell where we determine a turnover

time of τO ≈ 100 seconds. This value suggests that the lack of change in Mach number for the

O-shell is due to the fact that the region has not yet reached a quasi-steady convective state.

By the end of the simulation, the models span a range of Mach numbers of ≈ 0.08 − 0.12.

The late time behavior of the Si-shell region of the two highest resolution models can be

attributed to an expansion of the width of the convective Si-shell region observed in the last slice

of Figure 3.4 . the two highest resolution models, the convective velocity speeds reach enough

to overcome the barrier between the convective and non-convective silicon shell regions causing

them to merge. After this merging of these two regions, the entire region becomes fully convective.

However, due to the expansion of the width of the Si-shell region after merging, the burning within
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Figure 3.8: Same as in Figure 3.5 but for all the 3D models for the duration of the simulation.

this region occurs at lower density. Because the local sound speed goes as cs ∝ ρ−1/2, a decrease

in density leads to an increase in the sound speed therefore decreasing the local maximum Mach

number. The two lower resolution models do not experience this merging of the two regions until

moments before collapse when the flow speeds are large enough ≈ 150 km s−1 to merge.

In Figure 3.6 we show the time evolution of the total kinetic energy in the radial and non-radial

components for the 2D FLASHmodels. When considering the non-radial kinetic energy components

for the four models we see that the peak value of the energy at collapse increases with an increase

in model resolution with the highest resolution model showing a peak value of Ekin.,θ ≈ 2.5× 1047

erg at collapse. The radial kinetic energy shows further evidence for the expansion of the Si-shell

region in the two highest resolution models with the energies showing local maxima around t ≈

390 s followed by a steady decline for the duration of the simulation. This transition time is also

reflected in the non-radial kinetic energy where one can notice a slight increase in the energy from
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Figure 3.9: Same as in Figure 3.6 but for the four 3D models.

t ≈ 390 s to collapse.

In Figure 3.7 (left) we show the time evolution of the Brunt-Väisälä frequency for the assuming

the Ledoux criterion for convection which states that a region is stable against convection if

∇rad. < ∇ad. −
χµ

χT
∇µ . (3.3)

Under this criterion, we can compute the Brunt-Väisälä frequency for the FLASH simulations as

ω2
BV = g *

,

1
ρ

∂ρ

∂r
−

1
ρc2s

∂P
∂r

+
-
, (3.4)

where g is the local gravitational acceleration, ρ the mass density, cs the adiabatic sound speed,

and P the pressure. This form of the Brunt-Väisälä frequency equation is equivalent to forms

that explicitly include the entropy and electron fraction gradients (Müller et al., 2016b). For each

timestep for which these 2D data are available, we compute angle average profiles as a function of
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radius before using Equation 3.4 to compute the frequency. Using this convention a positive value

implies a region stable against convection.

In Figure 3.7 we also show the time evolution of the convective velocity (right), here defined as

vconv =
√
|v|2 − v2rad., as a function of time for the same model. The base of the O-shell region is

shown at an approximate mass coordinate of 1.7 M� . Within the O-shell, the convective velocity

reach speeds of nearly 500 km s−1 as the model approaches iron core collapse. Prior to this, the

model shows values on the order of 50-100 km s−1 in the Si-shell and 200-400 km s−1 in the

O-shell. The expansion of the convective Si-shell region due to the merging is observed as well

in the convective velocity, again around t ≈ 390 s, the same time at which the velocity begins to

reach values observed in the O-shell for this model. In comparing to Figure 3.3, the FLASH model

predicts two initial inner and outer convectively active regions that eventually merge into one larger

region near collapse. On the other hand, the MESA model predicts a transition of the location of

the convective region followed by late time expansion of this region near collapse. Despite these

somewhat different evolutionary pathways both models agree in their qualitative description of the

location of the convective regions near collapse. The major difference between the two models are

the magnitude of the convective velocities predicted by MESA/MLT.

3.4.2 Results from 3D Simulations

We perform a total of 3D stellar models: two models in octant symmetry at 16 and 32 km finest

grid spacing and full 4π models at 32 km finest resolution . In this subsection, we will consider the

global properties of all 3D models, describe the perturbed 4π 32 km in detail, and, lastly, consider

the impact of octant symmetry and resolution.

In Figure 3.8 we show the time evolution of the maximum Mach number in the Si- and O-shell

at each timestep for all 3D models. Contrary to the trend seen in Figure 3.5 for the O-shell one can

observe a periodic nature in the Mach number values that follows our estimate for the convective

turnover timescales from Section 3.4.1. Similar to the comparable 2D case (see Figure 3.6), the

3DOct16kmmodel appears to reach a peakMach number in the Si-shell at around t ≈ 390 s before a
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Figure 3.10: Slices of the the magnitude of the velocity field for the 3D32km (left) and 3D32kmPert
(right) models at t = 200 s, 350 s, and 420 s in the x − y plane.
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steady decline as the model approaches collapse, this behavior is also attributed to expansion of the

Si-shell after the merging of the convective and non-convective regions. This result suggests that

the merger is independent of geometry and dimensionality but instead depends on the resolution of

the inner core region.

Figure 3.9 shows the time evolution of the radial and non-radial kinetic energy for the 3Dmodels.

In general, the 32 km resolution models behave similarly with the 4π models having larger kinetic

energy values than the octant model beyond t ≈ 280 s. The 16 km octant model has larger kinetic

energy values than both models at late times while also reaching a local peak value approximately

30 s before collapse. Prior to about 200 s, the bulk of the energy in the radial direction for the two

unperturbed 32 km models is due to an the initial transient that traverses the domain at the start of

the simulation and leaves the domain at t ≈ 60 s. The 16 km model experiences a less significant

initial transient and therefore undergoes less initial expansion/contraction as the model readjusts to

a new equilibrium.

The evolution of the magnitude of the velocity field for models 3D32km (left) and 3D32kmPert

(right) is compared in Figure 3.10.

In Figure 3.11 we show a 3D volume rendering of the magnitude of the velocity field for the

3D32kmPert model at t ≈ 423 s. The approximate location of the edge of the iron core (shown in

teal) is taken to be an isocontour surface at a radius where s ≈ 4 kKB / baryon. At this time, the

iron core has a radius of r ≈ 1982 km. The light purple plumes show the fast moving convective

motions in the O-shell region depicted by a Guassian transfer function with a peak at |v| ≈ 300 .

The slower moving, larger scale motions are shown using a similar transfer function with a peak at

|v| ≈ 100 in light blue.

Similar to the analysis done for the MESA model and the 2D FLASH models, in Figure 3.12 we

show the Brunt-Väisälä frequency (left) and convective velocity (right) as a function of time for the

3D32kmPert FLASH model. Unlike the 2D8km, this model does not experience the merging of the

two Si regions until a few seconds prior to collapse leading to a similar fully convective Si-shell at

the end of the simulation. Another notable feature of this model is the slight expansion and then
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Figure 3.11: 3D volume rendering of the magnitude of the velocity field for the 4π 3D32kmPert
model at a time ≈ 2 seconds before iron core collapse. The teal contour denotes the edge of the iron
core defined to be the radius at which s ≈ 4 kKB / baryon. At this time, the iron core spans a radius
of r ≈ 1982 km. The light purple plumes represent O-shell burning convection speeds following
a Guassian with a peak at |v| ≈ 300 while the light blue plumes |v| ≈ 100 This image was made
using yt and the color map library cmocean.

contraction of different regions of the model. For example, the base of the O-shell region begins

at a mass coordinate of m ≈ 1.68 M� in all models but appears to expand outward to a coordinate

of m ≈ 1.72 M� for the 3D32km model at about t ≈ 200 s. This expansion is not observed in the
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Figure 3.12: Same as in Figure 3.3 but for the 3D32kmPert FLASH simulation.
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Figure 3.13: Power spectrumdistribution of the spherical harmonic decomposition of themagnitude
of the velocity in the O- and Si-shell regions at six different times for the 3D32kmPert model.

2D8km model but is partially due to the initial transient at the beginning of the simulation, . The

impact of this effect on our main results will be considered in Section 3.4.2.2.

3.4.2.1 Characterizing the convection in the 3d32kmPert model

To characterize the scales of the convective eddies and the overall evolution of the strength of

convection throughout the duration of the simulations we

c2` =
∑̀

m=−`

�����

∫
Y m
` (θ, φ) |v|′ (rShell, θ, φ)dΩ

�����

2
, (3.5)
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Figure 3.14: Same as in Figure 3.13 but only considering the O-shell region for the 3D32km and
3D32kmPert models at two different times.
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Figure 3.15: The profile of the angle averaged Mach number as a function of mass coordinate at six
different times for the 3D32kmPert stellar model. At t = 424 s the average Mach number reaches
〈M〉 ≈ 0.06 in the Si-shell and at the base of the O-shell.
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Figure 3.16: The evolution of the convection velocity profiles for the 16km and 32km 3D octant
models.

In Figure 3.14, we compare the power spectrum for the perturbed and non-pertubed models at

t = 200 s and t = 420 s. At t = 200 s, the unperturbed model (purple dashed line) shows an excess

in power at ` = 4 and ` = 8, also reflected by the Cartesian aligned nature of the convection shown

in the top panel of Figure 3.10. The perturbed model (solid purple line) does not show excess power

in these modes but instead shows a range of power across modes including those at larger scales at

` ≤ 4. When considering t = 420 s, the spectrum of the O-shell region for the unperturbed model

(dashed orange line) shows a slightly larger peak at ` = 4 and a deficit of power by an order of

magnitude for the ` = 2 and ` = 3 modes. Despite these differences, the spectra at this time are

relatively similar, both having a peak at ` = 4 and an intermediate range of scales just below what

is expected for a Kolmogorov scaling of `−5/3.

In Figure 3.15we show the angle-averagedMach number profile as a function ofmass coordinate

for the 3D32kmPert model at six times. The Si-shell region is situated at a mass coordinate of

approximately 1.6 to 1.7 M� . The evolution of the Mach number in this region is further

representative of the power spectra shown in Figure 3.13. For the majority of the simulation, the

Mach numbers in this region are on the order of 〈M〉 . 0.01. Only at times beyond t ≈ 300 s do

they increase significantly reaching values of 〈M〉 ≈ 0.06 prior to collapse. In the O-shell region,

at mass coordinates of m ≈ 1.7 − 2.3 M�, the Mach numbers reach values of about 〈M〉 ≈ 0.06 as
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Figure 3.17: The Mach number profiles as a function of mass coordinate for the four 3D models .

early as t ≈ 150. At late times, the O-shell region approaches Mach numbers of 〈M〉 ≈ 0.06 near

collapse.

3.4.2.2 Effect of Spatial Resolution and Octant Symmetry

To assess the impact of spatial resolution and octant symmetry we compare the results of the two

4π 3D32km simulations with the two 3D octant models. In Figure 3.16 we show the time evolution

of the convective velocity profiles for the 3DOct16km and 3DOct32km models. We can observe

the same expansion of the O-shell region in the 32 km octant model as with the full 4π models. In

contrast, the 16 km octant model does not appear to undergo this contraction and the base of the

O-shell stays at a steady mass coordinate for the duration of the simulation. Moreover, the 16 km

model reaches larger convective velocities in the Si- and O-shell regions at t ≈ 350 s. This time

corresponds to the same time at which we observe a peak in the Mach numbers in Figure 3.8 and

is due to the merging of the convective and non-convective regions. These results suggest that due

to the stability of the O-shell in the 16 km model, the model follows a slightly different evolution

than that of the 32 km octant and 4π models characterized by larger convective velocity speeds that
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Figure 3.18: The convective velocity (top) and Mach number (bottom) for the 1D MESA model and
angle-averaged profiles of the four 3D models at the t ≈ 420 s.

facilitate merging of convective and non-convective regions in the Si-shell. Moreover, it suggests

that these differences are attributed more to the finest grid spacing of the inner core region and less

dependent on the symmetry imposed for the octant models. Despite the differences found in the

evolution of the Si-shell region between these two models, the O-shell region appears less impacted

by the difference in resolution and arrive at similar qualitative properties among the 3D models.

We can further determine the effect that resolution and symmetry has on our results by con-

sidering some keys aspects of our 3D stellar models at collapse that have significant implications

for simulations of CCSNe. Couch & Ott (2013) considered the effect of ashpericities of imposed

perturbations in the -shell regions characterized by the magnitude of the Mach number. They found

large Mach number perturbations can result in enhanced strength of turbulent convection in the

CCSN mechanism, aiding explosion. In Figure 3.17, we plot the profiles of the Mach number at

the start of collapse, , for the 3D models. In general, we see that the estimates of the Mach number

104



1
2
3
4
5
6

s
(k

B
ba

ry
on
−1

) 3D32km
3DOct32km
3DOct16km
3D32kmPert
MESA

0.6 0.9 1.2 1.5 1.8
m (M�)

0.46

0.47

0.48

0.49

0.50

Y
e

Figure 3.19: The specific entropy (top) and specific electron fraction (bottom) for the 1D MESA
model and angle-averaged profiles of the four 3D models at the t ≈ 420 s.

in the O-shell region between ≈1.7-2.3 M� across all models, the at the base of the O-shell in the

4π model, showing an ≈ 8% larger value. The main difference is observed in the Si-shell region

where the Mach number is approximately larger in the 32 km models, which agree with each other

to ≈ 10%.

When comparing the 32 km octant and 4π models it is likely the case that the convective speeds

are able to reach larger values as large scale flow is not suppressed at the symmetry planes. This is

supported further by the larger non-radial kinetic energy in the 4π models as seen in Figure 3.9.

Another important diagnostic of the presupernova structure is the compactness parameter

(O’Connor & Ott, 2011),

ξm =
m/M�

R(Mbary = m)/1000 km

�����t=tcc
, (3.6)

where a value of 2.5 M� is typically chosen for evaluation at the start of core collapse. The
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value of this quantity in the progenitor star has been shown to be highly non-monotonic with

ZAMS mass but gives some insight to the ensuing dynamics of the CCSN mechanism for a given

progenitor (Sukhbold et al., 2018; Couch et al., 2019). We can compute this quantity for our three

3D models to determine how much variation exists due to the effects of resolution and symmetry.

Using Equation (4.1) for the three 3D models at a time t = 424 s, moments before collapse. We

find values of ξm=2.5M� = 0.0473, 0.0474, 0.0331, and 0.0359, for the 3D32kmPert, 3D32km,

3DOct16km, and 3DOct32km models respectively. These values suggest that the imposed octant

symmetry can under estimate the compactness of the stellar model at collapse by ≈ 25% while

the differences in grid resolution but assuming octant symmetry can result in a difference of less

than ≈ 10%. The compactness value at approximately the equivalent time for the MESA model was

ξm=2.5M� = 0.0492 agreeingwith the 3D32km towithin less than 4%. Our values are approximately

a factor of two less than those found in Sukhbold et al. (2018) and a factor of four less than those

in Sukhbold & Woosley (2014) .

3.4.3 Comparison between the 1- and 3D Simulations

In this subsection we compare the angle-averaged properties of the of the 1D MESA model and the

3D models at a time near iron core collapse. In Figure 3.18 we show the convective velocity (top)

and Mach number (bottom) for these models at t ≈ 420 s. Considering first the O-shell region,

situated at a mass coordinate between m ≈ 1.7 − 2.3 M� , the convective velocity speeds of the

3D models agree quite well in shape and magnitude. This is with exception to the 3DOct16km

model for which the velocities in this region are ≈ 5-10 km s−1 slower. In this region, the 1D MESA

model matches the shape of the convective velocity profile somewhat well but predicts a region

with considerable convective activity that is smaller in extent, ranging only from m ≈ 1.7 − 2.0

M� . Additionally, the magnitude of the speeds in this region according to MLT are significantly

less, ≈ 4 − 5 times less, than the values found in our 3D models. The Si-shell region is situated at

a mass coordinate of m ≈ 1.55 − 1.7 M� . The convective speeds in the 3D 32 km models agree

well within this region while the 3DOct16km model shows a lower speed of vconv. ≈ 160 km s−1
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owing to the merging of the convectively burning and non-convectively burning regions discussed

in Section 3.4.2. The 1D MESA model agrees with 3DOct16km remarkably well in the shape and

magnitude of the convective velocity speeds in this region with only slight differences at the outer

edge of the Si-shell region being steeper in the 3D model. These trends follow a similar behavior

when looking at the Mach number profiles. The MESA model agrees well in shape and magnitude

with the 3DOct16km model but significantly underestimates the values in the O-shell region.

We consider the core properties in Figure 3.19 where we show the specific entropy (top) and

electron fraction (bottom) for the same models considered in Figure 3.18. Note that owing to the

“inner boundary condition” used for the core, the specific electron fraction for all the models up to

a mass coordinate of m ≈ 0.8 M� should be the same value. All models follow a similar specific

entropy profile with only minor differences in mass of the iron core, the mass coordinate where

s ≈ 4 kB baryon−1. Qualitatively, the specific entropy and electron fraction profiles for the 3D

simulations are smoother than those of the MESA model.

3.5 Summary and Discussion

We have investigated the long term, multidimensional, hydrodynamical evolution of a 15 M�

star for the final seven minutes of Si- and O- shell burning prior to and up to the point of iron

core collapse. Using the FLASH simulation framework we evolved eight stellar models at varying

resolution, dimensions, and symmetries to characterize the nature of the convective properties of

the stellar models and their implications for CCSN explosions.

We find that in general the angle averaged properties of the multidimensional models with

predictions made by MESA. The largest differences observed were found when comparing the

convective velocities in the O-shell region to those in the MESA model. . Our 2D models showed a

convectively active Si-shell region with peak velocities of approximately 500 km s−1 near collapse

and Mach numbers of ≈ 0.1 near collapse. Within the O-shell region the 2D models show slightly

slower convective speeds of ≈ 400 km s−1 and Mach numbers of 0.8-0.12 depending on the

resolution of the simulation. The 3D models show velocities and Mach numbers lower than this in
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all cases. The 4π 3D models had convective velocities of ≈ 240-260 km s−1 in the Si- and O- shell

moments prior to collapse with Mach values of 0.06.

To characterize the behavior of the convection of the 4π 3D , we computed power spectra of the

Si- and O-shell regions by at different times throughout the simulation.

However, despite the differences between these evolutionary paths in the Si-shell, the results of

the O-shell region appear largely unaffected by resolution or geometry, resulting in quantitatively

similar properties near collapse in all of the 3D models. When comparing the 3D models for

different resolutions and symmetries we also found that the Mach number profiles in the O-

shell region agreed across all models with only a slight difference shown in the 4π where larger

Mach numbers (≈ 8%) are found at the base of the O-shell. The Si-shell region Mach number

profiles showed that the 3DOct16km model has a smaller value of ≈ 0.03 while the 3DOct32km

reached a value approximately twice of that. This difference is again linked to the merging of the

convective and non-convective regions in the 16 km models. Another important diagnostic linking

the presupernova structure to the dynamics of the CCSN mechanism is the compactness parameter.

When comparing values of this parameter,

In C15, they investigated the final three minutes of Si-shell burning in a 15M� star evolved

assuming octant symmetry and a reaction network that included enhanced electron capture rates.

They found that convective speeds in the silicon shell reach values of 80-140 km s−1 near collapse.

These values are approximately a factor of smaller than what we find in all of our 3D simulations

and a factor of four smaller than the results suggested by our 2D models. A major cause of these

differences can likely be attributed to the length of their simulation. In all our multidimensional

models considered here the convective velocity speeds did not increase considerably until about

five minutes into the simulation. Measuring the turbulent kinetic energy power spectrum for their

model they found the bulk of the energy residing at small l values (large scales), at l ≈ 4 due to

the imposed octant symmetry. They also found significant power at an l ≈ 10 value for the Si-shell

region near collapse.

Müller et al. (2016b) investigated the last minutes of O-shell burning in a 18 M� star. They
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evolved the model for ≈ five minutes using a contracting inner boundary condition situated at the

base of the O-shell mapped to follow the mass trajectory from the initial Kepler model. In their

simulation of O-shell burning they find transverse velocity speeds that reach values of ≈ 250 km

s−1 approximately a minute prior to collapse. These values are slightly larger by about 50-100 km

s−1 than the values we find in all of our 3D models at a similar epoch. At the onset of collapse,

they observe peak Mach numbers in the O-shell of 〈M〉 ≈ 0.1 where we find a value of ∼0.06.

They compute the power spectrum for the radial velocity component into spherical harmonics

to characterize the scale of the convection. At the early times, t = 90.9 s they find a similar

characteristic scale at l ≈ 4 where the bulk of the power resides. As the simulation evolves the bulk

of the power in their model shifts to larger scales at l ≈ 2 − 4.

Recently, Yadav et al. (2019) presented a 4π 3D simulation of O-/Ne-shell burning using a

similar method as presented in Müller et al. (2016b). The simulation was evolved for 420 s and

captured the merging of a large scale O-Ne shell merger leading to significant deviations from the

properties predicted by the 1D initial model. In this work, they found at t ≈ 250 s, the barrier

separating the O- and Ne-shells disappears due to an increase in entropy in the O-shell leading to

the merging of the two convective regions. The merger leads to large scale density fluctuations

characterized by l ≈ 1 − 2 modes within the merged shell. After the merger they observe velocity

fluctuations on the order of 800 km s−1 that increase to as large at 1600 km s−1 near collapse.

At collapse they observe Mach numbers of ≈ 0.13 in the O/Ne mixed region. These values both

suggest that the merger can lead to significantly larger deviations from spherical symmetry than as

suggested by themodel presented in this work and other simulations of quasi-steady state convection

prior to core collapse. Despite the merging of the two unique convective regions in the Si-shell

observed in most of our models, we do not observe merging of different burning shell regions in

any of our models.

High resolution, long term, 4π 3D simulations of CCSN progenitors can provide accurate initial

conditions for simulations of CCSNe. An accurate representation of the state of the progenitor

prior to collapse can have a favorable impact on the delayed neutrino-driven explosion mechanism
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and has important implications for the predictions of key observables from CCSN simulations. In

addition to fully 3D convection motions, most massive stars are also rotating differentially in their

cores. In the presence of weak seed magnetic fields, this rotation can facilitate a large scale dynamo

that can have an impact on the progenitor evolution and the explosion mechanism. As such, a next

step in increasing the physics fidelity of supernova progenitor models would be to consider the

impact of a rotating and magnetic progenitor on the observed scale and magnitude of perturbations

within the late time burning shell regions. The direct link between multidimensional rotating and

magnetic CCSN progenitors and the CCSNmechanism is an important question and is the direction

of future work.
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CHAPTER 4

THE LAST TEN MINUTES BEFORE IRON CORE-COLLAPSE IN A MASSIVE STAR

Double, double toil and trouble; Fire burn and cauldron bubble. - W. Shakespeare (Macbeth)

This chapter is based on the unpublished work of C. E. Fields et al 2021 ApJ, in prep.

4.1 Abstract

Pre-supernova perturbations, either artificially imposed or from a multidimensional progenitor

model, have been shown to have a qualitative impact on the properties of core collapse supernova

explosion simulations including the multi-messenger signals they produce. These perturbations

can drive explosion by increasing turbulence in the post shock region and the non-radial turbulent

kinetic energy in the gain region. Here, we report on a set of four 4π 3D hydrodynamic simulations

of O- and Si-shell burning in massive star models using MESA and the FLASH simulation framework,

evolving up to the final ten minutes prior to iron core collapse. We consider initial 1D MESAmodels

of 14-, 20-, and 25 M� to survey a range of O/Si shell density and compositional configurations.

We characterize the convective shells of our 3D models and compare them to the corresponding 1D

MESA models. In general, we find that the convective velocity speeds predicted by MESA are three

to four times smaller than the angle-average speeds of our 3D simulations near collapse. In three

of our simulations, we observe significant power in the spherical harmonic decomposition of the

radial velocity field at harmonic index of ` = 2 near collapse. Our results suggest that large-scale

modes are common in massive stars near collapse and should be considered a key component in

pre-supernova perturbations for CCSN explosion models.
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4.2 Introduction

Three-dimensional (3D) simulations of core-collapse supernova (CCSN) explosions have ben-

efitted from imposing pre-supernova velocity perturbations that aim to replicate nuclear burning

in Si- and O-shell convective regions. The inclusion of these perturbations were shown to lead to

larger non-radial kinetic energy in the gain region providing turbulent pressure behind the stalled

shock capable of driving explosion in amodel that otherwise failed to explode without perturbations

(Couch & Ott, 2013). In the work of O’Connor & Couch (2018a), they impose perturbations in the

3D CCSN explosion of a 20 M� model (Farmer et al., 2016). Their 3D perturbed CCSN models

evolved closer towards shock runaway and explosion but they did not observe shock runaway in any

of the eight 3D simulations performed. The pre-supernova perturbations in the Si-shell region lead

to an increase in the gravitational wave (GW) amplitude at tpb ≈ 200 ms over a frequency band

of 200 - 1000 Hz. This result suggests that convective perturbations can also lead to qualitative

differences in the multi-messenger signals produced in CCSN simulations.

Work by Couch et al. (2015) presented the results of a 3D CCSN progenitor model evolved for

the final ≈ 155 s prior to and including iron core collapse. Using this 3D progenitor model they

performed two CCSN explosion simulations using the 3D progenitor model and a 1D angle-average

of the 3D model. They found that increased turbulent motions in the post shock region in the 3D

progenitor explosion model can aid in successful explosion. This model also showed a slight

increase in turbulent kinetic energy in the gain region, a similar result to the CCSN models with

artificial perturbations in Couch & Ott (2013). More recently, Müller et al. (2017) used the 18 M�

4π 3D progenitor of Müller et al. (2016b) to perform three 3D CCSN explosion models. In their 3D

explosion model using a 3D progenitor they found an increasing diagnostic explosion energy and

baryonic mass of the PNS values closer agreement with those expected from observations (Pejcha

& Thompson, 2015). The two additional CCSN explosion models in their study - one a reduced

velocity field 3D progenitor and the other a 1D angle-average initial model were less energetic and

the 1D progenitor model failed to explode. The results of this study suggest that 3D progenitors
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can also aide in closing the gap between low explosion energy and PNS properties predicted by

other works using 1D progenitors (Burrows et al., 2020).

Multidimensional CCSN progenitor models have been performed recently (Müller et al., 2016b;

Yoshida et al., 2019; Fields & Couch, 2020; Yadav et al., 2019; Yoshida et al., 2021). Many of

these simulations show convective properties that suggest favorable impact on the neutrino-driven

CCSN explosion mechanism. In Yadav et al. (2019) they observe large-scale mixing due to merger

of the O- and Ne-shells, a results which lead to large radial mach numbers in the merged shell

regions. Despite this progress, it is expected that the convective properties in massive star will span

a range of strength and flow dynamics over the initial mass range for CCSNe (Müller & Janka,

2015). Currently, only a handful of 3D simulations sample this mass range and provide predictions

for the Si- and O-shell convective properties of 3D massive star models.

In this Paper, we build on previous efforts exploring 3D progenitor models in the moments prior

to collapse. We perform a total of four 4π 3D hydrodynamic simulations of Si- and O-shell burning

for up to the final ten minutes prior to and including gravitational instability and iron core-collapse.

We evolve models of initial MZAMS = 14-, 20, and 25 M� using the FLASH simulation framework

and the 1D stellar evolution code, MESA (Fryxell et al., 2000; Paxton et al., 2011, 2013, 2015,

2018). This work is novel because: (1) - we present four 3D long-term hydrodynamic simulations

of O/Si shell burning in multiple progenitors, (2) - we investigate the impact of initial perturbations

in pre-supernova hydrodynamic simulations in two 3D simulations of a 20 M� model, and (3)

we compare the convective properties to the predictions of Mixing Length Theory (MLT) in three

different initial progenitor models.

This paper is organized as follows. In § 4.3 we describe our computational methods and initial

1D MESA progenitor models. In § 4.4 we present the results of our 3D simulations including

characterizing their convective properties. Lastly, in § 4.5 we summarize our main findings and

compare them to previous works.
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4.3 Computational Methods and Initial Models

Our methods follow those of Fields & Couch (2020) (hereafter referred to as FC20). We draw

an initial 1D progenitor for mapping into 3D to simulate the final minutes of Si- and O-shell burning

towards iron core-collapse. Here, we mainly highlight the difference in our initial conditions and

the initial progenitor set chosen for this study.

4.3.1 1D MESA Stellar Evolution Models

We employ the stellar evolution toolkit, Module for Stellar Astrophysics (MESA-revision 12115)

(Paxton et al., 2011, 2013, 2015, 2018, 2019), for our spherically-symmetric 1D models. In total,

we evolve three solar metallicity, zero-age main-sequence (ZAMS) mass progenitors: 14M� ,

20M� , and 25M� . Each progenitor is evolved in MESA from the pre-MS to a time approximately

10 minutes prior to iron core-collapse.

We use temporal/spatial parameters from previous studies shown to provide adequate converge

in core quantities at the level of uncertainty due to network size and reaction rates (Farmer et al.,

2016; Fields et al., 2018). Our 1D models use the same approximate network as used in FC20, an

α-chain network that follows 21 isotopes from 1H to 56Cr (Timmes et al., 2000). Our MESAmodels

are non-rotating and do not include magnetic fields. Mass loss is included using the ‘Dutch‘ wind

scheme with an efficiency value of ηDutch =0.8. Mixing processes and efficiency values are the

same as used in FC20. All MESA inlist used to produce these models will be made publicly available.

4.3.2 3D FLASH Hydrodynamic Stellar Models

We simulate a total of four 4π 3D hydrodynamic models using the FLASH simulation framework

(Fryxell et al., 2000; Dubey et al., 2009). Our models solve the equations of compressible hy-

drodynamics using the directionally unsplit piecewise parabolic method (PPM), third-order spatial

accuracy, solver implemented in FLASH (Lee & Deane, 2009). We employ an HLLC Riemann

solver (Toro, 1999) and use a Courant factor of 0.8. Self gravity is included assuming a monopole
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horizontal line corresponds to 10% of the pressure scale height.

(` = 0) gravitational potential (Couch et al., 2013). Our domain extends to 100,000 km from the

origin along an axis in Cartesian geometry. Each model uses adaptive mesh refinement (AMR)

with up to eight levels of refinement.

The finest level of refinement for each model results in a grid spacing of ≈ 32.5 km. The

approximate effective resolution for each model varies due to their different initial shell configura-

tions. For the 14 M� model, the finest resolution level is situated at the center of the simulation

and extends out to a radius of r ≈ 3500 km. This region includes the entire iron core and Si-shell

resulting in an average resolution of ≈ 8 % of the local pressure scale height, Hp = P/ρG. The

resolution decreases beyond this radius by a factor of two out to r ≈ 7100 km. In this region, our

simulation has a resolution that equates to ≈ 7% Hp. The resolution continues to decrease beyond

this radius based based on logarithmic changes in specific density, pressure, and velocity. After

initialization, the location of the refinement levels do not change throughout the simulation. The

20 M� model has a qualitatively similar grid with the finest resolution level containing the entire
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iron and Si-shell region. In the 25 M�, model, the finest refinement level extends out to r ≈ 4100

km. Unlike the other models, in the 25 M� model, this only encompasses the iron core and a

portion of the Si-shell region. Within this finest refinement level, the resulting resolution equates

to an average of ≈ 5%Hp. Beyond this radius, the grid resolution is decreased by a factor of two

but the simulation maintains an approximate effective resolution of ≈ 5%Hp out to r ≈ 8100 km.

The remainder of the grid resolution is similar to the other two models. In Figure 4.1 we show

the average cell reolution as a percentage of the pressure scale height according to the 3D models.

Also shown are the approximate O-shell radial limits for each model.

116



Properties of the initial progenitor models at the time of mapping

Initial Mass ξ2.5 rlow,Si rhigh,Si CSi Mrad.,Si rlow,O rhigh,O CO Mrad.,O Simulation Time

(M�) (km) (km) (g s−1) (km) (km) (g s−1) (sec)

14m 0.016 2400 3000 1.2 × 1028 3.0 × 10−3 3130 15820 8 × 1027 1.6 × 10−2 530.71

20m 0.151 2366 2854 5 × 1027 1.0 × 10−3 3120 42000 7 × 1027 5.0 × 10−3 643.83

25m 0.519 3700 4150 6 × 1027 8.0 × 10−4 5500 44000 5.25 × 1027 3.2 × 10−3 606.95

Table 4.1: 3D FLASH simulation properties of the initial progenitor models at the time of mapping including the initial mass, compactness

at a mass coordinate of m = 2.5 M� , O/Si-shell radial limits, the scaling factor used to produce a 1 or 5% convective velocity profile

according to MESA, the resulting radial mach number due to the perturbations, and the total simulation time.117



The 3D models are initialized with perturbations in the Si- and O-shell region that are informed

by their 1D MESA counterpart at the time of mapping. We use the same notation as in FC20, also

used inMüller & Janka (2015) and O’Connor & Couch (2018b). In Table 4.1 we show properties of

our initial progenitor models at the time of mapping into FLASH including the compactness (ξ2.5),

shell radii, simulation time, perturbation scaling factor C, and the resulting radial mach number at

the start of the simulation caused by the perturbations. The imposed perturbations are performed

in the r and θ components of the velocity field with topology determined by spherical harmonic

indices and a scaling factor informed by the convective velocity profile of the 1D MESA model.

For the 14 M� model we take the Si-shell region to be at a location of ≈ 2400 km to 3000

km within this region, a scaling factor C of 1.2 × 1028 g s−1. The O-shell region is taken to be

from ≈ 3130 km to 15820 km and we choose a value of C of 8.0 × 1027 g s−1. The locations

of the shell regions were determined by the composition profiles and corresponded to the radius

at which the isotope was the most abundant and had a non-zero convective velocity according to

MESA. For the Si-shell, the C value was chosen to represent the average value needed to produce 1%

of the convective velocity predicted by MESA. In other words, we compute an approximate scaling

factor such that the initial angle-average FLASH convective velocity profile is equal 1% of the mean

convective speed in the 1D MESA model in this region. In the O-shell region the value of C was

chosen in a similar way except corresponding to 5%. The Si-shell region used spherical harmonic

and radial numbers of n = 1, ` = 9,m = 5 while the O-shell region used n = 1, ` = 7,m = 5

(initially larger scale perturbations). The resulting average radial mach number in the Si- and

O-shell regions due to these perturbations wereMrad.,Si ≈ 3 × 10−3 andMrad.,O ≈ 1.6 × 10−2,

respectively.

Our 20 M� model was initialized in a similar fashion except the scaling factors chosen for both

the Si- and O-shell regions corresponded to a value of 1% of the average value needed to reproduce

the convective velocity speeds predicted by MESA. In this model, the Si-shell region is located ≈

2366 km to 2854 km within this region, a scaling factor C of 5.0 × 1027 g s−1. The O-shell region

is located at ≈ 3120 km to 42000 km and we choose a value of C of 7.0 × 1027 g s−1. For this
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particular model, a non-convective predominantly silicon region exists between these two regions.

This model uses the same perturbation shape parameters. In this model, the initial perturbations

produce average radial mach numbers in the Si- and O-shell regions ofMrad.,Si ≈ 1 × 10−3 and

Mrad.,O ≈ 5 × 10−3, respectively.

Lastly, the 25M� model has a Si-shell region from ≈ 3700 km to 4150 km where we apply a

scaling factor of C of 6 × 1027 g s−1. The O-shell region for this model extends from 5500 km

to 44000 km where we use an average scale factor of C of 5.25 × 1027 g s−1. Similar to the 20

M� model these scalings were chosen to reproduce approximately 1% of the convective velocity

predicted by MESA at the time of mapping. This model uses the same spherical shape parameters

as the 20M� model as well. In this model, the perturbations produce mach numbers in the SI- and

O-shell regions ofMrad.,Si ≈ 8.0 × 10−4 andMrad.,O ≈ 3.2 × 10−3, respectively.

Our FLASH simulations utilize the approximate 21 isotope network (approx21) with the same

updated weak reaction rate used for electron capture onto 56Ni from Langanke & Martínez-Pinedo

(2000). The Helmholtz stellar equation of state (EoS) as implemented in FLASH is used in all of

our 3D simulations (Timmes & Swesty, 2000). We do not artificially enhance the total electron

capture rates in any simulations presented here. All of our 3D simulations utilize a similar methods

as in FC20 where we produce a 2D table from the MESA profile data for the inner 1000 km from

the point of mapping into FLASH until iron core-collapse. Lagrange linear interpolation is then

performed in time and radius to obtain a solution FLASH models without the need for a call to the

nuclear reaction network. This mapping provides a time-dependent inner boundary condition that

ensures the model follows the central evolution of the MESAmodel but is still significantly below the

regions of interest for our study of the multi-D hydrodynamic properties. To help reduce artificial

transient during mapping, we use the methods of Zingale et al. (2002) in which we remap the 1D

MESA models to a new uniform grid with four times higher resolution than the finest grid spacing.

We then alter the density profile to enforce hydrostatic equilibrium (HSE) and close the system

with a call to the equation of state.
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Figure 4.2: Profiles of the specific entropy (top), electron fraction (middle), and density (bottom)
for the three 1D MESA models at time of mapping into FLASH. Also shown is the 15 M� progenitor
model from FC20 denoted by the black dashed line.

4.3.3 Progenitor Models

In this study, we aim to explore the range in hydrodynamic properties observed in pre-SN models

in their evolution towards iron core-collapse. A metric commonly used to predict the outcome of a
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pre-SN models is the compactness parameter,

ξm =
m/M�

R(Mbary = m)/1000 km

�����t=tcc
. (4.1)

This quantity has been used to determine the outcome: explosion vs. implosion, in a range of

different progenitors (O’Connor & Ott, 2011; Sukhbold et al., 2016). In general, it has been shown

that a lower compactness value favors explosion while a higher value ξ2.5 > 0.45 can result in
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failed explosion and formation of stellar mass black hole. The compactness parameter has also

been shown to correlate with the integrated total neutrino emission count in successfully exploding

model (Warren et al., 2020). Models with larger ξ2.5 were found to produce more to neutrinos

owing to the more massive baryon proto-neutron star (PNS) mass associated to its larger value.

To sample the range of compactness seen in other studies we choose our initial 1D MESA to span

a range of values of compactness: ξ2.5 ≈ 0.016, 0.151, and 0.519, for the 14 M� , 20 M� , and

25 M� models respectively. For comparison, the 15 M� model of FC20 had a core compactness

of ξ2.5 ≈ 0.014. O’Connor & Ott (2011) predict that models with ξ2.5 ≥ 0.45 such as our 25

M� would failed to explode (assuming a moderately stiff EoS such as LS220 (Lattimer & Swesty,

1991)) forming a BH within 0.5 s post bounce. It should be noted that the core compactness values

quoted in Table 4.1 should be viewed as a lower limit as we measure this quantity at the time of

mapping into FLASH and not at core-collapse as done in the works referenced above.

In Figure 4.2we show the specific entropy (top), electron fraction (middle), and density (bottom)

for the 1D MESA models at time of mapping into FLASH. For comparison, we also plot the 15M�

progenitor from FC20. Most of the models show similarities in their profile properties. The 25M�

represents the most shallow density profile likely contributing to its larger compactness value. The

14M� density is most similar to that of the 15M� model of FC20. The 20M� has a density profile

whose shallowness is somewhat in between the 14M� and 25M� model. This is consistent with

the trend seen for the values of compactness for these models.

In Figure 4.3 we show the convective velocity (top), oxygen-16 mass fraction (middle), and

silicon-28 mass fraction (bottom) for the 1D MESAmodels time of mapping into FLASH. The 14M�

and 20M� models, similar to the 15M� model from FC20 have a rather narrow Si-shell region.

However, in the 25M� model we see a Si-shell region that spans from m ≈ 1.9-2.4M� . The 14M�

and 15M� model have a similar O-shell region width and location. The 20M� model has a much

wider O-shell region that extends from m ≈ 1.4-4.0 M� . The 25M� model also has a larger O-shell

extending from m ≈ 2.4-5.7 M� .

The convection speeds as predicted by MESA and mixing length theory (MLT) are largest in the
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Figure 4.4: Time evolution of the radial and tangential (θ + φ) kinetic energy throughout the
simulation. For comparison between the different progenitor models, we normalize each simulation
to the peak kinetic energy in the simulation.

O-shell region for the 20 M� model with vconv. ≈ 120 km s−1. The 25 M� model shows the second

largest speeds with vconv. ≈ 70 km s−1. The 14 M� and 15 M� model show similar, slower speeds

of vconv. ≈ 40 km s−1. In all of the 1D models, the convection in the Si-shell region is either weak

or non-existent, leading to speeds of vconv. . 50 km s−1.

4.4 3D Evolution To Iron Core-Collapse In Multiple Progenitors

We evolve a total of three 4π3D hydrodynamical massive star models for approximately the final

10 minutes up to and including gravitational instability and iron core-collapse. Each simulation is

evolved up to the simulation time corresponding to iron core-collapse as determined by MESA. This

time corresponds with to that at which the peak infall velocity within the iron core exceeds 1000

km s−1. In the following section we summarize the general properties of our three models, analyze
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column), and the radial mach number (right column) in the x − y plane at a time approximately 5
seconds before iron core-collapse for all three 3D models.

the character of turbulence in the convective shells for each model, and compare the angle-averaged

profiles of our 3D simulations to the 1D results from MESA.
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Figure 4.6: Power spectrum of the radial velocity decomposition in the convective O-shell region
for the 3D models. Also shown is the expected Kolmogorov scaling of `−5/3 for a turbulent flow
in the inertial subrange.

4.4.1 Global Properties

In Figure 4.4 we show the time evolution of the radial and tangential components of the kinetic

energy for the three 3D models. After an initial transient phase, the 14 M� model reaches a quasi-

steady state represented by a near constant value of 20% of the peak total kinetic energy (≈ 1×1046

erg) until t ≈ 300 s. Beyond this time, the convective velocity speeds in the O-shell region increase

until a new local minima is found near t ≈ 375 sec. At this point in the simulation, the convective

velocity speeds are approximately 200 km s−1 throughout the shell with a corresponding total

kinetic energy of Ekin. ≈ 1 × 1047 erg. Assuming the initial radii for the O-shell configuration
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we can compute an approximate convective turnover time of τconv.,O ≈ 2rO/vtan.,O ≈ 127 s. The

model undergoes a full convective turnover within this new state before core contraction continues

to accelerate and increase the convective velocities further and pushing themodel out of equilibrium

towards collapse.

The 20-M� model follows a qualitatively different evolution. For the first ∼160 s of simulation,

the radial and tangential components of the kinetic energy show a continued increase until reaching

a saturation point. At this time, the model maintains a total kinetic energy value of Ekin. ≈ 6×1048

erg. Within the O-shell region during this time, we observe tangential velocity speeds of vtan. ≈

450 km s−1. Using the shell radius, we can similar convective turnover time τconv.,O ≈ 172 s.

This suggests that our 20-M� model completed approximately three full convective turnovers in

the O-shell region. In this simulation, the Si-shell region is thin and experiences only very weak

convection. Therefore, our discussion will be limited to the O-shell for this model. We find

large-scale mixing between the different shells in the 20 M� model.

Our 25 M� model follows an evolutionary path that is different yet from the other two models.

The model reaches about 30% of the peak radial kinetic energy at a time of t ≈ 150 s. The

kinetic energy fluctuates only slightly once reaching this saturated value of total kinetic energy

corresponding to a value of Ekin. ≈ 1 × 1048 erg. We can estimate a convective turnover time for

the O-shell utilizing the tangential velocity speeds of vtan. ≈ 240 km s−1 observed from t ≈ 150 to

500 s. The speeds observed in the convective O-shell region lead to a turnover time of τconv.,O ≈

320 s. The turnover time in the O-shell region suggests that our model completed one full turnovers

from t ≈ 150 to 500 s. At t ≈ 500 s and beyond, the acceleration of the contracting iron core leads

to a gradual increase of both of the components of the kinetic energy relative to their max values

at collapse. In this model, we find a larger Si-shell region where convection becomes efficient and

relevant to the dynamics of the model near collapse. At t ≈ 300 s, the width of the Si-shell expands

and the convective velocity speeds begin to increase. The speeds in this shell region saturate at a

value of vtan. ≈ 160 km s−1 at t ≈ 400 s, maintaining this value until core-collapse. Within the

Si-shell region, we find a convective turnover time of τconv.,Si ≈ 6 s suggesting that from t ≈ 400 s
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Figure 4.7: Same as in Figure 4.6 but for the 25 M� Si-shell region.

to core-collapse, our 25 M� captures 34 convective turnovers.

In Figure 4.5 we show the a pseudocolor slice plot for the specific 28Si mass fraction (left

column), the radial velocity (middle column), and the radial mach number (right column) in the

x − y plane at a time approximately 5 seconds before iron core-collapse. The differences between

the three simulations are shown here mainly in the relative size of the O-shell regions, convective

flow properties, and mixing within the different shell regions.

4.4.2 Power Spectrum Of Convective Shells

To further quantify the convective properties in our three 3D models, we decompose the perturbed

velocity field into spherical harmonics for the O-shell region (and also the Si-shell region for the

25 M� model). Similar to FC20, the total power for a given spherical harmonic order, `, as

c2` =
∑̀

m=−`

�����

∫
Y m
` (θ, φ)v′rad.(rShell, θ, φ)dΩ

�����

2
, (4.2)

where v′rad. = vrad. - ṽrad., with ṽrad. corresponding to the mean background radial velocity speed at

the chosen shell radius (Schaeffer, 2013). In the 14 M� , 20 M� , and 25 M� models the O-shell
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Figure 4.8: Pseudocolor heatmaps of the convective velocity profiles according to the 1D MESA
models (left column) compared the angle-averaged profiles of the tangential velocity component
for the three 3D FLASH simulations (right column). In all case, the scale for the 3D simulations is
more than twice that of the MESA models.

128



0
50

100
150
200
250

v c
on

v.
(k

m
s−

1 ) t− tCC ≈ −5 (s)

14m

1.4 1.6 1.8 2.0 2.2
m (M�)

0.0
0.2
0.4
0.6
0.8
1.0

M
as

sF
ra

ct
io

n

12C 16O 28Si
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core-collapse. The dashed line in both plots corresponds to the MESA profile and the solid line
corresponds to the 3D FLASH simulation.

regions are evaluated at rO =5000 km, rO =5000 km, and rO =10 000 km, respectively. In the 25

M� model, the Si-shell region is evaulated at rSi =3900 km.

In Figure 4.6 we show the resulting O-shell power spectra for all 3D models. The 14M�

model shows a relatively constant power spectrum during the last 100 s prior to collapse, the

spectra is peaked at a spherical harmonic index of ` = 4. Before this, at 300 seconds prior

to collapse, convective is relatively underdeveloped and power is significantly less across scales.

At t − tCC = −200 s, the spectrum shows a peak at ` = 7, the driving scale due to our initial

perturbations. Energy is then transferred to larger scales at ` = 4 and remains there for the duration

of the simulations. As the simulation approaches collapse, we observe a slight increase in power

at larger scales ` = 1, 2. The excess in power at ` = 4 is likely attributed to the Cartesian nature of
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Figure 4.10: Same as in Figure 4.9 but for the corresponding 20 M� models.

our grid geometry and increased numerical viscosity near the grid axes.

The power spectrum for the 20M� model (top right of Figure 4.6) shows a significantly different

qualitative evolution towards collapse. At t − tCC = −200 s, the power is distributed across many

scales with a characteristic peak at ` = 2 suggesting the flow is dominated by a large scale dipolar

flow. A similar feature was observed in the 18M� model of Müller et al. (2016b) in the final

moments prior to collapse. At t − tCC = −100 s, energy in this mode increases as well as in the

` = 1 mode which becomes the dominate mode at this point. At later times closer to collapse, the

peak at ` = 2 increases with power in neighboring scales of ` = 1, 3 increasing as well. In the final

5 seconds prior to collapse, energy in ` = 2, 3 and transferred to intermediate scales of ` = 4 − 8.

Our 25 M� simulation shows a qualitative evolution towards collapse in the convection shell

that has traits of the 14 M� and 20 M� models. At early times, of at t − tCC = −300 s and

t − tCC = −200 s an excess of power is again observed at an ` = 4 mode suggesting grid aligned

130



0
100
200
300
400
500

v c
on

v.
(k

m
s−

1 ) t− tCC ≈ −5 (s)

25m

2 3 4 5 6
m (M�)

0.0
0.2
0.4
0.6
0.8
1.0

M
as

sF
ra

ct
io

n

12C 16O 28Si

Figure 4.11: Same as in Figure 4.9 but for the corresponding 25 M� models.

artifacts contributing to the power spectrum of the radial velocity field. However, at times beyond

this, the 25 M� model shows a reduction in power at this mode with a shift in the peak power

contribution occurring at ` = 2. The peak spherical harmonic mode remains ` = 2 for the final

100 s of the simulation with a slight contribution at the driving scale (` = 7) observed in the final

5 seconds before core collapse.

In Figure 4.7 we show the power spectrum of the radial velocity field in the Si-shell region of

the 25 M� model at five different times. Overall, the Si-shell region shows less power across scales.

Convection begins to contribute to the power spectrum at times beyond 200 s prior to collapse.

The spectrum at this point is characterized by a broad range of power at intermediate scales from

≈ ` = 6 − 15. At later times, we observe a slight increase in power at larger scales near ` = 2 − 4.

Five seconds prior to collapse, the dominant modes are found to be found near spherical harminc

indices of ` = 10 − 20.
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4.4.3 Comparisons with 1D MESA models

An important aspect of our 3Dwill be their ability to inform 1D MESAmodels of CCSN progenitors.

It was shown in FC20, that the 3D simulations found angle averaged convective speeds that were on

the order of four times larger than predicted by MESA. Larger convetive velocity speeds in 3D CCSN

progenitors than their 1D counterparts have implications that can lead to favorable conditions for

explosion. Here, we compare angle average profiles from our full 4π 3D simulations to the 1D

MESA counterparts.

In Figure 4.8 we show the time evolution of the angle-averaged tangential velocity component

for each 3D model (right column) and the time evolution of the corresponding 1D MESA convective

velocity profiles. The angle-average properties are weighted by the corresponding cell mass in

each bin. For the profiles used to produce these heat maps we use N = 2048 bins and use linear

interpolation to smooth the raw profiles. Qualitatively, most of the 3D models agree well with the

MESA predictions. The largest differences are found for the 14 M� model where the convective

region appears to expand and contract for the first few hundred seconds of the simulation at which

point the tangential velocity speeds reach vtan. ≈ 200-300 km/s. The extent of the O-shell in the 20

M� model differs somewhat from the MESA model due to mixing at the convective boundary layer

between the O- and C-shell regions. The 25 M� matches the MESA model qualitatvely well, where

we see a slight expansion of the Si-shell region predicted by MESA also shown in the 3D model at

t ≈ 350 s.

4.4.3.1 The 14 M� model

In Figure 4.9 we show the angle-average tangential velocity profile (top) and the specific mass

fraction for three major isotopes: 12C, 16O, and 28Si (bottom) for the 3D 14mmodel approximately

five seconds prior to core-collapse. Also shown are the corresponding MESA profiles at the same

time before core-collapse denoted by the dashed lines of the same color. For the 14M� model, we

find that a few qualitative features worth mentioning between the 3D and 1D MESA models. FIrst,

the 1D MESA model shows a peak convective velocity in the O-shell region of vconv. ≈ 50 km
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s−1. This value is approximately four times smaller than predicted by our 3D tangential velocity

profiles where a peak value of velocity is found of vconv. ≈ 210 km s−1. Beyond, this we observe

that the 1D model is more compact with the shell locations closer to the iron core (lower specific

mass coordinate). This difference is likely attributed to the slight expansion of the 3D model (See

Figure 4.8, top right).

The expansion of the model can be explained in a similar manner to expansion observed in

the 15M� model from FC20. The mass fraction profiles between the 1D and 3D models are

qualitatively similar other than the 3D model being less compact (shells at larger mass coordinate)

and the compositional gradients being smoothed at the boundary due to increased diffusion. One

notable feature in the 3D model is the lack of a Si-rich region at the base of the Si-shell region.

The 1D model shows a peak in 28Si from m ≈ 1.50-1.54 M� . However, in the 3D simulation,

we observe instead one merged smoothed Si region. This merged region is able to reach higher

tangential velocity speeds of vconv. ≈ 80 km s−1 in the 3D model.

4.4.3.2 The 20 M� model

Figure 4.10 shows the convective velocity andmass fraction profiles for the 3D and 1D MESAmodels

at the same time as in Figure 4.9. One the first noticeably different property about the 20 M� model

is that the convective velocity profiles are in better agreement between the 3D and 1D models. The

location of the base of the O-shell is found at a specific mass coordinate of m ≈ 1.8M� . The

extent of the O-shell differs slightly between the two model, likely attributed to the mixing at the

boundary between the O- and C-shell regions. Similar to the 14M� model, the convective velocity

in the 1D model is less than observed in the 3D simulation. In this particular case, we find speeds

three times larger in the 3D model than what is predicted by the 1D MESA model.

The mass fractions for both models follow similar behavior as the 14 M� models (but will less

shell expansion / contraction) in that the profiles are smoothed out and sharp features from the

1D model are not present. One particular case is at the edge od the O-shell region where a slight

increase of 12C and 16O from m ≈ 3.9-4.2 M� is not observed in the 3D simulation, suggested it
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is mixed in or out of the O-shell region during the simulation.

4.4.3.3 The 25 M� model

Lastly, we show the convective and isotopic mass fractions for the 25M� models in Figure 4.11

at t − tCC = −5 s. In the 25M� model, we see similar shell location agreement between the 3D

and 1D MESAmodels suggesting less expansion / contraction compared to the 14M� model and the

15M� model of FC20. However, unlike the 20M� model, and to some extent the 14M� model, the

the extent of the O-shell region disagrees significantly between the 3D and 1D models. The 3D

25M� model suggests a convective O-shell region that extends from m ≈ 2.5-6.0 M� where and

the MESA model has the convection speeds going to zero at m ≈ 4.0 M� . In the bottom panel, the

16O mass fraction profiles agree remarkably aside from the smoothed composition gradients in the

3D profile. We find tangential velocity speeds in the O-shell region that peak at vconv. ≈ 400 km

s−1, a factor of four times larger than predicted by the MESA model.

4.5 Summary and Discussion

We have presented 3D hydrodynamic simulations of O- and Si-shell burning in massive star

models using MESA and the FLASH simulation framework. We follow up to the final ten minutes

prior to core collapse to capture the development of the turbulent convective flow prior to collapse.

In this study, we considered initial 1D progenitor models of 14-, 20-, and 25 M� to survey a range

of O/Si shell density and compositional configurations.

In our 14 M� model, we observed relatively weak O-shell convection with the peak of the power

spectrum near a spherical harmonic index of ` − 4. Despite smaller convective velocity speeds

observed in this model, we still find that angle-average convective velocity profile from our 3D

model is approximately four times larger than the speeds predicted by MESA in the moments prior

to collapse. The 20 M� showed the most energetic kinetic energy spectrum in the O-shell region

with power residing at the largest scales of ` = 1 − 3 near collapse. The convective velocity profile

shows speeds three times larger than the 1D MESA model counterpart. This model also shows a
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significant smoothing of the C profile at the edge of the O-shell convective region suggesting an

increase in C ingested into the region in the 3D model. The results of our 25 M� showed qualitative

properties similar to the 14- and 20 M� model. At early times, the power spectrum shows a peak

near ` = 4. However, at later times, energy is transferred towards larger scales with the bulk of

energy at ` = 1 − 3 near collapse. In this model, the convectively active Si-shell region can be

characterized by power over a broad range of intermediate scales of ` = 10 − 20 as the simulation

approaches collapse.

The set of models presented in this work are a step forward in efforts to produce realistic 3D

pre-supernova models that capture the properties of massive stars in their final moments prior

to collapse. A crucial component not yet discussed in this paper is the effect of rotation and

magnetism on the properties of the models presented here. Recent work byMüller & Varma (2020)

suggests that pre-SN models with slow to moderately rotating cores near collapse could play a role

in the delayed neutrino-driven mechanism of CCSNe. Efforts towards addressing the impact of

magnetic fields in 3D simulations of O-shell burning were performed recently for a 18 M� model,

although this model did not include the effect of rotation (Varma & Müller, 2021). A next step

in our efforts will be to consider the impact of rotation and magnetism in realistic 3D progenitor

models, a component that will be relevant to magnetically-driven and ordinary neutrino-driven

CCSN explosions and the multi-messenger signals they produce.
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CHAPTER 5

CORE-COLLAPSE SUPERNOVA EXPLOSIONS OF MULTIDIMENSIONAL
PROGENITORS

Why should you leave the stars. And the sun and the moon. And the universe all alone? - Sun Ra

This chapter is based on the unpublished work of C. E. Fields et al 2021 ApJ, in prep.

5.1 Abstract

Multidimensional pre-supernova models have been shown to qualitatively impact the results

of neutrino-radiation-hydrodynamic simulations of core-collapse supernova explosions. Recently,

simulations of CCSNe have began to employ pre-supernova perturbations and very few have utilized

3D progenitors. Here, we report on a set of five CCSN explosion models utilizing 2D and 3D initial

pre-supernova models. These models are evolved using the FLASH simulation framework, a two-

moment scheme for neutrino transport, and effective general relativistic gravitational potential.

When possible, we compare the multi-dimensional progenitor explosion model to a similar model

using instead a 1D progenitor. We find explosion in four out of five of our explosion models and in

our 3D simulation we observed evolution towards shock revival and explosion when the simulation

is stopped. Comparing our 2D simulations, we observe an increase in broadband (≈ 100− 450 Hz)

gravitational wave emission due to perturbations in the Si-shell region as compared to the initially

1D explosion model. We compare two 1D explosion models and find that sharp gradients in the

stellar structure when using a 1D MESA as compared to the 1D angle-average profile from a 3D

progenitor model can lead to differences in explosion properties. Among these differences are a

delayed (∼ 50 ms) explosion time and smaller net neutrino heat rate in the non-MESA explosion.

Our 3D simulation was evolved until a post bounce time of 490 ms. We expect this simulation to

explode in the next 100 ms of simulation time.
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5.2 Introduction

Simulations of neutrino-driven core-collapse supernova (CCSN) explosions have advanced our

knowledge of the evolutionary fates of stars with an initial zero-age main sequence (ZAMS) of

MZAMS > 9 M� (Woosley & Heger, 2015; Sukhbold et al., 2016, 2018). Multi-dimensional

CCSN simulations have continuously innovated to include accurate and computationally feasible

approximations to physical phenomena. Among these innovations include the coupling of multi-

group multi-angle neutrino transport methods, high-order hydrodynamic solvers, and inclusion of

the effects of a general relativistic potential (Roberts et al., 2016; O’Connor & Couch, 2018b,a;

Vartanyan et al., 2019; Skinner et al., 2019). However, inmost of these simulations, a 1D spherically-

symmetric progenitor model is used as input for the explosion simulations. These models are

typically evolved from collapse to a few of ms post bounce then mapped to higher-dimensionality.

A potentially issue in this process is that the explosion model can have little to no information about

the non-radial convective history of the pre-supernova model and / or the convective speeds can

be underdetermined, a feature than can have qualitative impact on the properties of the explosion

(Couch & Ott, 2013) .

Motivated by this consideration, recent works have explored the consequences of artificially

imposed progenitor perturbations in the Si- and O-shell regions to replicate the 3D structure of

a massive star near collapse. Work by Couch & Ott (2013) showed that perturbations in the

aspherical velocity field motivated by multi-dimensional stellar convection models can lead to

revival of the stalled shock in a 3D explosion model that otherwise fails. Building on this work

Couch et al. (2015) evolved a 15 M� 3D progenitor for the final three minutes prior to and including

gravitational collapse. They then used this model as their initial progenitor to perform a CCSN

explosion simulation compared to the 1D initial model counterpart. Their work showed a similar

result - multi-dimensional progenitor models can lead to qualitative differences in the explosion

properties, some cases leading to explosion in a model that would not explode from a 1D progenitor.

Recently, work by Müller et al. (2017) performed 3D CCSN simulations utlizing a 3D pre-
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supernova model evolved for the final five minutes up to and including iron core-collapse in an

18 M� star (Müller et al., 2016b). In their 3D CCSN simulations, they found that the 1D initial

progenitor failed to explode after 0.6 s compared to the initial 3D progenitor model which explode

at 0.4 s post bounce. The 3D explosion model utilizing the 3D progenitor showed an increase in

non-radial kinetic energy and within the gain region compared to the 1D initial counterpart. The

combination of these effect allowed the 3D models to surpass a critical ratio of the advective and

heating timescales and eventually lead to explosion. The implication of this work showed that 3D

progenitors can help facilitate explosion and lead to qualitative differences in explosion properties.

Work by Fields & Couch (2020) built on the earlier work of Couch et al. (2015) and Müller

et al. (2016b) by simulating 2- and 3D simulations of Si- and O-shell burning in a 15 M� progenitor

model for the final seven minutes prior to core-collapse. They compared results between resolution,

dimensionality, and initial perturbations. In all of their simulations. they found slightly weak mach

numbers in the Si and O convective shell regions, M ≈ 0.06 near collapse compared to 0.10 in

Müller et al. (2016b). The consequence of the perturbations observed in their work will have

an impact of the explosion properties and potentially the multi-messenger signals produced when

exploded. These models serve as the basis of this paper.

We draw from the progenitors of Fields & Couch (2020) to perform 1-, 2-, and 3D CCSN

simulations using multidimensional progenitor models. When possible we compare to the 1D

initial progenitor counterpart to isolate the impact of progenitor perturbations. This project is novel

because: (1) we investigate the impact of pre-supernova perturbations of CCSN explosion models

in 2D and 3D, (2) - we perform a 3D CCSN explosion model of a 3D progenitor model evolved for

the final seven minutes prior to collapse, and (3) - we explore the impact of perturbations of the

neutrino and gravitational wave emission properties. This paper is organized as follows. In § 5.3

we present our computational method and initial progenitor models, in § 5.4 we present the results

of our CCSN explosion simulations and discuss the impact of pre-supernova perturbations, and in

§ 5.5 we summarize our results and compare them to previous efforts.
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Properties of the CCSN explosion models

Model Label Progenitor Model tbounce texp.

(ms) (ms)

1D-MESA MESA 127 455

1D-3DAvg Angle-Average 3D32km 182 505

2D-2DAvg Angle-Average 2D32km 131 282

2D-2D32km 2D32km 130 293

3D-3D32km 3D32km 133 . . .

Table 5.1: List of all CCSN explosion models performed in this work. Each model is labeled

according to the dimensionality of the explosion performed in FLASH and input progenitor model

used. For example 2D-2DAvg corresponds to a 2D FLASH explosion model that used a 1D angle-

average profile computed from the 2D32km model of Fields & Couch (2020). Also shown are the

bounce and explosion times (if observed, defined as the time at which the average shock radius

exceeds 400 km).

5.3 Computational Methods and Initial Models

We evolve a total five CCSN explosion simulations using the FLASH simulation framework

(Fryxell et al., 2000). Our simulations utilize publicly available multi-dimensional progenitor

models of a 15 M� star (Fields & Couch, 2020). The progenitor model was evolved in 2D and 3D

for the final seven minutes up to and including gravitational instability and iron core-collapse. In

their 4π3Dnon-perturbedmodel they observemach numbers on the order of≈ 0.06 in the convective

O-shell region. Our 4π3D CCSN explosion utlizes this model following the model in 3D through

collapse, bounce and explosion. In Table 5.1 we summarize the explosion models performed in

this work and the input progenitor for each model. We perform two 1D, spherically symmetric

CCSN explosion models utilizing the ST1R hydrodynamics module in FLASH (Couch et al., 2020).

The only difference between these models is that one uses the 1D pre-supernova model predicted
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Figure 5.1: Profiles of the specific electron fraction, temperature and density of the three 1D initial
progenitor models. The label corresponds to the three profiles used in the 1D-MESA, 2D-2DAvg,
and 1D-3DAvg explosion models respectively.

from MESA (1D-MESA in Table 5.1) and the other uses an angle-average of the 4π3D non-perturbed

model (3D32km) from Fields & Couch (2020). Our 1D simulations αMLT = 1.25, the value found

to best match the velocity structure of the 3D comparison explosion model. Similarly, we evolve

two 2D CCSN explosion simulations using different progenitors. Model 2D-2D32km follows the

2D progenitor model (2D32km) from Fields & Couch (2020) in 2D through collapse, bounce, and

the onset of explosion. The other 2D model uses an angle-average of this 2D progenitor model as

input, this corresponds to model label 2D-2DAvg. In Figure 5.1 we show the 1D profiles used in

this work.

Our methods follow closely those of O’Connor & Couch (2018a). All of our simulations
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Figure 5.2: Volume rendering of the specific entropy of the 3D-3D32km explosion model at three
different times: tpb ≈ 75, 232, and 491 ms from left to right, respectively. The edge of the shock is
outlined in orange and the PNS is shown in pink.

employ multi-dimensional neutrino transport previously discussed in O’Connor & Couch (2018b).

The M1 scheme for neutrino-radiation-hydrodynamics evolves the zeroth and first moment of the

neutrino distribution function. The scheme is then closed with an analytical approximation for the

second moment of the distribution function (Shibata et al., 2011). We include three species of

neutrinos, νe, ν̄e, and νx, electron, anti-electron, and heavy type neutrinos. We follow 12 energy

groups binned logarithmically from 0 to 300 MeV with neutrino rate and opacity tables produced

using NuLib (O’Connor, 2015). We use the SFHo nuclear equation of state (EOS) (Steiner et al.,

2013).

We utilize the directionally unsplit hydrodynamics solver, a fifth-order weighted essentially non-

oscillatory (WENO) spatial reconstruction scheme, and a hybrid HLLC Riemann solver. Gravity is

treated using an o ptimized multipole solver (Couch et al., 2013) which includes general relativistic

corrections to the monopole term (Marek et al., 2006). In 1D our domain extends to 15,000

km, in 2D this corresponds to the maximal extent in the ρ-direction while in the axial directions

our domain extends this length from the origin. Our 3D simulation is 30,000 km on a side and

utilizes a Cartesian coordinate system with adaptive mesh refinement (AMR) and up to 10 levels of

refinement. None of our simulations include rotation and we do not include any initial perturbations

other than those from the initial progenitor models.
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5.4 Core-Collapse Supernova Explosions of Multidimensional Progenitors

We show a volume rendering of our 3D CCSN explosion model in Figure 5.2 at three different

times post bounce. Our 3D was evolved to ≈ 0.5 s post bounce and at the end of the simulation

is at the onset of shock runaway and explosion. The explosion is characterized by asymmetric

expansion due to the initial progenitor perturbations in the pre-supernova model. We expect this

simulation to continue to explode and that the average shock radius will increase experience shock

runaway in the next ≈ 100 ms of simulation time.

In Figure 5.3 we show the time evolution of the angle-average shock radius for all five CCSN

explosion simulations. All models except the 3D model explode before the end of the simulation.

The Si-shell region is accreted rapidly at a time corresponding to tbounce ≈ 80 ms. The accretion of

the Si-shell leads to an increase in the shock radius in most models. The O-shell convective region

accretes up to a later time of tbounce ≈ 400 ms. When accreted, the O-shell enables shock runaway

in the 1D simulations and a revival of the declining and stagnant average shock radius in the 3D

model.

In Figure 5.4 we plot the antesonic ratio (top panel) of Pejcha & Thompson (2012) for explosion.

This criteria is derived from determining a critical sound speed in an isothermal accretion flow

above which the steady-state solution fails. Above this critical ratio (
〈
c2s

〉
/
〈
v2esc.

〉
≈ 0.19) shock

runaway is expected and explosion proceed. We find that our 2D and 3D simulations cross this

critical ratio at tpb ≈ 150ms. This leads to shock runaway in the 2Dmodels while the 3D simulation

shows shock recession despite being above the ratio. The 1D models do not cross the threshold

until tpb > 400 ms, this time also coincides with the time in which the shock radius begins to

runaway and explosion sets in.

In the bottom panel of Figure 5.4 we show another diagnostic metric often used to determine

the explodability of a model, the ratio of the advective and heating timescales (Thompson et al.,

2005; Raives et al., 2018). The advective timescale defined as

τadv. =
Mgain

Ṁ
, (5.1)
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Figure 5.3: Evolution of the average shock radius for all five CCSN explosion models. All shock
radii reach a radius of 400 km before the end of the simulation except the 3D simulation. All shown
is the mass accretion rate for the 3D simulation as a function of time.

where Mgain is the mass in the gain region and Ṁ is the mass accretion rate. The heating

timescale is defined as

τheat =
|Egain |

Qnet
, (5.2)

where Qnet is the net neutrino heating rate and |Egain | is the total energy in the gain region.

Previous works have studied stability at the onset of explosion in spherically symmetric models

to suggest that solutions become unstable when the ratio exceeds unity (Fernández, 2012). All of

our simulations cross this condition early in the simulation. The 1D models pass this threshold at

tpb . 10 ms while the multi-dimensional models cross at c. Despite all of the models crossing

this value of unity, shock runaway in the exploding models is only observed when the antesonic

condition shown in the top panel is satisfied.
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a value of unit is denoted by a dashed horizontal line.

In Figure 5.5 we show the net neutrino heating rate (top) and the mass in the gain region for the

five CCSN simulations. The 1D simulations show the lowest values for both of these quantities,

the 1D-3DAvg model shows a less steep decline in the net neutrino heating rate likely due to a

smoothed compositional gradient as the Si-shell is accreted onto the PNS. While the O-shell is

being accreted in the 1D simulations. the 1D-MESA model shows a slightly large value of ≈ 0.5 B

s−1. The 2D and 3D models follow relatively similar trends with the 2D models showing larger
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Figure 5.5: Same as in Figure 5.4 but for the net neutrino heating rate (top) and the mass contained
within the gain region (bottom).

heating rates and mass in the gain region. This behavior is expected for 2D simulations due to the

amplification of convective mass along the axis in 2D cylindrical coordinates (Couch & O’Connor,

2014). Between the two 2D simulations we find that the 2D-2D32km shows more mass in the gain

region indirectly leading to an increase in the effective heating rate than the 2D model that used a

1D progenitor. The 3D model continues to decline in this quantities beyond the time which the 1D

and 2D simulations show explosion but maintains a larger net heating rate than the 1D models until

tpb . 200 ms.
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Figure 5.6: Gravitational wave strain for the two 2D simulations. The distance is taken to be D =
10 kpc.

5.4.1 Gravitational Wave Emission

We compute the approximate gravitational wave (GW) strain using the formalism of Blanchet et al.

(1990). The plus polarization of the strain can be approximated as

h+ ≈
2G
c4D

d2Izz

dt2
, (5.3)

where D is the distance to the source, c the speed of light, G the gravitational constant, and Izz

is the non-vanishing component of the mass quadrupole tensor. In Figure 5.6 we show the time

evolution of the GW strain for the two 2D simulations assuming a nearby source of D = 10 kpc.

Both simulations show prompt convection in the PNS with a burst of GW that lasts for approx-

imately 50 ms post bounce. Beyond this time, the GW emission is relatively weak until convection

is again efficient enough to excite GW emission near the surface of the PNS. As the PNS cools, the

fundamental frequency of the excited modes steadily increases represented by the gradual increase

in emission at the simulation evolves towards shock runaway. Qualitatively, the simulations evolve

similarly throughout the explosion. The 2D-2D32km model shows slightly less sharp beats in the
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Figure 5.7: GW spectrum of the two 2D simulations in Fourier space.

periodic increases in the strain due to sloshing about the axis seen in both models.

Progenitor perturbations have been show to affect the gravitational wave emission properties.

O’Connor & Couch (2018a) show a pronounced increase in the temporal evolution of the strain

when the Si-shell is accreted onto the PNS. In Figure 5.6 we do not observe such an increase in

GW strain due to the Si-shell region in the perturbed model. The difference is likely due to the

magnitude of perturbations used in their model. The impose an effective mach number in the

Si-shell region of ≈ 0.3, a factor of four times larger than observed in the 2D32km progenitor model

of Fields & Couch (2020). The perturbations in the O-shell imposed in their model was also a

factor of four times larger than observed in the 2D32km model.

In Figure 5.7 we show the computed GW spectrum in Fourier space for the two 2D simulations.

When considering the difference in the spectra, we can observe a slight increase in power in

frequencies of f ≈ 150 - 600 Hz at a post bounce time of tpb ≈ 60-100 ms, the approximate time

at which the Si-shell is accreted onto the PNS. This region of frequency space is slightly smaller

than the region than found in O’Connor & Couch (2018a) (see their Figure 14) where their peak

emission caused by the Si-shell is found near f ≈ 600 Hz.

5.5 Summary and Discussion

We have presented the results of 1-, 2-, and 3D CCSN simulations from multi-dimensional

progenitor models. When possible, we have evolved the accompanying explosion model using
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a spherically averaged 1D progenitor model to determine the impact of multi-dimensional pre-

supernova models on properties of CCSN explosions. We found explosions in all of our simulations

except the 3D model that is steadily evolving towards shock runaway and explosion at the time the

simulation is stopped.

Our 1D simulations show shock runaway at relatively late post bounce times of tpb > 400

ms compared to the 2D simulations which explode near tpb ≈ 290 ms. We showed that the 1D

simulations were found to experience less net neutrino heating and mass in the gain region, likely

attributing to the delayed explosion times. We find that the 1D explosion model utilizing a 1D

progenitor model directly from MESA (1D-MESA) shows slightly enhanced net heating and mass in

the gain region leading to a difference of ≈ 50 ms in explosion time. This difference can likely be

attributed to the smoothing of density and entropy gradients in the MESA (1D-3DAvg.) model which

used a 1D progenitor model derived from an angle-average of the non-perturbed 3D progenitor of

Fields & Couch (2020).

Differences in the 2D models were small but non-negligible. Both simulations followed a

qualitatively similar evolution with the 2D-2D32km (the 2D model using a 2D progenitor) showed

slightly enhanced net heating and mass in the gain region. Enhanced mass contained in the gain

region was shown to indirectly affect the net neutrino heating in the 3D CCSN explosion of a

3D 18 M� progenitor model (Müller et al., 2017). We also showed that more subtle affects of

the progenitor perturbations can be observed in the GW emission properties. Despite a smaller

mach number in the Si-shell region for our 2D progenitor model (four times smaller than imposed

in O’Connor & Couch (2018a)), we observe enhanced broadband GW emission compared to the

CCSN model using a 1D progenitor.

Our 3D simulation did not reached the antesonic condition for explosion criteria at a post bounce

time of tpb ≈ 190 ms and the ratio of advective and heating timescales shortly after accretion of

the Si-shell (tpb ≈ 90 ms). At the time the simulation was stopped, the average shock had reached

approximately 200 km s−1 and showed a positive gradient. It is expected our 3D simulation will

explosion in the next ≈ 100 ms of simulation time.
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CHAPTER 6

MESA-WEB: AN ONLINE INTERFACE TO THE MESA STELLAR EVOLUTION CODE

The beautiful thing about learning is nobody can take it away from you. - Riley B. King

This chapter is based on the unpublished work of C. E. Fields and F. X. Timmes 2021, in prep.

6.1 Abstract

We present MESA-Web, an online interface to the MESA stellar evolution code. MESA-Web allows

users to evolve stellar models without the need to download / install MESA. Since being released in

2015, MESA-Web has evolved over 9200 models to over 2200 unique users and currently performs ∼

4.4 jobs per day. In its current form, MESA-Web can be used as an educational tool in the classroom

or for scientific investigation of different nuclear astrophysics problems. We report on some of the

capabilities of MESA-Web introduced since its release such as user-supplied nuclear reaction rates,

custom stopping conditions, and expanded input parameters. We conclude by discussing the future

goals of MESA-Web including its expansion to more computational resource within the next year.

6.2 Introduction

Stellar evolution codes can be complicated to use, so we present MESA-Web, a web-based

interface to the stellar evolution code, Modules for Experiments in Stellar Astrophysics. MESA is

an open-source stellar evolution toolkit based on the EZ stellar evolution code (Eggleton, 1971;

Paxton, 2004). Since its inception in 2010 MESA has been a valuable tool in the field of astronomy

and astrophysics with an active network on contributors building on its capabilities. The MESA-Web

online interface is to allow educators to utilize MESA in the classroom without additional barriers

that students may face in downloading / installing MESA. MESA-Web can be used to calculate stellar

models over a range of physical parameters.
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The original goal of MESA-Web was to provide an alternative to the online stellar evolution

calculation tool, EZ-Web, created by Rich Townsend 1. However, since its inception, the capabilities

of MESA-Web make it not only a tool for use in astronomy education but also as a resource for

scientific investigation for those unfamiliar with MESA. These two aspects of MESA-Web’s use will

be the primary focus of future development. This paper is organized as follows. In § 6.3 we discuss

the current capabilities of MESA-Web, in § 6.4 we highlight areas of use for MESA-Web, and lastly

in § 6.5 we summarize and discuss future development goals.

6.3 Capabilities

TheMESA-Web interface usesMESA-revision 11701 and is continually updated to reflect amodern

version of the stellar evoltuion toolkit. The online tool uses a four core server hosted by the Ira A.

Fulton School of Engineering at Arizona State University. MESA-Web improves on the accessibility

of the stellar evolution toolkit by removing storage/software prerequisites that can often present

challenges when trying to utilize MESA in the classroom. Users are able to specific a variety of input

physics for single star models to perform stellar evolution calculations for a walltime time of up to

four hours. The simulation output data are then compressed and stored on the MESA-Web server for

24 hours allowing the user to download via a link sent to their email address.

6.3.1 Output

As a part of the output data, users will receive an mp4 file of a plot of profile and history quantities

of their stellar model. The movie is a time series of grid plots created using MESA’s pgstar plotting

routines to showcase general structure and surface properties of the calculation before investigating

the raw data in detail. An example snapshot for a non-rotating 1M� stellar model is shown in

Figure 6.1. Also included in the directory of their calculation are numbered profileX.data

where X corresponds to a specific profile number. The profiles are produced at a user specified

interval and the profiles.index file is provided as a key to their correspondence. The profile

1www.astro.wisc.edu/ townsend/static.php?ref=ez-web
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Figure 6.1: Snapshot showing grid plot of profile and history data for MESA-Web calculation of a 1
M� non-rotating stellar model. At this model number, the star is on the main-sequence.

data contain stellar structure information for 56 quantities as a function of mass coordinate. These

data are useful for investigation which require information about cell-specific properties.

The completed stellar evolution calculation also includes a history.data file with data for

total or location specific information about the model. For example, this file would include the

surface luminosity for the stellar model as a function of timestep. This information can often also

be obtained from the profile data but in some cases MESA pre-computes these quantities for ease of

access instead. The history file contains information about 57 different variables recorded at every

timestep taken by the stellar model.
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Figure 6.2: Cumulative number of MESA-Web calculations since its release. The horizontal dashed
lines show the date that new capabilities were introduced.

6.4 MESA-Web and its role in astronomy

Since its inception in 2015, MESA-Web has evolved over 9200 models to over 2200 unique users

and currently averages about 4.4 jobs per day (see Figure 6.2). The mp4 file included with the

output was introduced early after the introduction of MESA-Web. Following that, we introduced

example directories of the Test Suites that come included with the standard MESA distribution. The

idea behind these examples was to provide the data and visualization of the Test Suite examples
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as a resource for those that do not have an installation of MESA. Because of the complex nature of

some of the Test Suites (multiple inlists, high computational demand, and different pgstar setups)

pre-computing the examples proved to be the most efficient means of producing these data.

In the summer of 2017, we introduced the ability for a user to choose a specific nuclear reaction

from a list of eight key nuclear reactions and to provide their own reaction rate. The introduction

of this capability expanded MESA-Web’s impact beyond that of a tool in the classroom to a viable

means of scientific investigation for the nuclear astrophysics community without significant prior

experience with MESA. Following this, the focus of the future of MESA-Web shifted to continue to

build on its capability in these two areas: astronomy education and in its accessibility to the stellar

and nuclear astrophysics community-at-large. Of the last major improved capabilities to MESA-Web

are custom stopping conditions. Users are now able to specify a limit to different stellar quantities

as condition for which the model will complete. This new capability provides users an increase in

throughput especially if investigating a particular evolutionary epoch.

MESA-Web has been used as a tool across the world in undergraduate and graduate astronomy

courses. The importance of computational literacy in physics has been investigated previously

(Odden, 2019). It was found that open-ended computatational projects such as those in many

graduate stellar astrophysics courses can have a positive impact of student learning. The use of

computation in astronomy specifically has also been a topic for advocacy amongst the AAS task

force initiatives (Zingale et al., 2016). The University of Chicago, Stony Brook University, the

University of California, Santa Cruz, University of Pittsburgh, Texas A&M University Commerce

are among the institutions that have most utilized MESA-Web in the classroom since its release.

We continue to improve, extend, and innovate the capabilities. We maintain communication with

educators across the globe about new ways to build on MESA-Web to meet their needs in the

classroom.
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6.5 Summary

We have presented MESA-Web, an online interface to the MESA stellar evolution code. MESA-Web

allows users to evolve stellar models using the MESA code for up to four hours online for free without

the need to download or install the code itself. In its current form, the tool serves a valuable

computational resource in classrooms across the world as well as a scientific tool for investigations

relevant to nuclear astrophysics. The future of MESA-Web includes porting it to a large server that

will allow for more jobs to be performed for longer walltimes. This expansion will take place

over the summer of 2021. In addition, we look forward to including physics capabilities currently

already supported by the full release of MESA. Among these capabilities are massive star explosion,

binary star evolution, and light curves.
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CHAPTER 7

SUMMARY

In this Thesis, we have investigated uncertainties in computational models of massive stars and

core-collapse supernova explosions to explore the implications they have on our understanding of

transient stellar phenomena. In Chapter 2 we focused on uncertainties due to nuclear reaction

rates in massive star stellar evolution models. We presented the results of 2,000 stellar models

of a 15 M� star at solar and subsolar metallicities. Each stellar model within this grid used a

different random set of rates within their temperature-dependent uncertainties provided by the

nuclear reaction rate library, STARLIB. At five evolutionary ephocs, we identified key nuclear

reaction rates and computed the Spearman Rank-Order Correlation Coefficient to determine the

sign and magnitude of the impact of the uncertainty for each of the 665 sampled reaction rates in

our network following 127 isotopes. It was found that for each passing evolutionary epoch up to the

depletion of Helium, the magnitude of the variation in stellar properties due to the rates was on the

order of those for spatial, temporal and network resolution. However, beyond these evolutionary

epochs, the uncertainty in the nuclear reactions can begin to dominate the sources of variation in

the stellar model owing to the inherited characteristics from previous epochs.

In Chapter 3, we presented the results of 2D and 3D hydrodynamical simulations of the final

seven minutes before iron core-collapse of a 15 M� star. In this work, we characterized the

magnitude and characteristic scales of the convective Si- and O-shell regions. In our 4π 3D

simulations, we reported angle-averaged velocity speeds of approximately 250 km / s in the O-shell

near collapse. The resulting mach number in this region was found to reach 0.06 with the bulk of

power residing at large scales, spherical harmonic indices of ` = 2 − 4. Lastly, we compared the

profiles of the convective velocity of our multidimensional models to that of the 1D predictions

made by MLT and MESA. We found that in our 3D simulations, the speeds approximately four times

larger than predicted in 1D, a result which has significant implications for CCSN explosion models.

Chapter 4 built on thework of the previous chapter by considering 3Dhydrodynamic simulations

155



in three different progenitor models. In this work, we evolved models of MZAMS = 14-, 20-, and

25 M� for the final 10 minutes before iron core-collapse to assess the range of observed convective

velocity speeds and scales. We found that in our 14 M� model the O-shell region was able to reach

tangential velocity speeds of ≈ 200 km / s, a factor of four times larger than predicted by MESA.

This model held a peak in the power spectrum distribution at ` = 4 up to the point of collapse.

This suggests that the velocity field was not able to develop well beyond the initial perturbations

imposed and that were a result of grid artifacts due to the Cartesian geometry. The 20 M� model

is significantly more energetic with tangential O-shell velocity speeds of approximately 600 km / s,

about three times larger than predicted by MESA. This model shows significant power at large scales,

with a peak at ` = 2. Our 25 M� model showed properties in between the qualitative properties of

the two previous models. This model showed Si- and O-shell convection speeds of approximately

150 km / s and 400 km / s, respectively. The peak harmonic indices are similar to the 20 M�

model with ` = 2 in the O-shell region, and ` = 10 in the Si-shell near collapse. Overall, the 3D

simulations presented in this work all report favorable conditions for explodability and the potential

to alter multi-messenger signals during explosion.

In Chapter 5 we presented preliminary results of multidimensional core-collapse supernova

explosion simulations using multidimensional progenitor models. In this work, we compared 2D

explosions performed using the 2D progenitor model to the angle-averaged models from MESA. We

also performed 1D and 3D explosion simulations utilizing the angle-average 3D progenitor model

from Chapter 3. All models except the 3D simulation experience shock runaway at a post-bounce

time less then approximately 400 ms. The 3D simulation has been evolved to 0.5 s post-bounce

and an increase in the average shock radius is observed but the model has yet to experience shock

runaway. Comparing our 2D simulations, we observe an increase in broadband (≈ 100 − 450 Hz)

gravitational wave emission due to perturbations in the Si-shell region as compared to the initially

2D explosion model using a 1D progenitor. The models presented in this work provide a basis for

GW strain templates for non- or very slow-rotating 3D progenitors.

Lastly, in Chapter 6 we have discussed the development of the MESA-Web online web interface
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to the stellar evolution code MESA. This online tool has been a part of my work during my graduate

studies and has been utilized bymany classrooms across theworld. Since its inception, it has evolved

over 8,000 unique stellarmodels to over 2000 users. In its current form, MESA-Web has the capability

to be used as a tool for scientific investigation or as a computational supplement to astronomy

courses. The future of this tool will be expanded to a larger set of computational resources and

to include more of MESA’s advanced scientific capabilities such binary star simulations, explosion

models, and more.
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