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ABSTRACT

NUMERICAL SIMULATIONS OF PLASMAS IN GALAXY CLUSTERS

By

Forrest W. Glines

As the largest gravitationally bound objects in the universe, galaxy clusters are a unique probe

of large scale cosmological structure. Determining the distribution of galaxy clusters and their

virial masses may be key to constraining properties of dark energy and dark matter. Since 90%

of a typical galaxy cluster’s mass is comprised of non-radiating dark matter, however, determining

the virial mass of galaxy clusters depends on inference from the radiating baryonic matter. 90%

of this baryonic matter is contained in the intracluster medium (ICM) – a hot, diffuse, magnetized

plasma permeating the galaxy cluster. While the baryonic matter is the only emitter of observable

electromagnetic emissions from galaxy clusters, the complex behavior of the ICM as a turbulent

magnetized plasma makes constraining the virial mass of the cluster with observable signatures

difficult. Numerical simulations are essential tools for advancing understanding of the ICM and

for tying galaxy cluster observables to virial masses. The goal of this dissertation is to explore and

enable simulations of galaxy clusters and magnetized plasmas via a number of different avenues.

I first explore self-regulation of feedback from active galactic nuclei (AGN) preventing over-

cooling in cool-core (CC) clusters – galaxy clusters with anomalously high central thermal emission

which should cool on shorter timescales than they persist. In the idealized galaxy cluster simulations

with a thermal abstraction of AGN feedback, we find that the thermal-only heating kernels we test

are unable to offset cooling while maintaining a realistic structure, suggesting exploration of more

complex AGN feedback mechanisms such as those including magnetic fields and turbulence.

We then explore how kinetic and magnetic energy thermalizes in the ICM by studying decaying

magnetized turbulence with simulations of the magnetized compressible Taylor-Green vortex.

Using a shell-to-shell energy transfer analysis, we find that the magnetic fields facilitate a significant

amount of the energy flux that is not seen in hydrodynamic turbulence. Although the full cascade



will not be directly captured in ICM simulations for the foreseeable future, higher resolution

simulations enabled by larger computational resources can diminish such effects.

Different novel many-core architectures have emerged in recent years on the way toward larger

supercomputers in the exascale era. Performance portability is required to prevent repeated non-

trivial refactoring of a code for different architectures. To address the need for a performance

portable magnetohydrodynamics (MHD) code, we combined Athena++, an existing MHD CPU

code, with Kokkos, a performance portable framework, into K-Athena to allow efficient simula-

tions on multiple architectures using a single codebase. K-Athena has also inspired the Parthenon

performance portable adaptive mesh refinement (AMR) framework. Using this framework, we de-

veloped the performance portable AMR MHD code AthenaPK.

Galaxy clusters contain significant magnetic fields, although their origin and role is still under

investigation. Numerical modeling is essential for the inference of their properties. One aspect is

whether magnetic AGN feedback models can self-regulate. I present work-in-progress simulations

with AthenaPK of magnetized galaxy clusters slated for exascale supercomputers later this year.

With the higher resolutions enabled by exascale systems, galaxy cluster simulations with rel-

ativistic jet velocities will be possible. Robust methods for relativistic plasmas will be needed.

With this goal, I present a discontinuous-Galerkin (DG) method for relativistic hydrodynamics.

We include an exploration of different methods to recover the primitive variables from conserved

variables, a new operator for enforcing a physically permissible conserved state, and numerous

tests of the method. This method has been used at Sandia National Laboratories to study terrestrial

plasmas and will inform relativistic MHD methods for AthenaPK.

Finally, I cover the future directions of the work in this dissertation, including the many codes

enabled by Parthenon, additions to the magnetized galaxy cluster simulations with AthenaPK,

and the large body of projects at Los Alamos National Laboratory to explore binary black hole

mergers embedded within AGN accretion disks as a possible formation channel of the massive

black holes observed by LIGO. The work in this dissertation to develop performance portable

plasma simulations will enable ground-breaking simulations for years to come.
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a relatively smaller portion of the total mass – is responsible for the majority
of the X-ray emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2: Charged particle number densities on the 𝑥-axis and temperatures on the 𝑦-
axis for different astrophysical and terrestrial plasmas. The comparatively hot
and diffuse plasma of the ICM is marked in yellow, with the Perseus cluster
as seen in X-ray by Chandra. Diagram by the https://www.cpepphysics.org. . . 6

Figure 1.3: Spectrum of appropriate plasma models for different regimes, as determined
by the Knudsen number 𝐾𝑛 and the charge separation distance Λ𝑑 . Fluid
models appear to the left and kinetic models appear to the right while models
where electromagnetics are important appear towards the bottom and models
where electromagnetics unimportant appear towards the top. Systems and
simulations explored within astrophysics typically use models from the 4
extremes: Euler, Boltzmann, ideal MHD, and Vlasov models. The plasma
model best describing the ICM would be a non-ideal MHD model on the
galaxy cluster scale and a Vlasov model on the plasma instability, particle
acceleration scale. Created by Uri Shumlak for a presentation at Sandia
National Laboratories (Shumlak, 2015) and appearing in Kramer et al. (2020). . 7

Figure 1.4: Schlieren photograph showing the thermal plume of a lit candle, showing the
smooth rising flow starting from the base of the flame that transitions into
turbulence at the top of the flame. As a gas, the viscosity in smoke and air is
low; thus, the velocity of the uplifted heated gas is sufficient to create a high
Reynolds number flow, with Re ∼> 103, which is prone to fluid instabilities.
The laminar flow originating from the flame decays into turbulence as these
instabilities grow further down the flow. . . . . . . . . . . . . . . . . . . . . . 13
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Figure 1.5: Photographs of a cylinder moving through a tank of water containing alu-
minum powder (van Dyke, 1982). The higher the velocity of the water flow
relative to the cylinder the higher the Reynolds number, showing flows from
top to bottom with Re = 9.6, Re = 2,000, and Re = 10,000. As the Reynolds
number is increased beyond ∼ 103, the flow becomes prone to fluid insta-
bilities which grow non-linearly as the flow moves past the cylinder. These
instabilities develop into the turbulent flow beyond the cylinder, as best seen
on the right hand side with the Re = 10,000 flow. . . . . . . . . . . . . . . . . 14

Figure 1.6: Diagram of the energy spectra of a turbulent plasma denoting the hydro-
dynamic turbulent cascade and the effects of magnetic fields and limited
simulations resolution on the energy spectra. Wavenumber increases along
the 𝑥−axis, with larger length scales to the left and smaller length scales to
the right. Energy contained in the plasma at a certain wavenumber is plotted
along the 𝑦−axis. The black solid line shows the kinetic energy spectrum of
a plasma with no magnetic fields, where kinetic energy is introduced into the
plasma at the production scale (marked by the leftmost vertical dashed black
line) and dissipates into thermal heating at the dissipation scale (marked by
the rightmost vertical dashed black line). Between these scales, turbulent
plasmas follow a 𝑘−5/3 power law in the kinetic energy spectrum. With the
addition of magnetic fields, in the resulting kinetic energy spectrum (shown in
red) the power law is flattened or broken, with more energy at smaller scales.
In simulations without an explicit viscosity, the smallest cell size introduces a
dissipation length scale (the vertical dashed blue line) potentially larger than
the physical length scale, which truncates the energy spectrum (in solid blue).
Increased resolution decreases the dissipation imposed by numerics. . . . . . . 15

Figure 1.7: Bubbles inflated in by AGN jets in galaxy cluster MS0735.6+7421, as evi-
denced by X-ray cavities in the ICM and radio synchrotron emission from
cosmic rays accelerated at the shock fronts around the bubble. Image made
by NASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Figure 1.8: Diagram of the self-regulating AGN feedback precipitation model from Voit
et al. (2017), where the left panel shows a diagram of AGN feedback in a
galaxy cluster and the right panel shows the entropy 𝐾 ≡ 𝑘𝐵𝑇𝑛

−2/3
𝑒 where 𝑛𝑒

is the electron number density. In this model, cold gas condenses in the isen-
tropic central region of the galaxy cluster and accretes onto the central SMBH,
triggering feedback in the form of bipolar outflows that uplift condensed gas
into the power-law zone of the entropy profile in the cluster outreaches, tem-
pering the overcooling and condensation of gas. In this power-law zone,
buoyancy suppresses condensation while uplift promotes condensation. Ob-
servationally, the transition between the isentropic and power-law zones of
the entropy profile occurs where the ratio of cooling time to free fall time is
𝑡cool/𝑡ff ∼ 10, where the cooling time 𝑡cool of a parcel of gas is the time it
would take for it to radiative away all its energy at its current rate of radiative
cooling and the free fall time 𝑡ff of a parcel of gas is the time it would take to
infall from rest to the cluster center due to gravity. . . . . . . . . . . . . . . . . 27

Figure 1.9: Relative clock speeds of single core (black) and multicore (gray, orange,
blue, and red, in order of increasing core counts) processors relative to the
Intel 80386 CPU using the SPECint benchmark. The green round dots show
processor clock frequencies, the frequency at which a single core can execute
a clock cycle to execute one or several operations, relative to the Intel 80386.
Although clock frequencies have stagnated since the mid 2000s, processors
have increased performance by adding more cores. Future performance gains
are increasingly dependent on higher core counts. Figure from (Leiserson
et al., 2020). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 1.10: Example code to execute z[i]=a*x[i]+y[i] with different programming
APIs. Even with this simple code example, there are significant differences
in the implementation with different APIs. Each API also requires different
code outside of this snippet to manage memory and execution on the GPU,
along with a myriad of performance concerns. . . . . . . . . . . . . . . . . . . 36

Figure 2.1: Top: Local ratio of heating to cooling as a function of radius (𝑟) at the
beginning of several representative simulations. The dotted blue line shows
a simulation with low central heating and heating kernel parameters 𝛼 = 2.0,
𝑟𝑠 = 8 kpc, and 𝑟𝑐 = 1000 kpc. The dashed orange line shows a simulation
with high central heating and heating kernel parameters 𝛼 = 2.6, 𝑟𝑠 = 1 kpc,
and 𝑟𝑐 = 150 kpc. The solid green line shows a simulation with intermediate
central heating and heating kernel parameters 𝛼 = 2.6, 𝑟𝑠 = 12 kpc, and
𝑟𝑐 = 150 kpc. Bottom: Cumulative ratio of heating to cooling within 𝑟 for
the same simulations. At large radii, all of the cumulative heating curves
converge to the cumulative cooling rate because total heating is normalized
to equal to total cooling rate at 𝑅 = 1.5 Mpc. . . . . . . . . . . . . . . . . . . 48
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Figure 2.2: Schematic illustrations of how different AGN heating kernels affect the en-
tropy profile of a simulated galaxy cluster. In each case, the total heating
rate is set equal to the total cooling rate. Top: Radial profiles of radiative
cooling and AGN heating per unit volume, with the initial median cooling
rate in black and the AGN heating kernel in color. Bottom: Response of
the median entropy profile to heat input. The initial median profile in black
and the response is in color. The left column shows a heating kernel with
central heating that falls below central cooling. The entropy profile in this
case tends to follow a power law down to the origin and eventually leads to a
central cooling catastrophe. The center column shows a heating kernel with
excessive central heating, which elevates central entropy, inverts the entropy
profile, and produces a central convective zone. The right column shows
a heating kernel with intermediate central heating, which slightly raises the
central entropy and produces a flat core. Due to the high initial entropy and
long cooling time at outer radii, the power-law at the outer radii changes very
slowly with under- and over-heating. . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.3: Mass density plots of cooling and heating rate (top) and entropy (bottom)
versus radius, with color representing the total mass of all simulation cells
from a 2D histogram of cooling rate and entropy versus radius. Across
the three columns we show three simulations at different times that broadly
represent the whole set of simulations, as differentiated by the behavior of
the inner tens of kpc. The left column shows a simulation (with 𝛼 = 2.0,
𝑟𝑠 = 8 kpc, and 𝑟𝑐 = 1000 kpc at 𝑡 = 0.3 Gyr) with low central heating which
allows excess central cooling that quickly undergoes a cooling catastrophe.
The middle column shows a simulation (with 𝛼 = 2.6, 𝑟𝑠 = 1 kpc, and
𝑟𝑐 = 150 kpc at 𝑡 = 3.0 Gyr) with high central heating that maintains a
convective zone in the inner 100 kpc with a high central entropy peak. The
right column shows a simulation (with 𝛼 = 2.6, 𝑟𝑠 = 12 kpc, and 𝑟𝑐 = 150 kpc
at 𝑡 = 8.0 Gyr) with an intermediate amount of central heating and that
holds a flat entropy floor slightly elevated from the initial conditions and
observational data on the entropy of the inner tens of kpc. On the entropy
plots, observational entropy data of clusters from the ACCEPT data set are
displayed in grayscale showing the range (light grey), 68% confidence interval
(dark grey), and median (black line) of the dataset. The median entropy is
also marked by a magenta line, and the minimum (𝐾𝐿) and maximum (𝐾𝐻)
values of the entropy median within the inner 25 kpc are marked by stars.
On the cooling rate plots, the heating rate is marked by a red line and the
median cooling rate is marked by a blue line. The crossover radii 𝑟− and 𝑟+
as defined in the text are marked by stars in the simulations where they can be
defined.The heating curve parameters 𝑟𝑠 and 𝑟𝑐 are also annotated with finely
dashed and dashed gray lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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Figure 2.4: Time dependence of total cooling rate (solid lines) and total mass of condensed
gas under 3 × 104 K (dashed lines) for the three simulations shown in Figure
2.3. The blue points show a simulation with low central heating and excess
central cooling (𝛼 = 2.0, 𝑟𝑠 = 8 kpc, 𝑟𝑐 = 1000 kpc) that experiences an
early cooling catastrophe. Orange points show a simulation with high central
heating (𝛼 = 2.6, 𝑟𝑠 = 1 kpc, 𝑟𝑐 = 150 kpc) that forms a quasi-stable central
convective zone. Green points show a simulation with intermediate central
heating (𝛼 = 2.6, 𝑟𝑠 = 12 kpc, 𝑟𝑐 = 150 kpc) that maintains a flat entropy core
for almost 10 Gyr before undergoing a late cooling catastrophe. In simulations
that form a multiphase gas through a cooling catastrophe, the formation of
cold gas is preceded by a rise and then a sharp peak in the total cooling rate. . . 58

Figure 2.5: Plots of relationships between 𝑟−, the radius at which the gas switches from net
heating to net cooling, and other features of the simulations. Top left: Time
averaged radius of the minimum of the median entropy profile (𝑟𝐿) versus the
time average of 𝑟− up to the formation of a multiphase gas. (Includes only
simulations in which 𝑟− can be defined for at least 50 Myr.) Top right: Radius
at which multiphase gas first forms versus the time averaged 𝑟−. (Includes
only simulations in which 𝑟− can be defined for more than one time step.)
Bottom left: Radius at which multiphase gas first forms versus the time
averaged value of 𝑟𝐿 for all simulations. Bottom right: The time required
for a simulation to form multiphase gas versus the time averaged value of
the cooling time at 𝑟−. (Includes only simulations that form multiphase gas
and in which 𝑟− can be defined for at least 50 Myr.) Shapes in each panel
denote the general behavior of the central region of the simulation. Blue
highlighted triangles denote Central Cooling simulations, orange highlighted
circles denote Central Convective Zone simulations. Green highlighted stars
denote Entropy Floor simulations. Colors show the heating kernel parameter
𝛼, with greater 𝛼 generally corresponding to heating that is more centrally
concentrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 2.6: Left: Time required to form multiphase gas in a simulation versus the ratio
of heating to cooling within the inner 10 kpc at the first time step. Right:
Maximum of the median entropy within the inner 25 kpc, versus the ratio
of heating to cooling within the inner 10 kpc at the first time step. In both
panels, a solid line marks a heating to cooling ratio of 2, and a dashed line
marks a heating to cooling ratio of 5. A ratio of at least 2 is required to avoid
multiphase condensation within 1 Gyr. In the right panel, a dashed line marks
the maximum central entropy that is observationally expected for a CC cluster. 61
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Figure 2.7: Left: Relationships between the initial ratio of heating to cooling averaged
over the inner 10 kpc and the time-averaged radius ⟨𝑟−⟩ beyond which cooling
begins to dominate over heating. Only those simulations in which 𝑟− can be
defined for at least 50 Myr are included. The box in the lower right shows
hypothetical simulations with an average 𝑟− over 30 kpc and an inner heating
to cooling ratio under five. Right: Relationships between the time average
of 𝐾𝐻 (the maximum level of the median entropy profile within the inner
25 kpc) and the time 𝑡m𝑢𝑙𝑡𝑖 until multiphase gas forms in the simulation. The
plot includes all simulations, assigning 𝑡multi = 16 Gyr to simulations that do
not form cold gas by that time. An empty box in the lower right corner indi-
cates where points representing heating kernels satisfying adequacy criteria
would fall, by persisting for more than 5 Gyr before forming multiphase gas
while maintaining a maximum entropy level < 30 keV cm−2 within 25 kpc.
However, no heating kernel we tested satisfies those those criteria. . . . . . . . 64

Figure 2.8: Top: Time-averaged median entropy profiles of the simulated cluster halos
in Figure 2.3. The dotted line shows the simulation with low central heating
( 𝛼 = 2.0, 𝑟𝑠 = 8 kpc, 𝑟𝑐 = 1000 kpc), and the blue shaded region around it
shows the 1𝜎 dispersion of its median profile over time. The dashed line shows
the simulation with high central heating (𝛼 = 2.6, 𝑟𝑠 = 1 kpc, 𝑟𝑐 = 150 kpc),
and the orange shaded region around it shows its 1𝜎 dispersion. The dot-
dashed line shows the simulation with intermediate central heating (𝛼 = 2.6,
𝑟𝑠 = 12 kpc, 𝑟𝑐 = 150 kpc), and the green shaded region around it shows its
1𝜎 dispersion. In each case, entropy is weighted by the x-ray luminosity in
the 0.5–2.0 keV band, to mimic data obtainable with Chandra. The median,
1𝜎 interval, and full extent of the entropy profiles of clusters with less than
30 keV cm2 from ACCEPT are shown in grayscale, using the broken power
law fits from Cavagnolo et al. (2009) for the entropy profiles. Bottom: X-ray
surface brightness in the 0.5–2.0 keV band for the same simulated halos,
with shaded regions showing the 1𝜎 dispersion and black lines showing the
median. The median, 1𝜎 interval, and full extent of the entropy profiles of
CC clusters from ACCEPT are shown in grayscale, using surface brightness
profiles derived from electron density and temperature profiles. . . . . . . . . . 67

Figure 3.1: Slices of sonic Mach number (left) and magnetic pressure (right) at 𝑡 =

0.77𝑇 and 𝑡 = 5.16𝑇 in the 𝑥𝑦−plane through 𝑧 = 𝜋
2 𝐿, with streamlines on

the left showing the direction of flow and streamlines on the right showing
the direction of the magnetic fields, plotting only the 1st quadrant from
the Ms0.2_Ma10 simulation, demonstrating the transition of the flow into
turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xviii



Figure 3.2: Mean energies over over time in the top row with kinetic energy (solid blue),
magnetic energy (solid orange), the sum of kinetic and magnetic energies
(solid green), and the change in thermal energy since the simulation start
(solid red), and dimensionless numbers over time in the bottom row with RMS
sonic Mach number M𝑠 (blue), Alvénic Mach number M𝐴 (orange), and
plasma beta 𝛽 (green) for the Ms0.2 simulations. Energy over time from the
simulation from Fig. 3a in Pouquet et al. (2010) (adjusted to the normalization
used here), which matches the setup of the Ms0.2_Ma1 simulation, is shown
with dashed lines in the upper left panel for reference. Energies and mach
numbers for all nine simulations are shown in the online supplements. . . . . . 102

Figure 3.3: Kinetic energy spectra (in solid blue) and magnetic energy spectra (in solid
orange) compensated by 𝑘4/3, with black dashed lines showing the power
law fit to the spectral to obtain a spectral index. In the left column we show
the Ms0.2_Ma1 simulation, in the middle column we show the Ms0.2_Ma3.2
simulation, and in the right column we show the Ms0.2_Ma10 simulation.
In the top row we show all simulations at 𝑡 = 0.77𝑇 , in the middle row we
show the three simulations at different times (𝑡 = 1.29, 𝑡 = 1.81𝑇 , 𝑡 = 1.81𝑇)
when the simulations are displaying interesting behavior discussed in sections
3.3.2.2 and 3.3.2.1, and in the bottom row we show all simulations at 𝑡 = 5.16𝑇
when the initial flow has completely decayed into turbulence and both energy
spectra fluctuate around a 𝑘−4/3 spectrum. . . . . . . . . . . . . . . . . . . . . 103

Figure 3.4: The kinetic energy (top) and magnetic energy (bottom) at wavenumbers 𝑘 =

8, 22, 64, 128 plotted separately in different colors versus time, where the
energy at each wavenumber has been compensated by 𝑘4/3 to make them
comparable. In the left column we show the Ms0.2_Ma1 simulation, in
the middle column we show the Ms0.2_Ma3.2 simulation, and in the right
column we show the Ms0.2_Ma10 simulation. Energy at the smallest length
scales in both reservoirs saturates at 𝑡 ≃ 1𝑇 , 𝑡 ≃ 1.5𝑇 , and 𝑡 ≃ 2.5 in
the Ms0.2_Ma1, Ms0.2_Ma3.2, and Ms0.2_Ma10 simulations respectively,
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Figure 3.5: Evolution of the spectral indices of the kinetic (blue), magnetic (orange),
and sum of kinetic and magnetic energy (green) spectra over time for the
Ms0.2 simulations. The slope is computed from a least squares fit of the
energy spectra limited to wavenumbers 𝑘 ∈ [10, 32] which is approximately
the inertial range. Shaded bands show how the fitted slope differs if a range
𝑘 ∈ [8, 34], 𝑘 ∈ [10, 32], or 𝑘 ∈ [12, 30] is used. Note that the spectral index
using the range 𝑘 ∈ [10, 32] is not guaranteed to be bounded by the spectral
indices obtained using 𝑘 ∈ [8, 34], 𝑘 ∈ [10, 32] and 𝑘 ∈ [12, 30], which is
especially evident in the Ms0.2_Ma3.2 and Ms0.2_Ma10 simulations from
𝑡 ≃ 2𝑇 to 𝑡 ≃ 4𝑇 . Horizontal dashed lines show −4/3 and −5/3 spectral
indices. The slope is only shown after 𝑡 = 1𝑇 as the initial flow conditions
dominate the spectra at early times, leading to steep spectra. We include the
spectral indices versus time for all nine simulations in the online supplements. . 105

Figure 3.6: Shell-to-shell energy transfer plots for the energy transfer within the kinetic
(left) and magnetic (right) energy reservoirs via advection and compression at
𝑡 = 0.77𝑇 (top) and 𝑡 = 5.16𝑇 (bottom) from the simulations withMs0.2_Ma1,
showing the development of the kinetic and magnetic turbulent cascades.
Annotations on the figure highlight key features of the energy transfer that are
characteristic of a developing turbulence cascade. Each bin shows the flux of
energy from shell 𝑄 to shell 𝐾 , where orange with white circles showing a
positive flux of energy, so that 𝐾 is gaining energy, and purple with white x’s
showing a negative flux, so that 𝐾 is losing energy. The energy flux in each
bin is normalized by 𝜀 = max𝑄,𝐾 |T𝑋𝑌 (𝑄, 𝐾) | so that a higher 𝜀 means a
higher energy flux. The solid black line shows equivalent scale transfers. As
the turbulent cascade develops in the magnetic and kinetic energy reservoirs,
more energy transfers along the diagonal fill out the energy spectrum down
to numerical dissipation scales. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 3.7: Shell-to-shell energy transfer plots for the energy transfer within the kinetic
(top) and magnetic (bottom) energy reservoirs via advection and compression
at 𝑡 = 1.29𝑇 from the Ms0.2_Ma1 simulation, showing a transient inverse
cascade within the magnetic energy reservoir (on all scales 𝐾,𝑄 ∼< 100)
and kinetic energy reservoir (on large scales 𝐾,𝑄 ∼< 16). Annotations show
where along the diagonal the inverse cascade is present. . . . . . . . . . . . . . 107

Figure 3.8: Shell-to-shell energy transfer plots for the energy transfer from kinetic to
magnetic energy via magnetic tension at 𝑡 = 1.81𝑇 from the Ms0.2_Ma10
simulation, showing the nonlocal energy transfer from large kinetic scales to
many smaller magnetic scales. Annotations show where the nonlocal transfer
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Figure 3.9: Integrated energy flux over time from kinetic to magnetic energy via tension
from larger wavenumbers to smaller nonlocal wavenumbers (purple), from
larger wavenumbers to smaller local wavenumbers (blue), between equivalent
wavenumbers (green), from smaller wavenumbers to larger local wavenum-
bers (orange), and from smaller wavenumbers to larger nonlocal wavenumbers
(red) in the Ms0.2 simulations. We normalize the energy flux in each panel
so that the absolute maximum of all of the flux bins is 1.0, where 𝜀 is the
normalization factor use in each panel. Comparisons of the relative strength
of energy fluxes in different simulations must consider 𝜀. The inset plot in the
lower right panel shows the color coded regions that are integrated to calculate
each line at a single time for the same shell-to-shell transfer from Figure 3.8.
Solid lines show the integrated flux if “local" wavenumbers as defined as 5
logarithmic bins away from the equivalent wavenumber. The shaded regions
show the integrated flux if 4 or 6 bins are used, showing that the behavior
is robust if the range “local" wavenumbers is defined closer or further away
from transfer between equivalent scales. We include the integrated flux from
kinetic to magnetic energy via tension for all nine simulations in the online
supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 3.10: Integrated energy flux over time within the kinetic energy (top) and within
the magnetic energy (bottom) from larger wavenumbers to smaller nonlocal
wavenumbers (purple), from larger wavenumbers to smaller local wavenum-
bers (blue), between equivalent wavenumbers (green), from smaller wavenum-
bers to larger local wavenumbers (orange), and from smaller wavenumbers to
larger nonlocal wavenumbers (red) in the Ms0.2_Ma1 simulation. The inset
plot in the lower middle panel demonstrates the color coded regions that are
integrated to calculate each line at 𝑡 = 1.29𝑇 from the shell-to-shell transfer
from Figure 3.7. Solid lines show the integrated flux if "local" wavenumbers
as defined as 5 logarithmic bins away from the equivalent wavenumber. The
results change very little if 4 or 6 bins are used. We include the integrated
flux within the kinetic energy and magnetic energy for all nine simulations in
the online supplements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 3.11: Cross-scale flux within the kinetic energy (blue line), within the magnetic
energy (orange line), and from kinetic to magnetic energy via tension (green
line) in the three Ms0.2 simulations across columns and at dynamical time
𝑡 = 0.77𝑇 (top) and later at dynamical time 𝑡 = 5.16𝑇 . Note that the cross-
scale fluxes at later times are an order of magnitude less than early cross-scale
fluxes. Positive values of this quantity denote energy transfer from larger to
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Figure 4.1: Profiling results on a GPU (left) and CPU (right) for selected regions (x-axis)
within the main loop of an MHD timestep using the algorithm described
in Sec. 4.3. The different lines correspond to different loop structures, see
Sec. 4.2.3 and the timings are normalized to the fastest Riemann region in
each panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Figure 4.2: Roofline models of a 2 socket Intel Xeon Gold 6248 "Cascade Lake" CPU
node on NASA’s Aitken (4.2a) and a single NVIDIA Tesla V100 "Volta"
GPU on MSU HPCC (4.2b). Theoretical L1 and DRAM bandwidths and
theoretical peak throughputs according to manufacturer specifications are
shown in dashed line. for For both cases shown here and all other architectures
we tested, DRAM bandwidth (or MCDRAM bandwidth for KNLs) is the
limiting bandwidth for K-Athena’s performance. . . . . . . . . . . . . . . . . 126

Figure 4.3: Performance Portability plot of several CPU and GPU machines with dif-
ferent architectures. Individual bars show the performance of K-Athena
compared to the theoretical peak performance limited by the empirically
measured DRAM and L1 bandwidths. Black bars with diamonds denote the
theoretical performance limited by the manufacturer reported bandwidths.
The performance portability metrics across all architectures for DRAM and
L1 are shown with horizontal orange lines where solid orange used the empir-
ically measured bandwidths and dashed orange uses manufacturer reported
bandwidths.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 4.4: Raw performance for double precision MHD (algorithm described in Sec. 4.3)
of K-Athena, Athena++, and GAMER on a single GPU (left) or CPU (right)
for varying problem sizes. Volta refers to an NVIDIA V100 GPU, Pascal
refers to an NVIDIA P100 GPU, BDW (Broadwell) refers to a 14-core Xeon
E5-2680 CPU, and SKX (Skylake) refers to a 20-core Xeon Gold 6148 CPU.
The GAMER numbers were reported in Zhang et al. (2018) for the same
algorithm used here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
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Figure 4.5: Weak scaling for double precision MHD (exact algorithm described in Sec. 4.3)
on different supercomputers and architectures for K-Athena and the original
Athena++ version. Numbers correspond to the 80th percentile of individual
cycle performances of several runs in order to reduce effects of network vari-
ability. The top row shows the raw performance in number of cell-updates
per second per node and can directly be compared between different system
and architectures. The bottom row shows the parallel efficiency normalized
to the individual single node performance. The first column contains results
for a workload of 643 and 1283 cells per core on NASA’s Electra system using
two 20-core Intel Xeon Gold 6148 processors per node. The second column
shows results for a workload of 643 per core on ALCF’s Theta system with
one 64-core Intel Xeon Phi 7230 (Knights Landing) per node. HT-1, HT-2,
and HT-4 refers to using 1, 2, and 4 hyperthreads per core, respectively. The
third column shows results for a workload of 1283 per CPU core and 1923 per
GPU on OLCF’s Titan system with one AMD Opteron 6274 16-core CPU and
one NVIDIA K20X (Kepler) GPU per node. The last column contains results
for a workload of 643 per CPU core and 2563 per GPU on OLCF’s Summit
system with two 21-core IBM POWER9 CPUs and six NVIDIA V100 (Volta)
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CHAPTER 1

INTRODUCTION

1.1 Galaxy Clusters

Galaxy clusters are the largest gravitationally bound objects in the universe, beyond which the

expansion of space due to dark energy exceeds gravity (Longair, 2008; Mo et al., 2010). With

virial masses on the order of 1014 − 1015 M⊙ and radii ∼ 1 Mpc, by mass they are primarily

composed of dark matter – typically 90% of a galaxy cluster’s mass is contained in a dark matter

halo. The remaining 10% is baryonic matter, 90% of which is contained in the intracluster medium

(ICM), a hot diffuse X-ray emitting plasma permeating the cluster with temperatures on the order of

1−10 keV (107−108 K) and particle densities on the order of 10−4−10−2 cm−3. The remaining

10% of the baryonic matter, constituting 1% of the total galaxy cluster mass, is contained within

10-100 galaxies (Longair, 2008; Mo et al., 2010).

In their unique role as the largest gravitationally bound objects in the universe, galaxy clusters

serve as key probes of cosmological properties of the universe (Lima et al., 2003; Wang et al., 2004;

Basilakos et al., 2010; Pratt et al., 2019; Allen et al., 2011). Specifically, they trace the structure of the

largest overdensities of dark matter, revealing the power spectrum of mass distribution through the

universe on the largest scales. Determining this structure is essential for characterizing an equation

of state for dark energy (Lima et al., 2003), the observed but as yet relatively uncharacterized force

that drives the accelerating expansion of the universe. More precisely, we need the number density

of galaxy clusters as a function of their virial mass and redshift (see Voit, 2005; Allen et al., 2011,

for a thorough review).

However, virial masses are not directly measured, but instead must be inferred by observable

properties such as gravitational lensing and the electromagnetic radiation emitted by the baryonic

matter.

The most straightforward method to determine a galaxy cluster’s mass is via strong gravitational
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lensing, where the mass of the galaxy clusters (primarily its dark matter halo) bends the trajectory of

light from a background source behind the galaxy cluster following General Relativity (Kochanek,

2006; Hoekstra et al., 2013; Bartelmann, 2010), creating multiple images of the background source

around the galaxy cluster. Although strong gravitational lensing can be used to determine galaxy

cluster masses with minimal assumptions, it requires a background source directly behind the

cluster and must be near enough to observe the multiple images, thus limiting its application to a

small number of systems. Strong lensing is also only useful for estimating the mass near the cluster

core, so the virial mass of the galaxy cluster still needs to be inferred (Hoekstra et al., 2013). In

contrast, weak gravitational lensing from the deflection of light in the entire sky by multiple sources

gives a statistical measure of the distribution of mass in the universe (Bartelmann & Schneider,

2001).

The virial masses and number densities of galaxy clusters can also be determined from multi-

wavelength observations – the electromagnetic radiation emitted by the baryonic matter in galaxy

clusters and observed in multiple wavelengths. Of particular interest to galaxy clusters and the

ICM, the X-ray emission from the hot diffuse ICM measures the gas density and temperature (see

Figure 1.1), which can be used to estimate the galaxy cluster mass assuming the gas is in hydrostatic

equilibrium (HSE; Sarazin, 1988; Allen et al., 2011). However, the ICM is disrupted from HSE

by AGN feedback, magnetic fields, turbulence, cosmic ray pressure, and any other non-thermal

support (Fabian et al., 2003; Carilli & Taylor, 2002; Dennis & Chandran, 2005; Loewenstein et al.,

1991). Likewise, the optical emissions from galaxies within the galaxy cluster can be used to

estimate the cluster mass by assuming dynamical equilibrium (Binney & Tremaine, 1987; Carl-

berg et al., 1997). Galaxies can similarly be disrupted from dynamical equilibrium by large scale

structure interactions in the universe (White et al., 2010). The Sunyaev–Zeldovich (SZ) effect – the

upscattering of the cosmic microwave background (CMB) to higher energies via inverse Compton

scattering with high-energy electrons (Sunyaev & Zel’dovich, 1980) – can also be used to estimate

gas density and temperature of the electron population of galaxy clusters.

Although assumptions of HSE and dynamical equilibrium can be used to coarsely estimate
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Figure 1.1: Galaxy Cluster Abell 1689 in X-ray (purple) as captured by Chandra with optical
from Hubble underneath. The galaxy cluster has sufficient mass to bend light from background
galaxies around the galaxy cluster core, smearing background sources into duplicated arcs around
the galaxy cluster core. This strong gravitational lensing permits estimates of the galaxy cluster’s
mass (Kochanek, 2006; Hoekstra et al., 2013; Bartelmann, 2010). The Intracluster Medium – the
hot, diffuse plasma comprising most of the baryonic mass but a relatively smaller portion of the
total mass – is responsible for the majority of the X-ray emissions.
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galaxy cluster masses, more precise mass proxies relying on electromagnetic observables depend

on more precise understanding of the dark matter and ICM out of HSE and dynamical equilibrium.

Numerical simulations of both components of galaxy clusters individually and simultaneously have

been essential for recent improvements of galaxy cluster mass proxies (Pratt et al., 2019). N-body

simulations of the dark matter halos of galaxy clusters can inform more realistic halo mass profiles

(Navarro et al., 2004; Gao et al., 2012). Galaxy cluster simulations including the complex plasma

physics of the ICM, however, are rapidly evolving (Walker et al., 2019), with the magnetized

plasma nature of the ICM and AGN feedback under particular recent scrutiny (Donnert et al., 2018;

Morganti, 2017).

Understanding the ICM is key to developing accurate mass proxies to discern the the virial mass

of galaxy clusters in large X-ray surveys that can characterize the structure of dark matter in the

universe and the equation of state of dark energy. At present, the forefront of our understanding of

galaxy clusters is limited by our understanding of the ICM as a complex plasma.

1.2 Plasmas

“Plasma” is a state of matter where a portion or all of the electrons are decoupled from the

ions, creating a sea of charged particles (Chen & Chen, 1984; Bittencourt, 2004; Bellan, 2008).

These charged particles facilitate currents and thus magnetic fields within the matter. The bulk

kinetic motion of the charged particles exerts forces on these currents and magnetic fields and vice

versa, leading plasmas to exhibit behaviors unseen in other states of matter. With these properties,

plasmas can behave quite differently from unionized baryonic matter.

Although rare on Earth, plasmas are ubiquitous in the universe, comprising the vast majority

of baryonic matter. We can divide most plasmas into two broad categories: terrestrial plasmas,

which occur or are created on Earth, and astrophysical plasmas, which occur beyond the Earth’s

atmosphere.1

1Plasmas in the upper Earth’s atmosphere and magnetosphere are known as space plasmas
and have characteristics of both terrestrial plasmas and astrophysical plasmas, being more diffuse
and longer lived than terrestrial plasmas but not as hot as astrophysical plasmas (Baumjohann &
Treumann, 2012; Treumann & Baumjohann, 1997).
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Most terrestrial plasmas, except for naturally occurring lighting, are either created for industrial

applications or for a wide variety of scientific experiments (Chen & Chen, 1984). Chief among

these experiments are prototype fusion devices, including magnetic confinement fusion (MCF;

Ongena et al., 2016) devices such as the International Thermonuclear Experimental Reactor (ITER;

Aymar et al., 2002) where the plasma is confined by self-sustaining magnetic fields, and inertial

confinement fusion (ICF; Craxton et al., 2015) devices such as the National Ignition Facility (NIF;

Miller et al., 2004; Zylstra et al., 2022) and the Z-Machine (Sinars et al., 2020), where the fusion

target is unconfined but a burst of energy from lasers or large currents heats the plasma quickly

enough to allow inertia to confine the plasma for long enough to attain pressures and temperatures

sufficient to undergo fusion. MCF plasmas are typically maintained for seconds to tens of seconds

(Ongena et al., 2016), with the expectations for minutes-long lived plasmas being created for fusion

devices in the near future, while ICF plasmas persist for picoseconds to microseconds (Zylstra et al.,

2022).

Astrophysical plasmas, in comparison, are typically hotter, often more diffuse, and much

longer lived (Chiuderi & Velli, 2015, see Figure 1.2 for examples of astrophysical and terrestrial

plasmas). Stars, the interstellar medium (ISM) between them, and the ICM are all plasmas. Except

for the dense plasmas found within compact objects such as stars, the majority of matter in the

universe is within diffuse plasmas such as the ISM and ICM. These plasmas are also typically

much longer lived than terrestrial plasmas, where present day temperatures of the ISM and ICM

lead to partially or fully ionized plasmas. However, the dynamics of the fluid and the coupling

with magnetic fields in astrophysical plasmas are governed by the same physical laws as terrestrial

plasmas. Although not as physically accessible as a plasma created in a laboratory, the ubiquity and

longevity of astrophysical plasmas allows convenient study of plasma physics via our observations

of astrophysical plasmas. Thus, knowledge in plasma physics gained from studying astrophysical

plasmas can improve understanding of terrestrial plasmas and vice versa.
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Figure 1.2: Charged particle number densities on the 𝑥-axis and temperatures on the 𝑦-axis for
different astrophysical and terrestrial plasmas. The comparatively hot and diffuse plasma of the
ICM is marked in yellow, with the Perseus cluster as seen in X-ray by Chandra. Diagram by the
https://www.cpepphysics.org.

1.2.1 Plasma Regimes

The behavior of plasmas and the theories and equations that best describe them depend on

many of the properties of the plasma system in question (see Figure 1.3; Kramer et al., 2020).

These properties include the particle composition, the degree of ionization, the thermodynamics,

the kinematics, the electrodynamics, the scale of the system of interest relative to other scales in

the system, and countless other properties. Fortunately, to simplify categorization different plasma

models can be broadly divided based on a few quantifiable properties.

Different models of plasmas can be broadly divided into kinetic and fluid methods based on the

Knudsen number Kn of the plasma system

Kn =
𝜆

𝐿
, (1.1)
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Figure 1.3: Spectrum of appropriate plasma models for different regimes, as determined by the
Knudsen number 𝐾𝑛 and the charge separation distance Λ𝑑 . Fluid models appear to the left
and kinetic models appear to the right while models where electromagnetics are important ap-
pear towards the bottom and models where electromagnetics unimportant appear towards the top.
Systems and simulations explored within astrophysics typically use models from the 4 extremes:
Euler, Boltzmann, ideal MHD, and Vlasov models. The plasma model best describing the ICM
would be a non-ideal MHD model on the galaxy cluster scale and a Vlasov model on the plasma
instability, particle acceleration scale. Created by Uri Shumlak for a presentation at Sandia National
Laboratories (Shumlak, 2015) and appearing in Kramer et al. (2020).

which is the ratio of of the mean free path of particles 𝜆 to the length scale of interest 𝐿. The

Knudsen number depends on the size of the system examined – i.e. Mpcs for the plasma comprising

galaxy clusters. Smaller size systems exist, however, within the larger system. For example, in

the ICM plasma instabilities and particle acceleration across shocks and turbulence happen at a

much smaller scale (on the order of km to pc), whereas the mean free path of particles is the same,

resulting in a larger Knudsen number a system studying plasma instabilities within the ICM versus

studying the ICM of an entire galaxy cluster (Marcowith et al., 2020)2. Although the particle

acceleration physics with high Knudsen numbers still occur within the larger physics of the ICM

2The effective Knudsen number of the ICM is complex since the mean free path of particles
via Thompson scattering in the ICM (10− 1000 kpc) is significant to the size of the galaxy cluster,
but the length scale on which plasma instabilities can introduce dissipation (∼ km) is quite small.
Thus, the applicability of fluid models appropriate for small Knudsen numbers to the ICM is under
debate. These issues may be addressed using non-ideal MHD (Kunz et al., 2011; Schekochihin
et al., 2009).
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of a galaxy cluster, their effects are typically secondary to the larger scale dynamics.

Even though the mean free paths and length scales of astrophysical and terrestrial plasmas

can differ greatly, their ratio and thus Knudsen numbers can be quite similar, allowing them to

be studied with shared models. For example, while the km-scale plasma instabilities in the ICM

happen on much larger scales than plasma instabilities in magnetically insulated transmission lines

(MITL) used to deliver power to accelerators (Ottinger & Schumer, 2006; Kramer et al., 2020;

Luo et al., 2019), both systems have similar Knudsen number and thus can be studied with similar

plasma models.

High Knudsen number plasmas are best described with kinetic theory, where the plasma is

described by a statistical distribution of particles in phase space. Each particle species of the

plasma is described by a density function in phase space that evolves over time. Following Kramer

et al. (2020), let 𝑁𝑠 (r, v, 𝑡) be the phase density function containing every particle in the plasma of

species 𝑠, where r is a position, v is a velocity, and 𝑡 is a time. The microscopic evolution of this

density functions is exactly described the Klimontovich equation (Klimontovich, 1994)

𝜕𝑁𝑠

𝜕𝑡
+ v · 𝜕𝑁𝑠

𝜕r
+ 𝑞𝑠

𝑚𝑠
(E + v × B) · 𝜕𝑁𝑠

v
= 0 (1.2)

where 𝑞𝑠 and 𝑚𝑠 are the particle species charge and mass and where E and B are the local

microscopic electric and magnetic fields which are governed by Maxwell’s equations. The density

function 𝑁𝑠 encompasses every individual particle of the plasma, however, which is rarely useful

or tractable for modeling whether by theory or numerical simulation.

If we instead consider a probability distribution function (PDF) 𝑓𝑠 (r, v, 𝑡) of each particle

species and consider an averaged macroscopic electric and magnetic field, we obtain the Boltzmann

equation (Chen & Chen, 1984; Bittencourt, 2004; Bellan, 2008)

𝜕 𝑓𝑠

𝜕𝑡
+ v · 𝜕𝑁𝑠

𝜕r
+ 𝑞𝑠

𝑚𝑠
(E + v × B) · 𝜕𝑁𝑠

v
=
𝑓𝑠

𝜕𝑡

����
Coulomb

, (1.3)

where the rightmost term is a source and sink term for Coulomb collisions. Specific operators

for the Coulomb collision terms give the Fokker-Planck equation and the Vlasov equation. The

particles are coupled to the electromagnetic fields via Maxwell’s equations, which can be written
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in Lorentz-Heaviside units as

1
𝑐

𝜕E
𝜕𝑡

= ∇ × B − 4𝜋
𝑐

J (1.4)

1
𝑐

𝜕B
𝜕𝑡

= −∇ × E (1.5)

∇ · E = 𝑞 (1.6)

∇ · B = 0, (1.7)

where the current and charge densities are defined as

J ≡
∑︁
𝑠

𝑞𝑠𝑛𝑠v (1.8)

𝑞 ≡
∑︁
𝑠

𝑞𝑠𝑛𝑠 (1.9)

and 𝑛𝑠 is the zeroth moment of the distribution function,

𝑛𝑠 =

∫
𝑓𝑠𝑑v. (1.10)

Examples of high Knudsen number systems in astrophysics include the microphysics of particle

acceleration via shocks and magnetized turbulence to create cosmic rays and the magnetosphere

surrounding many planets.

Since the equations in kinetic theories have high dimension – 6D PDFs are needed for each

species even with the statistical simplifications used for the Boltzmann and Vlasov equations –

numerical approaches are often limited. Monte Carlo (MC) methods (Metropolis et al., 1953),

which rely on random sampling to approximate solutions, are generally more useful for highly

dimensional systems compared to other methods such as finite volume or finite element (see Section

1.2.4 and Humpherys et al., 2017). The most widely used method for kinetic theories is the Particle-

in-Cell method (PIC), where the distributions are species are randomly sampled by super-particles

representing populations of particles that are then used to approximate electromagnetic fields across

a mesh of cells (Harlow et al., 1955; Dawson, 1983; Tskhakaya et al., 2007). The electromagnetic

fields are then used to update the positions and velocities of the super-particles, evolving the fields

and then particles with a leapfrog integration method. As an MC method, PIC converges slowly with
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increased super-particle count, improving accuracy at a 𝑛1/2 rate where 𝑛 is the number of super-

particles (Myers et al., 2016). For large systems or long evolution times this slow convergence makes

PIC a resource-intensive, cumbersome, and sometimes infeasible computational method, depending

on the system of interest (Harlow, 1962; Liu et al., 2019). Fortunately, larger systems necessarily

mean smaller Knudsen numbers, for which more computationally amendable approaches exist.

Low Knudsen number plasmas are best described with fluid theories, assuming continuum

particle distributions in thermodynamic equilibrium (or close to thermodynamic equilibrium, with

corrections). Although the kinetic theories and associated equations are still valid for low Knudsen

number plasmas, their high dimensionality leads us to use approximations of these equations that

are appropriate for a continuum particle distribution. We assume a thermodynamic distribution of

the fluid, such as the Maxwell-Boltzmann distribution, which implies thermodynamic equilibrium,

so that PDFs are not directly evolved. Taking the first three moments from the Boltzmann equation

– multiplying Equation 1.3 by 𝑚𝑠, 𝑚𝑠v, and 𝑚𝑠𝑣2/2 respectively and integrating over all velocity

space – yields equations for conservation of mass, momentum, and energy (Kramer et al., 2020;

Bittencourt, 2004). If we apply these for a single species non-relativistic fluid, ignoring other

iteractions such as viscosity and electromagnetic fields, we obtain the Euler equations (Toro, 2009;

Chen & Chen, 1984; Bittencourt, 2004; Bellan, 2008):

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 + 𝜌∇ · v = 0 (1.11)

𝜕𝜌v
𝜕𝑡

+ ∇ · (𝜌v ⊗ v) + ∇𝑝 = 0 (1.12)

𝜕𝜀

𝜕𝑡
+ ∇ · v (𝜀 + 𝑝) = 0 (1.13)

where 𝜌 is the density, v is the flow velocity, 𝑝 is the pressure, 𝜀 is the energy density including

kinetic and thermal contribution, and 𝐼 is the identity matrix. A viscosity stress tensor can be added

to the momentum equation to give the Navier-Stokes equations.

Electromagnetic field can be coupled to the Euler equations via Maxwell’s equations to give

models that better suit plasmas, where electromagnetic fields can influence the medium. In the

ideal plasma limit, where currents are instantaneous and resistance is zero (leading to zero electric
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fields), we get the ideal magnetohydrodynamics (MHD) equations (Toro, 2009; Bittencourt, 2004;

Bellan, 2008):

𝜕𝜌

𝜕𝑡
+ v · ∇𝜌 + 𝜌∇ · v = 0 (1.14)

𝜕𝜌v
𝜕𝑡

+ ∇ · (𝜌v ⊗ v − B ⊗ B) + ∇
(
𝑝 + 𝐵2/2

)
= 0 (1.15)

𝜕𝜀

𝜕𝑡
+ ∇ ·

[
v
(
𝜀 + 𝑝 + 𝐵2/2

)
− B (B · v)

]
= 0 (1.16)

with only two components remaining from Maxwell’s equations due to vanishing electric fields

𝜕B
𝜕𝑡

= ∇ × (v × B) . (1.17)

Although the ideal MHD equations provide a good model for many plasmas, they can be extended

to include a variety of second order plasma effects.

Including other electromagnetic effects leads to non-ideal MHD equation sets. Resistivity can

be included in this model via Ohm’s Law to arrive at the resistive MHD equations, which support

magnetic reconnection in the modeled plasma, while including anisotropic diffusion and thermal

conduction along magnetic field lines gives Braginksii MHD (Braginskii, 1965).

The appropriate kinetic or fluid approximation depends on both on the Knudsen number and

on the charge separation distance

Λ𝑑 ≡ 𝑘𝐷

𝐿
(1.18)

which is the degree to which electric fields are relevant to the plasma, and where 𝑘𝐷 is the Debye

length

𝑘2
𝐷 ≡ 4𝜋𝑛𝑞2

𝑘𝐵𝑇
, (1.19)

which is the how far the charged particles’ comprising the plasma net electrostatic effect persists,

where 𝑛 is the number density of the particles, 𝑞 is their elementary charge, 𝑘𝐵 is the Boltzmann

constant, and𝑇 is their temperature. If the Debye length is small compared to the system size then the

system is electrically well-screened, so that the electric fields from discrete charges are unimportant

compared to macroscale electromagnetic fields (Bittencourt, 2004; Bellan, 2008). In the extreme

high Λ𝑑 and low Knudsen number limit the fluid is neutral, and standard fluid dynamics governed
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via Euler’s equations are relevant (Kramer et al., 2020). As the Knudsen number is increased and

the dissipation scale becomes closer to the system scale, the Navier-Stokes equations become more

appropriate. In the low Λ𝑑 and low Knudsen number limit the plasma is an ideal plasma where the

ideal MHD equation are best applicable. As the system size is shrunk dissipation scales and small

scale plasma instabilities become more relevant, leading to non-ideal MHD approximations such

as resistive MHD (Bonafede et al., 2011) and Braginskii MHD (St-Onge et al., 2020) becoming

more applicable.

1.2.2 Turbulence in Plasmas

Turbulence is the chaotic flow, density, and pressure structures that form in all fluids when the

kinetic or magnetic energy in the fluid exceeds dampening due to viscosity, which is the internal

friction or resistance to flow within the fluid (see Figure 1.4; McComb, 1990). Being formally

chaotic, the evolution of turbulent flows cannot be predicted exactly, but are better understood

statistically on a macroscopic and microscopic level.

The onset of turbulence in a fluid can be predicted by the dimensionless Reynolds number

(Stokes, 1851; Sommerfeld, 1909; Reynolds, 1883; Rott, 1990), which is defined as

Re ≡ 𝑣𝐿

𝜈
(1.20)

where 𝑣 is the fluid velocity, 𝐿 is the characteristic length scale that depends on the size of the system

examined, and 𝜈 is the kinematic viscosity. Although the transition point is fuzzy and depends on

the fluid, flow structure, and system in question, fluids with a Reynolds number above 103 − 104

exhibit instabilities in smooth (laminar) flows that disrupt them into turbulent flows (see Figure 1.5,

Incropera & DeWitt, 1981). In terms of fluids encountered in everyday life, air has a low viscosity

and thus higher Reynolds numbers for similar velocities and scales compared to water and honey,

which have comparatively higher viscosities and thus lower Reynolds number and are less prone

to turbulent flows. Viscosity in both liquids and gases arise from molecular interactions but the

origin of these forces can be quite different (Bird et al., 2006). As relevant to this dissertation,

viscosity within gases arises primarily from molecular diffusion, where the relevant scales are on
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Figure 1.4: Schlieren photograph showing the thermal plume of a lit candle, showing the smooth
rising flow starting from the base of the flame that transitions into turbulence at the top of the flame.
As a gas, the viscosity in smoke and air is low; thus, the velocity of the uplifted heated gas is sufficient
to create a high Reynolds number flow, with Re ∼> 103, which is prone to fluid instabilities. The
laminar flow originating from the flame decays into turbulence as these instabilities grow further
down the flow.
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Figure 1.5: Photographs of a cylinder moving through a tank of water containing aluminum powder
(van Dyke, 1982). The higher the velocity of the water flow relative to the cylinder the higher the
Reynolds number, showing flows from top to bottom with Re = 9.6, Re = 2,000, and Re = 10,000.
As the Reynolds number is increased beyond ∼ 103, the flow becomes prone to fluid instabilities
which grow non-linearly as the flow moves past the cylinder. These instabilities develop into the
turbulent flow beyond the cylinder, as best seen on the right hand side with the Re = 10,000 flow.
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the order of the mean free path of particles. This length scale at which dissipation becomes relevant

is known as the dissipation scale or the Kolmogorov length scale. Since the system scales of gases

studied are often much larger than the dissipation scale, the Reynolds number is often quite high

for gas systems and thus they are usually turbulent. Since viscosity serves as a dampening force

against kinetic flow, it converts macroscopic kinetic energy in the fluid into thermal energy at the

dissipation scale.
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Figure 1.6: Diagram of the energy spectra of a turbulent plasma denoting the hydrodynamic
turbulent cascade and the effects of magnetic fields and limited simulations resolution on the
energy spectra. Wavenumber increases along the 𝑥−axis, with larger length scales to the left and
smaller length scales to the right. Energy contained in the plasma at a certain wavenumber is
plotted along the 𝑦−axis. The black solid line shows the kinetic energy spectrum of a plasma
with no magnetic fields, where kinetic energy is introduced into the plasma at the production
scale (marked by the leftmost vertical dashed black line) and dissipates into thermal heating at
the dissipation scale (marked by the rightmost vertical dashed black line). Between these scales,
turbulent plasmas follow a 𝑘−5/3 power law in the kinetic energy spectrum. With the addition of
magnetic fields, in the resulting kinetic energy spectrum (shown in red) the power law is flattened
or broken, with more energy at smaller scales. In simulations without an explicit viscosity, the
smallest cell size introduces a dissipation length scale (the vertical dashed blue line) potentially
larger than the physical length scale, which truncates the energy spectrum (in solid blue). Increased
resolution decreases the dissipation imposed by numerics.

Energy distribution in a turbulent plasma can be further understood via its energy power

spectrum (Taylor, 1938) as shown in Figure 1.6. With this approach, we examine the energy (which

may be kinetic, magnetic, thermal, or a total energy) contained in the plasma at every length scale.

This can be computed from a 3D plasma via a Fourier transform into spectral space or also from
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structure functions, which are the real-space equivalent of the power spectrum (Arenas & Chorin,

2006), as used by Kolmogorov (1941). These methods will give the energy power spectrum as

a function of wavenumber 𝑘 or wavelength 𝜆 = 2𝜋/𝑘 . Smaller 𝑘 pertains to larger length scales

while higher 𝑘 pertain to smaller length scales.

The energy spectrum of a turbulent fluid reveals how turbulence transfers energy from larger

scales to smaller scales via the Kolmogorov cascade model of turbulence (Richardson, 1922;

Beresnyak, 2019; Kolmogorov, 1941). When energy is introduced to the plasma by external forces

at a certain length scale, it produces eddies and flows at these injection scales. In the ICM, large

scale production includes contraction from the initial conditions, galaxy cluster mergers, and at a

smaller scale (∼ 10 − 100 kpc) AGN feedback. These large scale energy injections lead to large

eddies that break up into smaller eddies (higher wavenumber). As eddies break up, less kinetic

energy is transferred from the large eddies to smaller eddies. Eventually, the eddies become small

enough that viscous effects disallow smaller eddies and instead the kinetic energy dissipates into

thermal heating, i.e., turbulent dissipation or turbulent heating. In the ICM this dissipation occurs

due to plasma instabilities with length scales on the order of the cyclotron radius, which is typically

on the order of 1 km. If the small-scale turbulent motions are statistically isotropic, then the

energy spectrum between the injection scale and dissipation scale follows a power law 𝐸 (𝑘) ∝ 𝑘−𝛾

with spectral index 𝛾 = 5/3, as predicted by Kolmogorov (1941) for incompressible hydrodynamic

turbulence.

The addition of magnetic fields to a turbulent plasma greatly complicates models of turbulence

and has been under intense research and debate over the last decade (Beresnyak, 2019; Schekochihin,

2020). Not only do magnetic fields introduce an additional energy reservoir with its own energy

spectrum apart from the kinetic energy spectrum, but magnetic fields also confine and collimate

kinetic flows while the kinetic motions twist and wind magnetic fields, exchanging energy between

these reservoirs (Grete et al., 2017, 2018, 2021b; Glines et al., 2021) and generally disrupting the

assumptions of Kolmogorov turbulence.

Non-ideal MHD effects due to particle interactions near the particle scale lead to additional
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dissipation in plasmas, leading to the magnetic Reynolds number (Beresnyak, 2019)

Re𝑚 ≡ 𝑣𝐿

𝜂
(1.21)

where 𝑣 and 𝐿 are again the velocity and length scale of the scale of interest, and 𝜂 is the magnetic

diffusivity

𝜂 =
𝑐2

4𝜋𝜎
(1.22)

where 𝑐 is the speed of light and 𝜎 is the conductivity. Magnetic fields likewise dissipate on small

scales due to these same particle interactions, giving the Lundquist number (Beresnyak, 2019)

𝑆 ≡ 𝑣𝐴𝐿

𝜂
(1.23)

where 𝑣𝐴 is the Alfvén speed

𝑣𝐴 ≡ 𝐵√︁
4𝜋𝜌

(1.24)

where 𝐵 is the magnetic field strength. Similar to how high Reynolds number lead to fluids more

prone to turbulence, high magnetic Reynolds numbers and Lundquist numbers (such as in the ICM)

lead to plasmas that are more prone to magnetized turbulence (Beresnyak, 2019).

In the presence of a strong mean-field magnetic field, meaning there is a significant large scale

magnetic field with associated Alfvèn speed much greater than velocity perturbations, perturbations

with wavevectors perpendicular to the magnetic fields are well favored over parallel wavevectors,

producing anisotropic turbulent motions in conflict with the assumptions of Kolmogorov turbulence

(Montgomery & Turner, 1981; Shebalin et al., 1983).

Turbulence may also play a significant role in the amplification of magnetic fields in the ICM

via the small-scale turbulent dynamo (Roh et al., 2019; Tobias, 2021). In this dynamo, the twisting

and folding of magnetic fields by the turbulent motions in small eddies leads to an increase in the

magnetic fields on small scales (Schekochihin et al., 2004; Steinwandel et al., 2021). Magnetic

tension in the plasma in some cases can also accelerate or hinder the growth of turbulence in

the magnetic and kinetic spectra at different rates (Glines et al., 2021; Bambic et al., 2018). It is

currently unknown what the true spectral index of a magnetized plasma is, or if the energy spectrum
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is a power law between the production and dissipation scales (Grete et al., 2017, 2018; Glines et al.,

2021; Grete et al., 2021b).

Magnetized turbulence in the ICM (and the applicability of MHD to the ICM in general) is

complicated due to the ICM being weakly collisional: the mean-free path in the ICM, on the order

of 1 − 105 pc3, is not much smaller than the system scales of the ICM, which is a requirement

of a collisional plasma and an assumption in most theories of turbulence. Small scale plasma

instabilities may instead make up for the lost dissipation from collisions, although this is an area of

open research (Lyutikov, 2007; Rosin et al., 2011; Berlok & Pessah, 2015). The pressure anisotropy

of weakly collisional plasmas should be accounted for in models of the ICM and may have an effect

on turbulence dissipation in the ICM (Kunz et al., 2011).

Previous theoretical studies have estimated the turbulent dissipation in galaxy clusters, showing

that an RMS turbulence velocity within 100 to 300 km s−1 can produce sufficient turbulence to

match cooling within clusters (Dennis & Chandran, 2005). Observational studies have estimated

the turbulent heating by inferring a power spectrum of density fluctuations in cool core galaxy

clusters imprinted on high-resolution Chandra images (Zhuravleva et al., 2014, 2019; Li et al.,

2020; Vidal-García et al., 2021). Although these studies have shown that turbulent heating may

be sufficient to counteract overcooling, they have approximated the turbulence within the ICM

as non-magnetized. It is also unclear whether processes in the ICM such as AGN feedback are

sufficient to drive this turbulence, or whether multiple cycles of jet feedback are required (Heinrich

et al., 2021). Generally, better understanding of magnetized turbulent dissipation within diffuse

astrophysical plasmas such as the ICM is needed, and understanding of this phenomenon can be

expanded via numerical simulations.

1.2.3 The Simulation of Plasmas as a Research Tool

Although plasmas are ubiquitous throughout the universe and are often created in laboratories,

recreating exact astrophysical plasma conditions (or their scaled-down equivalent) and observing

3Mean free path of Coulomb collisions in the ICM (Spitzer, 1956, 1978)
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them in a laboratory can be challenging and prohibitively expensive. Astrophysical plasmas span

huge distances, both high and low densities, and extreme energies that are nearly impossible to

recreate in a lab. Observing certain characteristics of astrophysical plasmas such as the magnetic

fields and small scale turbulence can also be difficult due to the lack of direct electromagnetic

emissions and limited resolution of telescopes. The complex and often non-linear nature of

the equations governing these plasmas also makes pen and paper theoretical work limited. In

both terrestrial and astrophysical plasmas, numerical simulations bridge the gaps between theory,

observations, and experimental design. Numerical simulations of plasmas serves as a simplified,

affordable, and accessible experimental stand-in for real plasmas, giving insight to both observations

and experiments.

Simulating turbulent plasmas comes with its own complexities. Numerical methods implicitly

but unavoidably add a numerical viscosity, which introduces a dissipation scale on the order of

the resolution of the simulation. If a system can be fully resolved with elements smaller than

the physical dissipation scale, then the entire turbulent cascade can be directly captured with

an explicitly included realistic viscosity. Since turbulence in the ICM is driven on scales of

kpc but dissipates on the scale of km, spanning several orders of magnitude, fully resolving the

turbulent cascade of the magnetized plasma is infeasible for the foreseeable future due to the

enormous volume of data that would be required to simulate a galaxy cluster down to km scales.

As a result, the dissipation scale is artificially large and the turbulent dissipation is stronger in

simulated clusters. This over-powered turbulent dissipation can be diminished by increasing the

spatial resolution of simulations, although numerical dissipation will exceed the true dissipation

using supercomputing resources available in the near to intermediate future. This translates to a

difference in Reynolds number between the simulated plasma and the target system. Simulations

on current supercomputers can achieve Reynolds numbers up to Re ∼ 103 −104 (Ritos et al., 2018)

whereas Reynolds numbers in the ICM could be as high as Re > 1012 (Miniati, 2014, 2015; Egan

et al., 2016). Although larger supercomputers will enable higher resolution and lower dissipation,

the achieved Reynolds number of simulations is unlikely to reach the true Reynolds number of the
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ICM for the foreseeable future.

1.2.4 Numerical Methods for Plasmas in the Fluid Approximation

At its core, simulating plasmas in the fluid approximation amounts to evolving approximate

solutions to the partial differential equations describing the plasma. Plasmas in the fluid regime

have been simulated via many classes of methods developed for computational fluid dynamics

(CFD) but extended to include magnetic fields for MHD or non-ideal MHD (Trac & Pen, 2003;

Lind et al., 2020; Ledvina et al., 2008). Although not an exhaustive list, these methods include:

• Finite difference (FD) methods, where the partial differential equations are approximated via

finite differences on a mesh of cells (Trac & Pen, 2003; Brandenburg & Dobler, 2010)

• Finite volume (FV) methods, where the fluid equations are converted to surface integrals

constituting fluxes between cells (Toro, 2009; Stone & Norman, 1992; Stone et al., 2008a;

Bryan et al., 2014; White et al., 2016a)

• Finite element (FE) methods, which comprise a variety of other methods (including discontinuous-

Galerkin methods, DG) where the plasma is also discretized into a mesh of cells (Meier,

1999)

• Smoothed particle hydrodynamics(SPH), where a mesh is forgone and the fluid is represented

by particles with overlapping spatially smoothed density functions (Katz et al., 1996; Springel

et al., 2001; Wadsley et al., 2004; Springel, 2005, 2010)

• Pseudo-spectral methods, where the equations are solved in a spectral basis (such as with

Fourier transforms) and with an additional basis to quickly convert to a spatial grid (Simon,

1992; Burns et al., 2020)

These fluid methods can be broadly divided by their specification of the fluid flow into Eulerian

and Lagrangian specifications. Lagrangian specifications follow along with a parcel of the fluid,

whether that be a mass or volumetric discretization (See Hopkins, 2014, for a Lagrangian code that
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implements both mass and volumetric discretizations), whereas Euler specifications follow fluid

motion as it moves through a discretization of space. In a simple analogy of the flow of a river, a

Lagrangian specification would follow the water as a boat moving with the river while an Eulerian

specification would follow the water from a bridge stationary to the river.

Codes using Lagrangian specifications typically discretize using particles representing discrete

masses or volumes within the domain. SPH is historically the most used Lagrangian method within

astrophysics (Katz et al., 1996; Springel et al., 2001; Springel, 2005), although recent methods

have innovated beyond SPH by including corrections to better capture shocks like an Eulerian

specification (Hopkins, 2014) or to use a moving mesh where a Godunov-like scheme (explained

below) can be applied to a Lagrangian code (Weinberger et al., 2020).

Codes using an Eulerian specification typically discretize the fluid domain into a mesh of cells

within which properties of the fluid are tracked. In the case of FV (Toro, 2009; Stone & Norman,

1992; Stone et al., 2008a; Bryan et al., 2014; White et al., 2016a) and FD (Trac & Pen, 2003;

Brandenburg & Dobler, 2010) methods, the cell averages of variables such as density, momentum,

pressure, and energy are tracked. For other Eulerian methods such as DG methods, a linear

combination of polynomials of these same variables are tracked, in addition to the cell averages

evolving quadratic, cubic, and higher order spatial terms.

The theoretical basis for FV plasma methods begins the strong form of the fluid equations,

where the conservation laws for the conserved quantities such as density, momentum, energy, etc.

are expressed in terms of divergence of fluxes and source terms, i.e.

𝜕

𝜕𝑡
U + ∇ · F (U) = S, (1.25)

where U are the conserved variables, F are flux terms, and S are source terms. This strong form

of the equations holds absolutely for the plasma. This strong form of the equations is converted to

the weak form of the equation set using the divergence theorem, leading to a set of surface integrals

to be satisfied (LeVeque, 2002), i.e.∫
Ω

𝜕

𝜕𝑡
U𝑑Ω +

∫
Ω
∇ · F (U) 𝑑Ω =

∫
Ω
S𝑑Ω (1.26)
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whereΩ is the domain of a single cell from the discretized mesh. AssumingU andF are sufficiently

smooth over Ω allows us to apply the divergence theorem to obtain the weak formulation

𝜕

𝜕𝑡

∫
Ω
U𝑑Ω +

∫
𝜕Ω

F (U) · n𝑑𝐴 =

∫
Ω
S𝑑Ω. (1.27)

The advantage of the weak formulation is that it permits discontinuous solutions between cells

or different Ω volumes where the divergence is not defined; i.e., the fluid can be approximated

with a mesh of cells between which the fluid description is discontinuous. In a FV method, the

cell averages of fluid quantities are tracked in each cell while these surface integrals become fluid

fluxes between neighboring cells. Most FV methods for CFD are Godunov-like schemes (Godunov,

1959; Toro, 2009), where the fluxes are determined by solving or approximating a solution to a

local Riemann problem at each cell interface. In a typical Godunov-like scheme, the fluid state at

both sides of each cell interface is first reconstructed using an interpolation from the cell averages

in surrounding cells. At each cell interface, the two fluid states from each side creates a Riemann

problem that can be solved to determine the fluid flux into each cell. This computed flux is then

used in the numerical integration to advance the state of the fluid in time.

In a DG method, solutions to the weak form of the equation set take the form of linear combina-

tions of polynomials (such as the Legendre polynomials), which allow higher order representations

of the fluid compared to FV methods (Reed & Hill, 1973; Cockburn et al., 2005; Chen & Liu, 2013).

A 0th order DG method, which carries a constant contribution across is each cell, is equivalent

to a FV method carrying cell averages. The method order for DG can be increased arbitrarily,

however, just by carrying more polynomial terms. Reconstruction of fluid states at cell interfaces

is computed using the polynomials internal to each cell while the Riemann problems solved in DG

are equivalent to those solved in FV methods. Exact integration of surface integrals is facilitated

by Gaussian quadrature. DG methods are also potentially better suited for upcoming hardware by

being more arithmetically intensive, i.e., by executing more floating point operations per byte of

data loaded or written from memory, which pairs well with hardware advances improving com-

putational throughput faster than memory bandwidth (Klöckner et al., 2009, ; see discussion of

changing supercomputer architectures in Section 1.4).
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1.3 The Intracluster Medium – Plasma Physics Applied to Galaxy Clusters

The ICM, a hot diffuse plasma, comprises the majority of baryonic matter in galaxy clusters and

is the primary emitter of cluster X-rays. Thus, the ICM has a profound effect on both how clusters

evolve and how we observe them. Modeling and understanding the plasma physics governing

the ICM allows better characterizations of galaxy clusters as a whole, one ultimate goal being to

refine the luminosity-mass relation for galaxy clusters. This would enable surveys of galaxy cluster

number densities that would reveal properties of dark matter and dark energy and the large scale

structure of the universe.

Additionally, the ICM provides a unique plasma laboratory that can inform terrestrial plasmas.

The high temperatures and low densities of the ICM are impractical to achieve on Earth, restricting

their study to astrophysical observations, theory, and simulation. However, the ICM is likely very

turbulent (Brüggen & Vazza, 2015; Zhuravleva et al., 2014; Simionescu et al., 2019), allowing

study of magnetized turbulence that directly affects applications of plasmas on Earth. Turbulence

triggered by the onset of plasma instabilities is a fundamental obstacle for achieving net power-

generating fusion in both ICF (Casner, 2021) and MCF (Boozer, 2005; Sanchez & Newman, 2015),

as it disrupts plasmas from being long-lived enough to achieve fusion. By studying the long-lived

turbulent plasmas in astrophysical contexts via observations, we can better understand magnetized

turbulence in laboratory plasmas and potentially develop more effective plasma devices (Ryutov &

Remington, 2002; Chatterjee et al., 2017).

Conversely, since laboratory plasmas can be examined in closer detail and their experimental

parameters changed, they can be used to study astrophysical plasmas as long as results are scaled

appropriately (Ryutov & Remington, 2002). The magnetized supersonic flows, shocks, jets, and

the development of plasma instabilities in these systems can be studied in laboratory high energy

density plasmas (HEDP; Giuliani et al., 2012), which can inform understanding of these phenomena

in the ICM (Beg, 2019). From a numerical perspective, methods, algorithms, and codes used for

modeling laboratory plasmas can be repurposed for astrophysical plasmas (Howes et al., 2008) and
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vice versa (Beresnyak et al., 2018).

1.3.1 The cool core cluster problem

Approximately half of the galaxy clusters in the universe have high central X-ray surface

brightnesses that would indicate significant radiative thermal loses within the inner several kpc

(Fabian, 1994; Cavagnolo et al., 2009). Galaxy clusters with this property are known as cool-core

(CC) clusters. Consequently, the centers of the galaxy clusters should quickly cool and collapse

due to these energy losses within a few hundred million years in an event known as a “cooling

catastrophe,” which would be accompanied by massive rates of star formation. Historically, from

a theoretical perspective these CC cluster centers would be replenished by massive inflows of gas

known as cooling flows (Fabian, 1994). These cooling flows were never observed, however, nor

were the elevated rates of star formation that would accompany the collapsing of the cold gas.

Although X-rays are being emitted and energy is being radiated away, CC clusters are not cooling

down - although not in HSE, they are apparently quasi-stable. Thus, some mechanism must offset

or disrupt this cooling. Many potential mechanisms for doing so have been proposed.

Galaxy cluster mergers could disrupt this cooling since a large scale interaction such as a merger

can inject sufficient energy into a CC cluster to offset central heating. However, galaxy cluster

mergers are too infrequent to account for the abundance of quasi-stable CC clusters, occurring on

the scale of 1 Gyr rather than 10 − 100 Myr cooling times observed. Thermal conduction, where

thermal energy from the cluster outreaches is conducted along magnetic field lines to the cluster

center, can offset some cooling but the effect is insufficient to offset all central cooling (Voigt et al.,

2002; Ruszkowski & Begelman, 2002; Voigt & Fabian, 2004; Parrish et al., 2009). Stars collapsing

into supernovae within the cluster can also inject heating but are likewise insufficient in power and

frequency to offset cooling and also introduce metals, which promote cooling (Bregman & David,

1989; Domainko et al., 2004).

AGN feedback via jets excited by gas infalling onto the accretion disk of the AGN’s central

SMBH, however, is widely agreed to be sufficient to offset cooling (Fabian et al., 2000; McNamara
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Figure 1.7: Bubbles inflated in by AGN jets in galaxy cluster MS0735.6+7421, as evidenced by
X-ray cavities in the ICM and radio synchrotron emission from cosmic rays accelerated at the shock
fronts around the bubble. Image made by NASA

et al., 2000; Gitti et al., 2012; Fabian, 2012). The capability of AGN jets to inject sufficient

energy into the ICM to offset cooling was realized by bubbles inflated by AGN feedback, which

appear as X-ray cavities indicating evacuated gas and radio lobes where cosmic rays are accelerated

across shocks and emit radio synchrotron radiation at the bubble shock-front (Fabian et al., 2000;

McNamara et al., 2000). Figure 1.7 shows said bubbles inflated by AGN jets in galaxy cluster

MS0735.6+7421 as observed in X-ray and radio wavelengths. The energy injected by the AGN into

the cluster can be estimated by the work done on the gas to inflate these bubbles;𝑊 ∼ 𝑃d𝑉 where

𝑊 is the work done by the AGN, 𝑃 is the pressure of the bubble, and d𝑉 is the size of the bubble

(McNamara et al., 2000; Churazov et al., 2002; Blanton et al., 2010). The work done by AGN

feedback is sufficient to offset the central cooling in CC clusters. In our current understanding of

CC clusters, AGN feedback is widely believed to be the dominant mechanism preventing cooling

flows and cooling catastrophes.
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Many aspects of AGN feedback are still poorly understood (Morganti, 2017), including how

AGN feedback is triggered, how AGN feedback deposits energy into the ICM, and how these

two factors of AGN feedback combine to apparently maintain CC clusters in a thermodynamically

unstable multiphase state (Gaspari et al., 2012b; Tümer et al., 2019). The AGN feedback is sufficient

to offset cooling, prevent cooling flows, and quench star formation, but it is not so powerful as to

evacuate gas from CC clusters. Instead, the cluster centers are maintained in a thermodynamically

unstable multiphase state, with blobs of cold condensed gas amongst hot, rapidly cooling X-ray

bright gas. Thus, AGN feedback is believed to be self-regulating – i.e. increased AGN feedback

diminishes AGN triggering, thereby tempering further feedback. The multiphase nature of the AGN

environment may be key to the self-regulation of AGN feedback in CC cores, which is explored in

the precipitation model of self-regulating AGN feedback (Voit et al., 2015, 2017).

1.3.2 Self-Regulating AGN Feedback via Precipitation

Given the thermodynamically unstable nature of the multiphase medium of the AGN envi-

ronment that is maintained in CC clusters, it may play a significant role in the AGN triggering

mechanism. In the precipitation model of self-regulating feedback shown in Figure 1.8 this mul-

tiphase medium leads to cold gas condensing out of the ICM and falling inwards due to loss of

buoyancy onto the AGN accretion disk. Since accretion of mass onto the SMBH is inefficient,

much of the gravitational potential energy of this infalling mass is diverted into the jet driven by the

accretion disk, feeding energy into the ICM. This feedback drives outflows that uplift condensed

blobs of cold gas which would otherwise feed onto the AGN jet, regulating the feedback. Addition-

ally, the energy deposited by the AGN into the outskirts of the cluster creates an entropy gradient

sloping down towards the multiphase region of the cluster. As gas cools in this pow-law zone of

the entropy curve of the cluster it loses buoyancy and falls into the isentropic zone, replenishing

the gas (Voit et al., 2015, 2017).

From observations, the boundary between the isentropic zone and the power-law zone of the

entropy profile is where the ratio of the cooling time 𝑡cool, the time the plasma would take to cool
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Figure 1.8: Diagram of the self-regulating AGN feedback precipitation model from Voit et al.
(2017), where the left panel shows a diagram of AGN feedback in a galaxy cluster and the right
panel shows the entropy 𝐾 ≡ 𝑘𝐵𝑇𝑛

−2/3
𝑒 where 𝑛𝑒 is the electron number density. In this model,

cold gas condenses in the isentropic central region of the galaxy cluster and accretes onto the
central SMBH, triggering feedback in the form of bipolar outflows that uplift condensed gas into
the power-law zone of the entropy profile in the cluster outreaches, tempering the overcooling
and condensation of gas. In this power-law zone, buoyancy suppresses condensation while uplift
promotes condensation. Observationally, the transition between the isentropic and power-law zones
of the entropy profile occurs where the ratio of cooling time to free fall time is 𝑡cool/𝑡ff ∼ 10, where
the cooling time 𝑡cool of a parcel of gas is the time it would take for it to radiative away all its energy
at its current rate of radiative cooling and the free fall time 𝑡ff of a parcel of gas is the time it would
take to infall from rest to the cluster center due to gravity.

to 0𝐾 at its current rate of emission, and the freefall time 𝑡ff, the time the gas would take to fall to

the cluster center from rest at its current radius, is approximately 𝑡cool/𝑡ff ∼ 10 (Cavagnolo et al.,

2008; Rafferty et al., 2008; McCourt et al., 2012; Meece et al., 2015).

In this model, the AGN feedback and triggering mechanisms are intrinsically tied to the mul-

tiphase nature of the AGN environment. However, the model is not specific on the details of how

AGN feedback couples to the ICM – how the AGN jet thermalizes energy into the ICM (Ho, 2004;

Kunz et al., 2011; Morganti, 2017).
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1.3.3 The nature of AGN Feedback

As gas accretes onto the AGN accretion disk around the central SMBH, the charged particles

comprising the plasma of the accretion disk winds up magnetic fields that collimate into jets that

emanate from both poles of the SMBH. Although these jets are likely the primary mechanism

by which the AGN deposits energy into the ICM, it is still under debate how the magnetized,

relativistic, tightly collimated jet thermalizes into heating and large scale outflows that can quench

cooling in such a way to self-regulate AGN feedback and maintain a multiphase AGN environment

(Young, 2010; Morganti, 2017).

One possible mechanism is turbulent dissipation incited by the AGN jet. Observational studies

have estimated the turbulent heating by inferring a power spectrum of density fluctuations in cool

core galaxy clusters imprinted on high-resolution Chandra images (Zhuravleva et al., 2014, 2019; Li

et al., 2020; Vidal-García et al., 2021). By approximating the turbulence as purely hydrodynamic,

velocity spectra can be inferred from these density perturbations and a 𝑘−5/3 energy spectra

turbulent cascade can be fit to the velocity spectra. This gives an observational estimate of the

turbulent heating in the cluster that is sufficient to offset cooling. This estimate, however, does not

account for the magnetic fields within the ICM which change the behavior of the turbulence.

This aspect of the ICM as a magnetized, potentially non-ideal MHD plasma may play a

significant role in the thermalization of AGN feedback. The AGN accretion disk winds up strong

magnetic fields that lead to the tight collimation of the AGN jet. These same fields may deposit

significant energy into the ICM (Li et al., 2006). The AGN jet may also play a role in the

amplification of existing magnetic fields within the galaxy cluster (Dubois et al., 2009) via a

turbulent dynamo (Federrath, 2016). Anisotropic pressure in the ICM as a high-𝛽 plasma may

trigger microscale instabilities in the plasma faster than if it were an ideal plasma, leading to higher

turbulent dissipation that can more closely match radiative cooling (Kunz et al., 2011).

Numerical simulations are one cornerstone of our advancement in understanding AGN jets and

how they interact with the ICM (Martí, 2019; Komissarov & Porth, 2021). Simulating the nature

of AGN feedback is one of the ultimate goals of the methods presented in this dissertation. The
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current and future state of this work is explored in Chapter 6.

1.3.4 Simulation of Galaxy Clusters

The large dynamical range of the ICM requires vast computational resources to simulate accu-

rately. The dynamical range of the ICM extends from the cluster scales on the order of 10 Mpc,

down to the 1 pc scale of molecular clouds and star forming regions, and further down to the 1 km

scale of plasma instabilities that drive dissipation in the diffuse plasma, spanning more than 20

orders of magnitude. Current world-class cosmological simulations can reach resolutions on the

order of 100 pc (Pillepich et al., 2019), more than 15 orders of magnitude larger than the 1 km scale

of plasma instabilities. In order to resolve said plasma instabilities directly in simulation we would

need on the order of
(
1015

)3
= 1045 as many elements as used presently, and thus a supercomputer

at least 1045 times larger than current supercomputers. Following the Courant–Friedrichs–Lewy

(CFL) condition, the duration of timesteps Δ𝑡 for this hypothetical simulation would need to satisfy

𝑣Δ𝑡

Δ𝑥
≤ 𝐶CFL (1.28)

where 𝑣 is the velocity (unchanged), Δ𝑥 is the cell size (now 1015 times smaller than current

simulations), and 𝐶CFL is a constant to maintain stability that depends on the method (unchanged).

ThusΔ𝑡would need to be 1015 times smaller than currently used timesteps and said simulation would

require 1015 as many timesteps to complete. Since individual CPU core speeds have stagnated and

are unlikely to increase in the near future (Leiserson et al., 2020), said supercomputer would need

to be 1015 times larger again to complete the simulation in the same human time, on the order of

months. In totality, we would need a supercomputer 1060 larger than present supercomputers (20

orders magnitude short of a "gogolFLOP" supercomputer). Assuming a variant of Moore’s Law

holds true for the indefinite future – that supercomputers will double in computational throughput

every 2 years – this computer will come online in ∼ 400 years.4

4If energy consumption per operation is the same for this hypothetical computer as current
hardware, this supercomputer would need 1061 MW = 1070 erg s−1 of power. Over one day it
would consume ∼ 1079 erg ∼ 1024 M⊙𝑐2 in energy.
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Since supercomputers in the foreseeable future are not capable of resolving the ICM down to

plasma instability scales, all simulations of the ICM are necessarily an approximation. Unresolved

key features of galaxy clusters such as the star forming regions and AGN must be approximated with

subgrid model prescriptions that mimic the unresolved physics using a combination of observations

and smaller scale simulations of plasmas and galaxy clusters. Within computational modeling,

such simulations are referred to as multiphysics simulations as they incorporate many physical

descriptions and scales into a single simulation. At its most basic, simulations of galaxy clusters

are comprised of a model for gravity and dark matter, a model of the plasma, and any number of

additional physics, feedback mechanisms, and subgrid models.

As the most massive component of the galaxy cluster, a treatment of the gravitational interactions

of dark matter is essential for galaxy cluster simulations. For computational efficiency for idealized

isolated galaxy clusters, this dark matter profile can be a fixed gravitational potential such as a

Navarro–Frenk–White profile (NFW; Navarro et al., 1996). The gold-standard for dynamically

evolving dark matter distributions, however, is to use an N-body method where the dark matter

population is discretized into super-particles that can be evolved following gravity including the

expansion of the universe (Aarseth et al., 1979). N-body simulations of dark matter have a long

history that pre-dates computers (Holmberg, 1941) and continues to be researched today (Rogers &

Peiris, 2021; Ebisu et al., 2022). To make robust predictions of the electromagnetic observations,

however, requires coupling a treatment of the dark matter, whether that be a fixed gravitational

potential or N-body simulation, to the baryonic matter.

This baryonic matter – the ICM – is a plasma that is reasonably approximated as a fluid5.

This plasma can be modeled using methods from CFD that may include magnetic fields for higher

5The ICM is weakly collisional, in that the the mean free path of particle-particle interactions
(via Coulomb collisions in the ICM) is long (1−105 pc) while the Debye length –𝜆2

𝐷
= 𝑘𝐵𝑇/4𝜋𝑛𝑞2,

which is a measure of the scale on which the electric fields from individual charged particles in
the plasma is relevant (Bellan, 2008) – is short. The ICM is thus electrically well screened, in that
macroscale electric fields dominate over the fields from individual particles, but particle-particle
collisions are infrequent. Non-ideal MHD models including pressure anisotropy and thermal
conduction are more appropriate for weakly collisional plasmas such as the ICM (Braginskii, 1965;
Berlok & Pessah, 2015).
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fidelity. As discussed in Section 1.2.4 there are a wide variety of methods, but also a range of

additional plasma physics that can be included. The ICM is potentially a non-ideal MHD plasma,

so including non-ideal MHD effects such as resistivity (Bonafede et al., 2011), anisotropic diffusion

(Berlok & Pessah, 2015), and thermal conduction (Narayan & Medvedev, 2001; Jubelgas et al.,

2004; Wagh et al., 2014) along magnetic field lines can provide a more realistic simulation of the

ICM.

The ICM also loses significant energy over time via free-free emission and line emission.

Free-free emission, or Bremsstrahlung emission, is caused by the deceleration of charged particles,

namely the electrons of the plasma, by the electric field of larger charged particles, specifically the

ions of the plasma. This radiative cooling rate depends on the temperature and ion density. In a

H/He plasma with hydrogen number density 𝑛H and hydrogen mass fraction 𝑋 ≈ 0.76 such that

𝑛H = 𝑋𝜌/𝑚𝑝 where 𝑚𝑝 is the proton mass, then the volumeteric free-free cooling rate is (Katz

et al., 1996)

Λfree-free ≈ 2.5 × 10−23𝑛2
H

(
𝑇

108 K

)1/2
erg . (1.29)

Free-free emission only dominates cooling when the plasma is fully ionized, with ICM temperatures

above ∼ 107 K. At lower temperatures other processes become more important. These processes

are collisional ionization, where atoms are ionized by collisions with electrons; recombination,

where electrons combine with an ion, emitting a photon; and collisional excitation, where atoms

are excited by collisions with electrons and then decay to a lower state (Mo et al., 2010). These

processes depend on both the temperature and ion species within the plasma, where larger nuclei,

or metals, lead to more cooling due to higher availability of electron orbitals. For numerical

simulations these processes can be pre-computed for the ICM with a fixed metallicity (Schure et al.,

2009) or with an evolving metallicity (Smith et al., 2017) combined with cooling tables to compute

a radiative cooling rate (Ferland et al., 2013). These effects persist for temperatures down to 104 K,

below which radiative losses are negligible for the dynamics of the ICM (Mo et al., 2010).

Beyond the basics of a gravitational or dark matter model and an ICM plasma model with

radiative cooling, many important systems contributing to the dynamics of the ICM such as the
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AGN, supernovae, and star forming molecular clouds, remain unresolved or underresolved due to

limited computational resources. These phenomena can be included via subgrid models, which

are prescriptions for the triggering and feedback of these systems on the ICM. For example, gas

accretion onto the AGN accretion disk (which is approximately 10−2 pc Hawkins, 2007) occurs

well below the 1 pc resolution of the current highest resolution isolated galaxy cluster simulations.

AGN triggering can instead be included with a subgrid model following a Bondi-Hoyle accretion

model (Bondi, 1952; Edgar, 2004), a boosted Bondi-Hoyle mode (Booth & Schaye, 2009), or a

cold-gas mass triggered model informed by the precipitation theory (Meece Jr, 2016). The accretion

disk physics that generate the AGN jet are likewise underresolved but various subgrid models of

the AGN jet can be used to incorporate this feedback (Li et al., 2006; Meece Jr, 2016; Glines et al.,

2020). Subgrid models for star formation, supernovae, turbulence (Schmidt & Federrath, 2011;

Vlaykov et al., 2016; Grete et al., 2016), and cosmic rays can similarly improve the simulation of

the galaxy cluster at the cost of complexity.

Despite these approximations, more resolution enabled by larger computational resources is

always preferred for achieving higher fidelity simulations of the ICM as it reduces the dependency on

artificial models and their free parameters. More complex multiphysics – including magnetic fields,

self-gravity, cosmic rays, plasma microphysics, cooling, and more complex subgrid models for

turbulence and AGN feedback – all impose additional computational expense, resolution constraints,

and time step constraints to galaxy cluster simulations. Astrophysics simulations and especially

simulations of the ICM are always wanting for more computational resources. In order to gain

access to such resources, astrophysical simulation codes must evolve with the changing landscape

of supercomputing hardware.

1.4 The Changing Supercomputer Architecture Landscape

Limitations to semiconductor manufacture have to led the predicted end of Moore’s law – the

trend in computer chip manufacturing observed over the last 50 years that transistor density has

doubled every two years – which has previously driven the growth of supercomputing resources.

Transistor dimensions are reaching the physical limitations of semiconductor manufacturing, with
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microchip features reaching 3 nm in the coming years, where the atomic radius of silicon is 0.1 nm,

meaning transistors in microchips now span 10s of atoms6. Smaller microchips, which allow

high clock speeds and thus faster computation, have become increasingly more difficult to develop

over the last two decades (Iwai, 1999; Theis & Wong, 2017). The power consumed by these

higher density microchips is likewise becoming more of an issue, since this power needs to be

transported away from the chip to prevent heat damage (Landauer, 1988). More recent designs

often trade computing speed for power efficiency, further limiting increases in computing resources

(Leiserson et al., 2020). Alternative materials to silicon and other technologies such as optical

transistors (Nolte & Nolte, 2001) may extend Moore’s law for a few years but eventually microchip

manufacture will reach hard physical limits of atomic radii. Although useful in some contexts, it is

unclear whether quantum computers will impact astrophysical simulations since they have limited

applications to CFD in general (Sammak et al., 2015; Steijl & Barakos, 2018).

Instead of relying on increasing clock speeds and processing cores to grow computing resources,

supercomputer hardware has increase the size of processing chips by adding more cores or more

parallelization to computer chips (See Figure 1.9; Leiserson et al., 2020). Whereas the Pentium Pro

CPUs in ASCI Red (Top500, 2000), the fastest supercomputer in June 2000, had 1 core per CPU, the

Xeon X5670 CPUS in Tianhe-1A (Top500, 2010), the fastest supercomputer in June 2010, had 12

cores per CPU, and the A64FX CPUs in Fugaku (Top500, 2020), the fastest supercomputer in June

2020 and at present, have 48 cores per CPU. Although individual core speeds have not improved

since roughly 2005 (Leiserson et al., 2020), the increased core count permits higher computational

throughput that is especially useful for CFD.

This trend in higher core counts on individual chips is taken to the extreme in hardware

accelerators – computer chips designed for higher core counts and parallelization compared to

traditional CPUs. Whereas a state-of-the-art Intel Xeon Platinum 8280 CPU used in Frontera, the

current leading supercomputer where a majority of throughput is via traditional CPUs (Top500,

2021), has 28 cores per CPU with 2 threads per core (Intel, 2021) and provides over 2×1012 floating
6This limitation in the size of microchip features has long been predicted, including by Feynman

in lectures on computation given during the 1980s (Feynman et al., 1998)
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Figure 1.9: Relative clock speeds of single core (black) and multicore (gray, orange, blue, and red,
in order of increasing core counts) processors relative to the Intel 80386 CPU using the SPECint
benchmark. The green round dots show processor clock frequencies, the frequency at which a
single core can execute a clock cycle to execute one or several operations, relative to the Intel
80386. Although clock frequencies have stagnated since the mid 2000s, processors have increased
performance by adding more cores. Future performance gains are increasingly dependent on higher
core counts. Figure from (Leiserson et al., 2020).

point (64 bit) operations per second, or 2 TFLOPS; the state-of-the-art NVIDIA A100 graphics

processing unit (GPU, Choquette et al., 2021) has 108 streaming microprocessors (SMs) with

a total of 6912 cores, providing 9.7 TFLOPS of computational throughput for comparable price

and energy consumption. Among the different accelerators, GPUs originally made to accelerate

graphics rendering have been especially well-suited for high performance scientific computing

(Du et al., 2011; Afzal et al., 2017; HajiRassouliha et al., 2018). GPU cores are designed for

performing the same computational tasks simultaneously on large blocks of data as opposed to near

complete independence between cores on CPUs. Although GPU cores are simpler than CPU cores,

providing less features and less independence in execution, they are physically smaller in size and
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thus more GPU cores than CPU cores can be fit onto the same silicon die and for a similar cost.

Thus, computational throughput can be expanded without depending on transistor manufacturing

improvements, extending the growth of HPC past the end of Moore’s Law (Leiserson et al., 2020).

GPUs’ high core counts make them remarkably well suited for highly parallelizable tasks such

as the methods used for CFD and plasma simulations (Griebel & Zaspel, 2010; Xu et al., 2015).

All of the largest upcoming supercomputers being built in the US will use GPUs for the vast

majority of their computational throughput. The US Department of Energy (DOE) is investing

in new supercomputers to break the exascale barrier, executing 1018 floating point operations

per second (FLOPS), an exaFLOP, on a single supercomputer. The goal is encapsulated in the

Exascale Computing Project (ECP), which funds both the software and hardware for an exascale

supercomputer (Messina, 2017). All US exascale supercomputers planned for the near future –

Frontier, Aurora, and El Capitan – will use GPUs to achieve an exaFLOPS.

These hardware accelerators can be difficult to program for compared to traditional CPUs,

however. This is not only because of their extreme vectorization and streamlined architecture that

maximizes computational throughput, but also since they require different application programming

interfaces (APIs). Traditional CPUs can be programmed using standard programming languages

such as C, C++, and FORTRAN. GPUs, on the other hand, use APIs specific to each manufacturer

(Patterson, 2010). NVidia GPUs, the historical leader in scientific computing with GPUs, uses the

CUDA API, AMD uses ROCm and also provides the CUDA-like HIP interface, while Intel uses

SYCL with its implementation named Data Parallel C++ (DPC++). Figure 1.10 shows a comparison

between these different APIs. This state of APIs for GPUs is detrimental for scientific computing,

as it requires rewriting code for each new API to use new computing resources. Said rewrites may

introduce new bugs in different versions of the software, while making algorithmic improvements

and additions to the the code requires updating the code for each API. New hardware architectures,

such as Field Programmable Gate Arrays (FPGAs), would require additional versions and more

development effort. Additionally, different architectures use different parallelization and memory

layouts which might lead a code design to perform optimally on one machine but underperform on
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#pragma omp simd
for( int i=0; i<n; i++){

z[i] = a*x[i] + y[i];
}

(a) C/C++ example, where OpenMP is used for vec-
torization.

__global__
void vec_add(int n,float a,
float *x,float *y,float *z){
int i = threadIdx.x
+ blockIdx.x*blockDim.x;

if (i < n)
z[i] = a*x[i] + y[i];

}
...
vec_add <<<(n+255)/256, 256>>>
(n, a, d_x, d_y, d_z);

(b) CUDA Example, where the arrays d_x, d_y,
and d_z are allocated as CUDA arrays within GPU
memory.

__global__ void
vec_add(int n, float a,
const float* __restrict__ x,
const float* __restrict__ y,
float* __restrict__ z) {
int i = hipThreadIdx_x
+ hipBlockDim_x*
hipBlockIdx_x;

if (i < n)
z[i] = a*x[i] + y[i];

}
...
hipLaunchKernelGGL(vec_add,
dim3((n+255)/256), dim3(256),
0, 0,
n, a, d_a, d_x, d_y, d_z);

(c) HIP Example, where the arrays d_x, d_y, and
d_z are allocated as HIP arrays within GPU memory.

...
parallel_for(n,
kernel_functor(

[ = ](id<> item) {
int i =
item.get_global(0);

d_z[i] = a*d_x[i] + d_y[i];
}));

(d) SYCL Example, where the arrays d_x, d_y, and
d_z are allocated within GPU memory.

Figure 1.10: Example code to execute z[i]=a*x[i]+y[i] with different programming APIs.
Even with this simple code example, there are significant differences in the implementation with
different APIs. Each API also requires different code outside of this snippet to manage memory
and execution on the GPU, along with a myriad of performance concerns.

36



others, wasting computing resources. The duplicated code for different hardware leads to higher

development costs in terms of scientific researchers’ time, which could otherwise be used to pursue

science goals. As algorithmic and method changes are made and as bugs are found in the code, the

different versions of the code written for the different architectures becomes out of sync, multiplying

the development cost for each new architecture. Generally, needing to rewrite code with different

APIs for each new hardware architecture limits scientific computing on these upcoming exascale

supercomputers.

1.4.1 Performance Portability

Performance portability APIs have been developed to address the issue of different APIs for

each hardware architecture (Reguly & Mudalige, 2020). Performance portability APIs provide

portability – code written with the framework can be run on multiple hardware architectures

without modification – and portable performance – the code executes with high performance,

efficiently using hardware resources and features, on multiple architectures with differing memory

and parallelization layouts. Within a performance portability framework, algorithms are written

with more abstraction from parallelization and memory management details. This approach allows

the API and the compiler to assemble a program for multiple hardware architectures from a

single version of the code, vastly cutting down code duplication and software development for

the scientist. The API can also vary the memory layout and parallelization strategy between

different architectures, optimizing for each with minimal effort on the part of the scientist. Recent

performance portability solutions include the libraries OCCA (Medina et al., 2014), Kokkos

(Carter Edwards et al., 2014; Trott et al., 2022), and RAJA (Beckingsale et al., 2019), the OpenMP

API with the "target offloading" capabilities beginning with OpenMP 4.5, and specifically for AMR

applications, the AMReX library (Zhang et al., 2019). With a single code version using these APIs,

the API backend can handle the execution of code and management of memory on both CPUs and

GPUs from the different manufacturers currently producing the world’s largest supercomputers.

The implementation of performance portability is an emerging field in scientific computing
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(Deakin et al., 2019). The construction of exascale supercomputers with each of the different GPU

manufacturers necessitates developing new performance portable astrophysics codes that can adapt

to these upcoming architectures as well as to future computers. Research into performance portabil-

ity strategies as well as quantifying performance portability across different hardware architectures

(Pennycook et al., 2016) is needed to better facilitate adoption of performance portability APIs in

scientific computing.

1.5 Outline of Dissertation

The remaining chapters of this dissertation are composed of first a series of four peer-reviewed

papers where I am either the first author or an equal co-first author, one chapter consisting of current

projects, and a final chapter for future directions of my work.

In Chapter 2 I explore the energy deposition requirements for self-regulating AGN feedback

triggered by cold gas accretion using thermal only abstractions of AGN feedback. This chapter

originally appeared as the published paper Glines et al. (2020).

In Chapter 3 I explore magnetized turbulence from decaying large scale flows, as might be

created by large scale infrequent events in the ICM such as AGN outbursts and galaxy cluster

mergers, using simulations of the magnetized Taylor-Green vortex. This chapter originally appeared

as the published paper Glines et al. (2021).

In Chapter 4 I present the implementation and profiling of the performance portable magne-

tohydrodynamics code K-Athena, which was used for the simulations in chapter 3. This chapter

originally appeared as the published paper Grete et al. (2021a), on which I am equal co-first author.

In Chapter 5 I present a new DG method for relativistic hydrodynamics. This chapter orig-

inally appeared as Glines et al. (2022), which has been submitted to the Astrophysical Journal

Supplements.

In Chapter 6 I present in-progress simulations of magnetized AGN feedback in galaxy clusters,

coming full circle to the nature of self-regulating AGN feedback.

Finally, in Chapter 7 I summarize the dissertation and discuss future directions of the methods,

codes, and scientific results presented in this dissertation.
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CHAPTER 2

TESTS OF AGN FEEDBACK KERNELS IN SIMULATED GALAXY CLUSTERS

This chapter first appeared as the published paper Glines et al. (2020). I include the original

abstract as the introduction to this chapter.

Chapter Abstract

In cool-core galaxy clusters with central cooling times much shorter than a Hubble time,

condensation of the ambient central gas is regulated by a heating mechanism, probably an

active galactic nucleus (AGN). Previous analytical work has suggested that certain radial

distributions of heat input may result in convergence to a quasi-steady global state that

does not substantively change on the timescale for radiative cooling, even if the heating and

cooling are not locally in balance. To test this hypothesis, we simulate idealized galaxy

cluster halos using the Enzo code with an idealized, spherically symmetric heat-input

kernel intended to emulate. Thermal energy is distributed with radius according to a range

of kernels, in which total heating is updated to match total cooling every 10 Myr. Some

heating kernels can maintain quasi-steady global configurations, but no kernel we tested

produces a quasi-steady state with central entropy as low as those observed in cool-core

clusters. The general behavior of the simulations depends on the proportion of heating

in the inner 10 kpc, with low central heating leading to central cooling catastrophes,

high central heating creating a central convective zone with an inverted entropy gradient,

and intermediate central heating resulting in a flat central entropy profile that exceeds

observations. The timescale on which our simulated halos fall into an unsteady multiphase

state is proportional to the square of the cooling time of the lowest entropy gas, allowing

more centrally concentrated heating to maintain a longer lasting steady state.
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2.1 Introduction

Cool-core (CC) clusters have X-ray surface brightness profiles with sharp central peaks produced

by substantial radiative losses of thermal energy from gas within the central few tens of kpc (Fabian,

1994). Given the observed rates of energy loss, CC clusters should be capable of radiating away

their central thermal energy in less than 1 Gyr. If uncompensated, such a rapid cooling rate would

lead to a cooling catastrophe in which multiphase condensation of ambient gas into cold clouds

fuels star formation rates much greater than those observed. However, CC clusters are generally

not observed to experience such dramatic cooling catastrophes (McDonald et al., 2019). They

apparently remain close to thermal balance for billions of years and are common, representing

about half of all galaxy clusters at the present time. Consequently, some mechanism must be

counteracting central radiative cooling, and active galactic nuclei (AGN) are currently believed to

be the responsible energy sources (Fabian et al., 2000; McNamara et al., 2000; Fabian et al., 2006;

McNamara & Nulsen, 2007; Panagoulia et al., 2014; Gaspari, 2015).

Many other heat sources have been explored, including galaxy cluster mergers (Roettiger et al.,

1997; Gómez et al., 2002; ZuHone et al., 2010), supernovae (Ciotti & Ostriker, 1997; Wu et al.,

1998; Voit & Bryan, 2001; Domainko et al., 2004; Short et al., 2013), thermal conduction (Chandran

& Cowley, 1998; Narayan & Medvedev, 2001; Malyshkin & Kulsrud, 2001; Voigt et al., 2002;

Jubelgas et al., 2004; Brüggen, 2003a; Smith et al., 2013), gravitational heating (Khosroshahi et al.,

2004; Dekel & Birnboim, 2007), and gas sloshing (Ritchie & Thomas, 2002; Markevitch et al.,

2001; ZuHone et al., 2010). Most either do not provide enough heat to offset the observed cooling

or do not adjust to the radiative cooling rate on a short enough time scale. Core cooling times

in many CC clusters are < 1 Gyr (Cavagnolo et al., 2009; Pratt et al., 2009), much less than the

lifetimes of these clusters, suggesting that any heating mechanism coupled to cooling must react

on shorter timescales. The gas accretion rate onto the central supermassive black hole (SMBH)

would therefore need to couple to the radiative cooling rate with a lag time no greater than several

hundred Myr.
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Feedback from the central galaxy and AGN was explored numerically as early as Tabor &

Binney (1993), Metzler & Evrard (1994), and Binney & Tabor (1995). More recently, Sijacki et al.

(2007), Gaspari et al. (2011), Li et al. (2015), Meece et al. (2017), Prasad et al. (2015, 2017, 2018),

and many others (Fabjan et al., 2010; Dubois et al., 2010; Short et al., 2013; Yang & Reynolds,

2016a) have demonstrated in hydrodynamic simulations of idealized galaxy clusters that AGN can

plausibly regulate the high cooling rate in CC clusters. Simulated AGN self-regulate by coupling

feedback energy output to the ambient gas density or cold-gas accretion rate around the AGN and

inject that energy through either thermal deposition around the AGN or bipolar outflows from the

AGN or a combination of the two. In addition to regulating the cooling rate and the condensation

of cold gas clouds within the cluster, some of these AGN simulations produce temperature, density,

and entropy profiles that resemble observations, including the multiphase cores observed in the

central 100 kpc of galaxy clusters (Gaspari et al., 2012b; Meece et al., 2017; Prasad et al., 2018).

The simulations that most successfully resemble observations rely on cold-gas accretion to fuel

the AGN and bipolar outflows to distribute the feedback energy (Gaspari et al., 2017; Gaspari &

Sądowski, 2017; Voit et al., 2017; Meece et al., 2017). Ambient gas at the center of the system

is nearly isentropic and therefore convectively unstable, resulting in the formation of a complex

multiphase medium in which cold clumps of gas condense out of the ambient gas and precipitate

onto the black hole. As the precipitation increases, so does the output of feedback energy, which

raises the central cooling time and ultimately reduces the rate of precipitation. The resulting

coupling suspends the ambient medium in a transitional state on the verge of a cooling catastrophe.

Condensation outside of the isentropic center is marginally suppressed by buoyancy, and gas lifted

out of the center by bipolar jets and buoyant bubbles forms multiphase filaments (Revaz et al., 2008;

Li & Bryan, 2014a,b), in general agreement with observations (McDonald et al., 2010; Russell

et al., 2016, 2017). However, even these idealized simulations do not track all of the physical

processes that might be transporting and thermalizing AGN feedback energy, which range from

turbulent heat diffusion (Ruszkowski et al., 2011; Zhuravleva et al., 2014), viscous dissipation of

waves generated by the AGN (Ruszkowski et al., 2004), and cosmic rays created by the AGN heating
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the plasma via small scale fluid instabilities (Böehringer & Morfill, 1988; Loewenstein et al., 1991;

Rephaeli & Silk, 1995; Colafrancesco et al., 2004; Pfrommer et al., 2007; Jubelgas et al., 2008).

Incorporating all of these mechanisms and processes into a cosmological simulation of galaxy

cluster formation is currently prohibitively complex. Typically, the minimum spatial resolution

in simulations modeling hot jets that interact with the intracluster medium is 200 pc. The finer

resolution of the gas along which the jet deposits energy leads the jet to drill a hole through the

ICM, allowing energy from the AGN to be deposited at further radii (Meece et al., 2017; Li et al.,

2015). These resolution constraints are not always feasible for large cosmological simulations,

because the computational effort needed to model these AGN jets exerts unacceptable drag on the

evolution of the entire system. Therefore, simplified subgrid models are still needed to represent

AGN feedback in cosmological simulations.

The results we present here emerged from an effort to develop a simple heat-input kernel to

serve as an acceptable proxy for the much more complex process of AGN feedback. We sought a

kernel that would satisfy three criteria:

1. The simulated hot-gas atmospheres of clusters balanced by AGN feedback should remain

nearly thermally steady, meaning that they should not dramatically change because of cooling

and feedback for periods of several billion years.

2. The central entropy of the hot gas in such a quasi-steady cluster halo should not exceed the

values observed in CC clusters.

3. The feedback process should be computationally efficient, requiring neither very high resolu-

tion nor extremely small time steps that would make implementation in a current cosmological

simulation prohibitively costly.

The first criterion requires the heating kernel to prevent a cooling catastrophe, which we define

for the purposes of this paper to be a factor of 10 increase in radiative cooling within 10 Myr,

accompanied by a rapid increase in the amount of cold (104 K) gas. As the central cooling time

becomes short, compensating thermal feedback is needed to prevent runaway overcooling.

42



The second criterion requires that the kernel not overheat the central region, which would elevate

or invert the central entropy profile. Such centrally concentrated AGN feedback can produce both

non-cool core (NCC) clusters or observationally unreasonable galaxy clusters with large central

entropy peaks. Furthermore, buoyancy is unable to suppress runaway thermal instabilities in

systems with centrally flattened entropy profiles, making them prone to multiphase condensation

(e.g., Voit et al., 2017) Simultaneously satisfying both this criterion and the first one proved to be

difficult, even though observations show that CC clusters can remain remarkably close to a cooling

catastrophe without producing an overabundance of cold gas and young stars.

Finding a way to satisfy the third criterion along with with the other two was the main motivator

for this paper. Tracking the rapid formation of a complex multiphase medium approaching a

cooling catastrophe requires high resolution and small time steps. Furthermore, if feedback energy

output is directly linked to condensation of cold clouds, the approach of a cooling catastrophe leads

directly to rapid central heating, computational requirements. We therefore sought a simple method

that would avert a cooling catastrophe while still allowing the ambient central gas to remain in a

low-entropy state.

In our search for a numerically simple heating kernel that would satisfy these three criteria,

we investigated kernels with a power-law radial distribution of thermal feedback, normalized so

that feedback heating globally equals radiative cooling within the galaxy-cluster halo. Use of such

a heating kernel implicitly assumes that the most consequential feature of more complex AGN

feedback mechanisms is the radial distribution of heat input. Depositing heat into the gas according

to a kernel that depends only on radius is numerically simple and efficient to incorporate into

cosmological simulations, and it does not require high spatial resolution as long as the feedback

method can maintain the hot halo gas in a thermally steady state without overcooling. In order

to create a tunable model, we also modified the radial power law with an inner truncation radius

to limit central feedback and an outer exponential cutoff radius to constrain the bulk of the AGN

heating to gas with shorter and more relevant cooling times. These additional parameters gave

us a numerically simple but tunable model to search for an adequate AGN feedback kernel. We
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heuristically explored different values of the inner truncation radius that avoided central entropy

peaks and different values of the outer cutoff radius that kept the majority of the feedback inside

the region of the halo where gas cools within a hubble time. We discuss the model in more detail

later in the paper.

Section 2.2 discuses the simulation setup and AGN feedback prescription and heating kernel

in detail. Section 2.3 shows simulation results, describing in detail the results of three heating

kernels that broadly represent the whole set of simulations, and examining the impact of different

heating kernel parameters. Section 2.4 discusses the adequacy of the heating kernels tested, the

robustness of the resulting feedback model, and the possible implications of these simulations for

our understanding of AGN feedback in general. Lastly, Section 2.5 summarizes the results and

conclusions of this work.

2.2 Methodology

This work builds upon simulations by Meece et al. (2017), using the same initial conditions

from that work, described in §2.2.1, but using an AGN feedback kernel that is adapted to deposit

energy at large radii as described in §2.2.2.

2.2.1 Simulation Setup

We ran several simulations of idealized galaxy cluster halos with a simplified AGN heating

model using the hydrodynamics code Enzo (Bryan et al., 2014).

We used initial conditions approximating the Perseus Cluster, following the approach from Li

& Bryan (2012) and Meece et al. (2017). The ICM begins as a hydrostatic sphere of gas in a fixed

gravitational potential.

The gravitational potential has two components: a dark matter halo profile and a BCG with

a mass profile with parameters chosen to match the Perseus cluster. The dark matter follows the

NFW profile (Navarro et al., 1997), using 𝑀200𝑐 = 8.5 × 1014M⊙ for the mass within the virial

radius and a concentration parameter 𝑐 = 6.81. The dark matter density from the NFW profile
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takes the form

𝜌NFW(𝑟) =
𝜌NFW

0

(𝑟/𝑅𝑠)
(
1 + 𝑟

𝑅𝑠

)2 (2.1)

where the scale density 𝜌NFW
0 is defined by

𝜌NFW
0 =

200
3
𝜌𝑐

𝑐3

ln(1 + 𝑐) − 𝑐/(1 + 𝑐) , (2.2)

where 𝜌𝑐 = 3𝐻2/(8𝜋𝐺) is the critical density and the scale radius 𝑅𝑠 can be found from

𝑀200𝑐 = 4𝜋𝜌NFW
0 𝑅3

𝑠 [ln (1 + 𝑐) − 𝑐/(1 + 𝑐)] . (2.3)

The BCG mass profile, following Meece et al. (2017), has the form

𝑀∗(𝑟) = 𝑀4

[
2−𝛽∗

(𝑟/4 kpc)−𝛼∗ (1 + 𝑟/4 kpc)𝛼∗−𝛽∗

]
, (2.4)

where 𝑀4 = 7.5 × 1010𝑀⊙ is the stellar mass within 4kpc and 𝛼∗ = 0.1 and 𝛽∗ = 1.43 are

constraints.1 does not substantially affect our results.

The initial pressure was computed from the temperature and density assuming an ideal gas with

𝛾 = 5/3 in hydrostatic equilibrium with the gravitational potential. Cosmological expansion is

neglected in these simulations. We used a vanilla ΛCDM model to get the virial mass of the NFW

halo and to set its gas temperature. We set redshift 𝑧 = 0 at initialization with Ω𝑀 = 0.3, ΩΛ = 0.7,

and 𝐻0 = 70 km s−1. We note that the precise details of the cosmological model do not impact the

results presented in later sections of this paper, which pertain to baryonic physics in the halo core.

The entropy profile of the gas, using the form

𝐾 ≡ 𝑘𝑏𝑇

𝑛
2/3
𝑒

(2.5)

1Due to a programming error, the simulations use an incorrect initial mass profile for the BCG,
which leads to the central 1 kpc being initialized out of hydrostatic equilibrium, with an absence
of baryonic mass by less than a factor of two. However, the central halo gas either relaxes to
hydrostatic equilibrium within 50 Myr or AGN feedback quickly drives it further from equilibrium,
depending on the heating kernel parameters. Consequently, this error in the initial conditions
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for the specific entropy, where 𝑘𝑏 is Boltzmann’s constant, 𝑇 is the temperature, and 𝑛𝑒 is the

electron density, was initialized to a power law

𝐾 (𝑟) = 𝐾0 + 𝐾100 (𝑟/100 kpc)𝛼𝐾 , (2.6)

following the power law fits used in the ACCEPT database (Cavagnolo et al., 2009). Here, 𝑟 is

the radius from the halo center and 𝐾0 = 19.38 keV cm2, 𝐾100 = 119.87 keV cm2, and 𝛼𝐾 = 1.74

are fitting parameters corresponding to the core entropy, entropy slope and exponential increase,

chosen to approximate the Perseus Cluster.

The simulations were run on a cartesian grid in a cubic volume with side length of 3.2 Mpc,

with 643 cells in the base grid of the AMR hierarchy and a maximum of 8 levels of refinement,

making the resolution of the finest cells approximately 195 pc. The mesh was refined based on the

magnitude of gradients in fluid quantities and high baryon density. Additionally, a cubic grid with

side length 4 kpc around the simulation center and was fixed at the maximum level of refinement

with 195 pc resolution.

Each simulation was allowed to run for 16 Gyr or until excessive AGN feedback during a cooling

catastrophe either created unphysical cell values or led to intractably small timesteps (see Section

2.4.2). To give context to the simulation duration, consider that the sound speed of gas with a

temperature of 𝑇 = 2 × 107 K is 𝑐𝑠 =
√︁
𝛾𝑘𝐵𝑇/𝜇𝑚H ≈ 0.70 Mpc Gyr−1, where 𝑚H is the mass of

hydrogen and 𝜇 = 0.6 is the mean mass per particle in units of 𝑚H, meaning that the approximate

sound crossing time across the inner 𝑅 = 0.5 Mpc, where the majority of the dynamics of the

galaxy cluster halo evolves, is approximately 1.4 Gyr.

We used the ZEUS solver for hydrodynamics (Stone & Norman, 1992) due to its robustness to

evolve through discontinuities in the fluid around the AGN due to sharply peaked thermal injection.

ZEUS is a relatively diffusive solver and requires an artificial viscosity, which may affect the

accuracy of the hydrodynamics simulation (Stone & Norman, 1992; Meece Jr, 2016). Tabulated

cooling was used to model radiative cooling following Schure et al. (2009), assuming a metallicity

of 0.5 Z⊙. The cooling table has a temperature floor of 104 K; any processes below this temperature

will take place on a smaller scale than can be accurately explored with our spatial resolution.

46



Simulation results were analyzed using yt (Turk et al., 2011).

2.2.2 AGN Feedback Kernels

In our simplified AGN feedback model, thermal energy is deposited in a spherically symmetric

distribution around the halo center by an assumed AGN, with the total amount of heating set

equal to the total cooling in the halo every 10 Myr. Heating per unit volume ¤𝑒(𝑟) is distributed

following a power law in radius so that ¤𝑒(𝑟) ∝ 𝑟−𝛼. This basic power-law functional form has

several numerical and practical issues. Most critically, these issues are a volumetric heating rate

that diverges to infinity at the halo center, a “long tail” of heating at the halo outskirts where cooling

is too slow to be relevant, and an unrealistic hard cutoff at the simulation boundaries. These latter

two issues are compounded by observations that suggest AGN feedback is generally constrained

to be within a few hundred kpc of the halo center. To address these issues and to create a more

tunable and effective heating kernel, we added two parameters: a minimum truncation radius 𝑟𝑠

(effectively a smoothing length) and an exponential decay cutoff radius 𝑟𝑐. To avoid having the

feedback stop at a simulation boundary at 𝑥, 𝑦, 𝑧 = ±1.6 Mpc, the AGN feedback is contained

within a radius of 𝑅 = 1.5 Mpc and set to zero outside this radius. Since the heating leading up to

𝑅 is negligible compared to the cooling at far radii and the cooling time of the gas is much longer

than the simulation time at that radius, we do not expect the value of 𝑅 to have an impact on the

outcome of the simulation. The full form of the feedback kernel defining the heating rate per unit

volume ¤𝑒(𝑡) [erg s−1 cm−3] is

¤𝑒(𝑟, 𝑡) =
¤𝐸 (𝑡)
𝐴



(
𝑟𝑠
𝑟𝑐

)−𝛼
exp

(
− 𝑟𝑠𝑟𝑐

)
, 𝑟 ≤ 𝑟𝑠(

𝑟
𝑟𝑐

)−𝛼
exp

(
− 𝑟
𝑟𝑐

)
, 𝑟𝑠 < 𝑟 ≤ 𝑅

0, 𝑅 < 𝑟

. (2.7)
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Figure 2.1: Top: Local ratio of heating to cooling as a function of radius (𝑟) at the beginning of
several representative simulations. The dotted blue line shows a simulation with low central heating
and heating kernel parameters 𝛼 = 2.0, 𝑟𝑠 = 8 kpc, and 𝑟𝑐 = 1000 kpc. The dashed orange line
shows a simulation with high central heating and heating kernel parameters 𝛼 = 2.6, 𝑟𝑠 = 1 kpc,
and 𝑟𝑐 = 150 kpc. The solid green line shows a simulation with intermediate central heating and
heating kernel parameters 𝛼 = 2.6, 𝑟𝑠 = 12 kpc, and 𝑟𝑐 = 150 kpc. Bottom: Cumulative ratio of
heating to cooling within 𝑟 for the same simulations. At large radii, all of the cumulative heating
curves converge to the cumulative cooling rate because total heating is normalized to equal to total
cooling rate at 𝑅 = 1.5 Mpc.
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The scalar 𝐴 [cm3] is defined by

𝐴 =

∫ 𝑟𝑠

0
4𝜋𝑟2𝑑𝑟

(
𝑟𝑠

𝑟𝑐

)−𝛼
exp

(
−𝑟𝑠
𝑟𝑐

)
+

∫ 𝑅

𝑟𝑠

4𝜋𝑟2𝑑𝑟

(
𝑟

𝑟𝑐

)−𝛼
exp

(
− 𝑟
𝑟𝑐

)
(2.8)

=
4𝜋
3

exp
(
−𝑟𝑠
𝑟𝑐

)
𝑟3
𝑠

(
𝑟𝑠

𝑟𝑐

)−𝛼
+ 4𝜋𝑟3

𝑐

[
−Γ

(
3 − 𝛼, 𝑅

𝑟𝑐

)
− Γ

(
3 − 𝛼, 𝑟𝑠

𝑟𝑐

)]
, (2.9)

where Γ(𝑠, 𝑥) =
∫ ∞
𝑥
𝑡𝑠−1𝑒−𝑡𝑑𝑡 is the upper incomplete gamma function, normalizes ¤𝑒(𝑡) so that the

integral of ¤𝑒(𝑡) over the volume of the simulation matches ¤𝐸 (𝑡). Higher values of 𝛼 correspond to

more centralized feedback around the AGN. Without the inner smoothing length, a heating kernel

with 𝛼 ≥ 3 is not normalizable, because integration over a volume containing the origin diverges.

The total heating rate ¤𝐸 (𝑡) is set to the total cooling rate within the cluster halo. Since the total

cooling rate can be difficult to compute on-the-fly due to the nature of the AMR hierarchy’s timestep

update, it is recomputed only every 10 Myr. Although the cooling rate increases exponentially

leading up to a cooling catastrophe, the increase is slow enough that the heating rate does not fall

behind the true cooling rate by more than a few percent except immediately within a Myr before

the catastrophe, at which point the simulation has already demonstrated that the particular heating

kernel being tested is inadequate.

Note that the short time scale over which heating reacts to cooling in our model is not physical.

Heat deposition resulting from AGN feedback does not instantaneously happen far from the AGN.

We therefore probed heating kernels with a 50 Myr lag time between heating and cooling as well as

averaging cooling over the same time period to smooth out jumps in heating. However, adding lag

time led to more cold gas forming due to the lack of immediate feedback to counter condensation

and more explosive feedback overall.

This study tested 91 different heating kernels with a range of parameters: different radial

exponents 𝛼 ∈ [2.0, 3.2], smoothing lengths 𝑟𝑠 ∈ 1, 4, 8, 10, 12, 16, 20, 40 kpc, and exponential

cutoff radii 𝑟𝑐 ∈ 100, 150, 200 kpc. We began our exploration of the parameter space by setting
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Table 2.1: List of combinations of inner smoothing radius 𝑟𝑠 [kpc], outer cutoff radius 𝑟𝑐 [kpc],
and exponent 𝛼 used. The rightmost column lists all values of 𝛼 explored for the given combination
of 𝑟𝑠 and 𝑟𝑐 in the leftmost and middle column.

𝑟𝑠 [kpc] 𝑟𝑐 [kpc] 𝛼

1 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
1 1000 2.0, 2.1, 2.2, 2.3, 2.35, 2.375,

2.4, 2.425, 2.45, 2.5, 2.525,
2.55, 2.575, 2.6, 2.65, 2.7, 2.8,
2.9, 3.0

4 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
8 150 2.0, 2.2, 2.4, 2.6, 2.8, 2.9,

2.95, 3.0, 3.2
8 1000 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
16 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
10 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
10 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
12 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
16 100 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
16 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
20 100 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2
40 150 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2

𝑟𝑠 = 1 kpc and 𝑟𝑐 = 1500 kpc and sampled the range of 𝛼 before trying different values of 𝑟𝑠 and

𝑟𝑐 with a smaller number of 𝛼 values, seeking parameter combinations that seemed closest to an

optimal kernel. Figure 2.1 presents a representative sampling of heating kernels showing the initial

ratio of heating to cooling as a function of radius, including both the local ratio at each radius and

the cumulative ratio within each radius. Table 2.1 lists all combinations of parameters explored.

2.3 Results

All the heating kernels we explored resulted either in cooling catastrophes within a few Gyr,

central entropy levels greater than observations, or both. Simulations that eventually formed cold,

condensed gas all went through cooling catastrophes. In those simulations, the minimum entropy

drops over time, eventually leading to multiphase condensation. As cold clumps of gas form and

runaway cooling begins, the requirement for total heating to match total cooling causes the heating
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Figure 2.2: Schematic illustrations of how different AGN heating kernels affect the entropy profile
of a simulated galaxy cluster. In each case, the total heating rate is set equal to the total cooling
rate. Top: Radial profiles of radiative cooling and AGN heating per unit volume, with the initial
median cooling rate in black and the AGN heating kernel in color. Bottom: Response of the
median entropy profile to heat input. The initial median profile in black and the response is in
color. The left column shows a heating kernel with central heating that falls below central cooling.
The entropy profile in this case tends to follow a power law down to the origin and eventually
leads to a central cooling catastrophe. The center column shows a heating kernel with excessive
central heating, which elevates central entropy, inverts the entropy profile, and produces a central
convective zone. The right column shows a heating kernel with intermediate central heating, which
slightly raises the central entropy and produces a flat core. Due to the high initial entropy and long
cooling time at outer radii, the power-law at the outer radii changes very slowly with under- and
over-heating.
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rate to spike. The time required for cold gas to form is roughly correlated with the smallest radius

at which cooling exceeds heating. If central cooling exceeds central heating, the halo quickly forms

cold gas and experiences a cooling catastrophe. Simulations with higher central heating tend to

have high central entropy, similar to observations of NCC clusters. If the heating exceeds cooling

out to radii of several tens of kpc, then the simulations persist for many Gyr without forming cold

gas. Under- and over-heating at outer radii beyond 100 kpc is inconsequential since the time scale

of heating is much longer than the dynamical time scale of the system due to the large specific

energy and entropy at initialization.

Figure 2.2 schematically shows the general behavior of the different heating kernels. The three

heating kernel examples in Figure 2.1 have colors that match the corresponding schematics in

Figure 2.2. Figure 2.3 shows mass density profiles of cooling rate, heating rate, and entropy at later

moments in simulations employing the same three heating kernels as in Figure 2.1.

2.3.1 Categorization of Simulations

The results of our simulations can be grouped according to the morphology of the entropy

profiles that develop within the central 100 kpc:

1. Central Cooling. The entropy profiles of simulated cluster halos with heating that is

insufficient to balance radiative cooling at small radii develop central cooling flows with a

positive entropy gradient at all radii. They undergo a central cooling catastrophe relatively

quickly, in which runaway multiphase condensation at small radii brings the simulation to a

halt.

2. Central Convective Zone. The entropy profiles of simulations with high central heating form

an inner convective zone with high central entropy and a negative central entropy gradient.

Those simulations persist the longest before undergoing cooling catastrophes.

3. Central Entropy Floor. Simulations with intermediate central heating can maintain a nearly

flat entropy gradient within the central ∼ 10 to 20 kpc.
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For the purposes of our analysis, we define these categories based on the entropy within the inner

25 kpc. We categorize as Central Cooling those simulations whose average minimum entropy

remains below 12 keV cm2 (2/3 of the the initial minimum central entropy of 18 keV cm2) .

The Central Convective Zone simulations are defined to have maximum central entropy above

50 keV cm2 (equal to the initial mean entropy of the inner 100 kpc). No simulation meets both

of these criteria, so there is no overlap of these first two groups. The remaining simulations,

which have minimum central entropies above 12 keV cm2 and maximum central entropies below

50 keV cm2, are categorized as Central Entropy Floor simulations.

The schematic diagrams in Figure 2.2 illustrate the general behavior of the different categories.

Figure 2.3 shows representative snapshots of both cooling rate and entropy versus radius. Some of

our simulations exhibit behavior from multiple categories at different times in their evolution. The

following subsections describe each category in more detail.

2.3.1.1 Central Cooling

Simulations with low 𝛼, large 𝑟𝑐, or large 𝑟𝑠 tend to have central cooling exceeding central

heating, which quickly leads to a cooling catastrophe. The left column in Fig. 2.3 shows an

example of such a simulation. Within the inner 10 kpc, the heating rate ranges from half the

cooling rate to more than an order of magnitude less than the cooling rate. Because the central

heating is insufficient to counteract a growing mass of strongly cooling gas at the halo center, the

simulation produces a cooling catastrophe within 2 Gyr. However, up to the moment at which

a substantial quantity of cold gas forms, the entropy profile remains close to the initial state and

similar to the cool-core clusters in the ACCEPT data set.

2.3.1.2 Central Convective Zone

Heating rates within the central ∼ 10 kpc of simulations with high 𝛼, small 𝑟𝑐, or small 𝑟𝑠 tend

to greatly exceed radiative cooling. The middle column in Fig. 2.3 shows an example. Excess

central heating leads to a central entropy peak and an inverted entropy profile that drives convection.
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Figure 2.3: Mass density plots of cooling and heating rate (top) and entropy (bottom) versus
radius, with color representing the total mass of all simulation cells from a 2D histogram of cooling
rate and entropy versus radius. Across the three columns we show three simulations at different
times that broadly represent the whole set of simulations, as differentiated by the behavior of the
inner tens of kpc. The left column shows a simulation (with 𝛼 = 2.0, 𝑟𝑠 = 8 kpc, and 𝑟𝑐 = 1000 kpc
at 𝑡 = 0.3 Gyr) with low central heating which allows excess central cooling that quickly undergoes
a cooling catastrophe. The middle column shows a simulation (with 𝛼 = 2.6, 𝑟𝑠 = 1 kpc, and
𝑟𝑐 = 150 kpc at 𝑡 = 3.0 Gyr) with high central heating that maintains a convective zone in the inner
100 kpc with a high central entropy peak. The right column shows a simulation (with 𝛼 = 2.6,
𝑟𝑠 = 12 kpc, and 𝑟𝑐 = 150 kpc at 𝑡 = 8.0 Gyr) with an intermediate amount of central heating
and that holds a flat entropy floor slightly elevated from the initial conditions and observational
data on the entropy of the inner tens of kpc. On the entropy plots, observational entropy data of
clusters from the ACCEPT data set are displayed in grayscale showing the range (light grey), 68%
confidence interval (dark grey), and median (black line) of the dataset. The median entropy is
also marked by a magenta line, and the minimum (𝐾𝐿) and maximum (𝐾𝐻) values of the entropy
median within the inner 25 kpc are marked by stars. On the cooling rate plots, the heating rate is
marked by a red line and the median cooling rate is marked by a blue line. The crossover radii 𝑟−
and 𝑟+ as defined in the text are marked by stars in the simulations where they can be defined.The
heating curve parameters 𝑟𝑠 and 𝑟𝑐 are also annotated with finely dashed and dashed gray lines.
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Low-entropy gas at the minimum entropy point sinks toward the center, but is reheated there and

eventually rises to larger radii. Such a convective configuration can persist for many Gyr without

producing multiphase condensation, because the minimum entropy and minimum cooling time are

both large.

A few of the simulations in this category do form multiphase gas. When that happens, conden-

sation first appears at the minimum of the entropy profile and rapidly leads to a cooling catastrophe.

Although these simulations have large central heating rates, the heating rate still falls below cooling

at intermediate radii (near the entropy minimum), allowing large clumps of cold gas to form there.

In all cases in which a convective central zone forms, the central entropy is excessive compared

with observed CC clusters, in some cases being more typical for a NCC.

2.3.1.3 Central Entropy Floor

Simulations with intermediate central heating, corresponding to a narrow range of combinations

of 𝛼, 𝑟𝑠, and 𝑟𝑐, are able to maintain quasi-stable flat entropy profiles out to radii exceeding 10 kpc.

The right column in Fig. 2.3 shows an example. Central heating within the inner 10 kpc of these

simulations is typically several times the central cooling rate, sufficient to offset runaway cooling

but not great enough to produce a large entropy inversion. Only some of these simulations form

cold gas, and typically do so at larger radii and later times than in the Central Cooling simulations.

However, the central heating in these simulations is still great enough to elevate the central entropy

above the values observed in CC clusters.

2.3.2 Important radii: 𝑟𝐿 , 𝑟𝐻 , 𝑟−, 𝑟+, and 𝑟multi

To help with the analysis of the simulations, we identify several quantities that proved to be

useful for interpreting their behavior. Those quantities are labeled in Figure 2.3.

The maximum and minimum entropy levels in the central regions turn out to be closely related

to the time it takes for a cooling catastrophe to manifest. To quantify those extremes we first

determine the median entropy at each radius, illustrated by the purple dotted lines in Figure 2.3.
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We then define 𝐾𝐿 to be the minimum of the median entropy profile and 𝑟𝐿 to be the radius at

that point. Outside of 𝑟𝐿 the median entropy profile is stable to convection, but inside of 𝑟𝐿 it is

convectively unstable. In simulations with low central heating, 𝑟𝐿 is close to the center. We define

𝐾𝐻 to be the maximum of the median entropy profile within 25 kpc of the simulation center and

𝑟𝐻 to be the radius at that point. We use the 25 kpc cutoff to exclude cosmologically heated gas at

large radii from the analysis in order to focus on the effects of feedback heating. The initial entropy

at 25 kpc is just below 30 keV cm2, so a persistent 𝐾𝐻 above 30 keV cm2 indicates that heating has

elevated the central entropy, making it too great for a CC cluster and possibly producing a central

convective zone.

The entropy extrema 𝐾𝐿 and 𝐾𝐻 and the corresponding radii 𝑟𝐿 and 𝑟𝐻 evolve over time as

feedback alters the median entropy profile. We denote the cooling times at those radii by 𝑡𝑐 (𝑟𝐿)

and 𝑡𝑐 (𝑟𝐻). The value of 𝑡𝑐 (𝑟𝐿) is closely linked to the time required for condensation to begin.

The relationship between how the heating kernel parameters affect 𝐾𝐻 and 𝐾𝐿 along with the

associated radii and cooling times is explored in sections 2.3.3, 2.3.4, and 2.4.1.

The radii at which heating equals cooling are special and come in two types. For one type, the

net heating rate goes from positive to negative as 𝑟 increases. We define 𝑟− to be the smallest such

radius. Excess heating within that radius tends to raise the median entropy while excess cooling at

large radii causes the median entropy to decline. The result is flattening and sometimes inversion

of the median entropy profile, which drives convection and ultimately makes the system prone to

condensation near 𝑟−. However, if cooling dominates heating in the central regions, then 𝑟− is

undefined. Some relationships between 𝑟− and the simulation outcomes are explored in Section

2.3.3.

At the other type of heating-cooling equality radius, the net heating rate goes from negative

to positive as 𝑟 increases. We define 𝑟+ to be the largest such radius. Outside of 𝑟+, net heating

raises the median entropy and suppresses condensation. Within 𝑟+, net cooling lowers the median

entropy. Together, these effects produce a positive entropy gradient in the vicinity of 𝑟+.

While the median cooling rate may exceed the heating rate at very large radii (on the order
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Table 2.2: Brief definition of variables described in full in text and used in later figures. "Median"
here refers to the median of the distribution of a variable (e.g. entropy, cooling rate, etc.) at given
radius.

𝐾𝐿 Lowest median entropy
𝐾𝐻 Highest median entropy within 25 kpc of

the simulation center
𝑟𝐿 Radius of lowest median entropy
𝑟𝐻 Radius of highest median entropy within

25 kpc of the simulation center
𝑟− Inner radius within which median heating

exceeds median cooling
𝑟+ Outer radius outside of which median

heating exceeds median cooling
𝑡𝑐 (𝑟𝑥) Median cooling rate at radius 𝑟𝑥
𝑡multi Simulation time at which multiphase gas

first forms
𝑟multi Radius at which multiphase gas first forms

of hundreds of kpc), cooling times at those radii are so long that cold gas does not form on an

astrophysically significant time scale. During a given simulation, the radii 𝑟− and 𝑟+ do not stay

fixed, but rather shift as heating and cooling change the median cooling rate. We denote the cooling

time at those radii as 𝑡𝑐 (𝑟−) and 𝑡𝑐 (𝑟+).

The heating kernel parameters also affect when cold gas forms in the simulations and at what

radius the cold gas first appears. We define 𝑡multi to be the time from the beginning of the simulation

to the moment when multiphase condensation produces cold gas. In our analysis, we use 105 K

as the temperature cutoff for cold, although gas around these temperatures will rapidly cool to

colder temperatures. Our temporal resolution of 𝑡multi is limited by the frequency of output to disk,

which is every 10 Myr. We define 𝑟multi to be the radius at which cold gas first appears, using the

innermost radius if cold gas appears simultaneously at multiple radii. The relationship between

𝑟multi, 𝑟𝐻 , 𝑡multi, and 𝑡𝑐 (𝑟−) is explored in Section 2.3.3.

Table 2.2 summarizes the variables defined in this section. These variables are used in figures

and analysis in later sections.
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Figure 2.4: Time dependence of total cooling rate (solid lines) and total mass of condensed gas
under 3×104 K (dashed lines) for the three simulations shown in Figure 2.3. The blue points show a
simulation with low central heating and excess central cooling (𝛼 = 2.0, 𝑟𝑠 = 8 kpc, 𝑟𝑐 = 1000 kpc)
that experiences an early cooling catastrophe. Orange points show a simulation with high central
heating (𝛼 = 2.6, 𝑟𝑠 = 1 kpc, 𝑟𝑐 = 150 kpc) that forms a quasi-stable central convective zone. Green
points show a simulation with intermediate central heating (𝛼 = 2.6, 𝑟𝑠 = 12 kpc, 𝑟𝑐 = 150 kpc)
that maintains a flat entropy core for almost 10 Gyr before undergoing a late cooling catastrophe.
In simulations that form a multiphase gas through a cooling catastrophe, the formation of cold gas
is preceded by a rise and then a sharp peak in the total cooling rate.

2.3.3 Condensation of Cold Gas

Multiphase condensation forms cold gas in many of the simulations, in each case leading to

a cooling catastrophe. Cold gas starts forming near 𝑟𝐿 , then falls toward the center, displacing

buoyantly rising warmer gas. The location of 𝑟𝐿 depends on the heating kernel parameters and is

related to 𝑟−.
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However, when gas at 𝑟𝐿 cools enough to transition into the cold phase, it sharply raises the

total cooling rate of the halo. That event immediately boosts the heating rate by the same factor,

because our AGN feedback prescription forces the total heating rate to equal the total cooling rate.

This heat is distributed across the halo and is not concentrated on the cooling gas, and thus the

AGN feedback does not halt the cooling catastrophe.

In many cases, rapid heating of lower-density gas during the cooling catastrophe produces

such great sound speeds and creates such large discontinuities in the fluid that the simulation

becomes infeasible to continue due to the Courant condition. At that point the heating input greatly

exceeds the AGN activity observed in real CC clusters, meaning that the chosen heating kernel

has become physically unrealistic. In simulations that managed to evolve through this catastrophic

event, the heat input leads to drastically elevated entropy in the ambient gas, which slowly reheats

the embedded cold gas and prevents more cold gas from forming. After the cooling catastrophe,

the core entropy is left much higher than before the catastrophe. Figure 2.4 illustrates the timeline

of a catastrophe resulting from an increasing cooling rate that leads the formation of cold gas.

Our simulation set generally demonstrates that the radii 𝑟multi and 𝑟𝐿 are both related to

𝑟−. Figure 2.5 shows the relationships among the values of those three radii. We average these

quantites over time from the simulation outputs, which have 10 Myr frequency, in order to produce

one data point per heating kernel. Larger ⟨𝑟−⟩ corresponded to a larger ⟨𝑟𝐿⟩, as shown in top right

panel, meaning that the radius of lowest entropy corresponds to the inner radius inside of which

heating exceeds cooling. The top right panel shows that larger ⟨𝑟−⟩ corresponds to larger 𝑟multi,

meaning that the radius of lowest entropy corresponds to the inner radius inside of which heating

exceeds cooling roughly determines where cold gas first forms. In the bottom left panel, ⟨𝑟𝐿⟩ also

corresponds to larger 𝑟multi, showing that multiphase gas typically first forms around the entropy

minimum. The relationship between 𝑟− and the formation of cold gas is most apparent in the plot

of 𝑡𝑐 (𝑟−) versus 𝑡multi in the bottom right panel. When 𝑟− is larger, so that cooling first exceeds

heating at a larger radius, the cooling time at 𝑟− is longer, which leads to cold gas forming later in

the simulation. The timescale on which cold gas forms is closely tied to the cooling time of this
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Figure 2.5: Plots of relationships between 𝑟−, the radius at which the gas switches from net
heating to net cooling, and other features of the simulations. Top left: Time averaged radius of
the minimum of the median entropy profile (𝑟𝐿) versus the time average of 𝑟− up to the formation
of a multiphase gas. (Includes only simulations in which 𝑟− can be defined for at least 50 Myr.)
Top right: Radius at which multiphase gas first forms versus the time averaged 𝑟−. (Includes
only simulations in which 𝑟− can be defined for more than one time step.) Bottom left: Radius at
which multiphase gas first forms versus the time averaged value of 𝑟𝐿 for all simulations. Bottom
right: The time required for a simulation to form multiphase gas versus the time averaged value of
the cooling time at 𝑟−. (Includes only simulations that form multiphase gas and in which 𝑟− can
be defined for at least 50 Myr.) Shapes in each panel denote the general behavior of the central
region of the simulation. Blue highlighted triangles denote Central Cooling simulations, orange
highlighted circles denote Central Convective Zone simulations. Green highlighted stars denote
Entropy Floor simulations. Colors show the heating kernel parameter 𝛼, with greater 𝛼 generally
corresponding to heating that is more centrally concentrated.
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Figure 2.6: Left: Time required to form multiphase gas in a simulation versus the ratio of heating
to cooling within the inner 10 kpc at the first time step. Right: Maximum of the median entropy
within the inner 25 kpc, versus the ratio of heating to cooling within the inner 10 kpc at the first time
step. In both panels, a solid line marks a heating to cooling ratio of 2, and a dashed line marks a
heating to cooling ratio of 5. A ratio of at least 2 is required to avoid multiphase condensation within
1 Gyr. In the right panel, a dashed line marks the maximum central entropy that is observationally
expected for a CC cluster.

gas. Interestingly, the relationship is non-linear, following

𝑡multi =
⟨𝑡𝑐 (𝑟multi)⟩2

200 Myr
. (2.10)

This result is consistent with previous work by Meece et al. (2015) exploring the condensation of

gas in the central ICM of galaxy clusters. Meece et al. (2015) found in thermally balanced ICM

simulations with varying initial ratios of cooling time to freefall time that gas with a greater initial

ratio remains nearly homogeneous for a larger number of cooling times before condensing into a

multiphase gas, suggesting a non-linear relationship between cooling time and the formation of a

multiphase medium.

2.3.4 Central Heating

The heating kernel parameters also affect the central entropy of the cluster halo, in some cases

resulting in unreasonably high levels for a CC cluster and in other cases allowing cold gas to quickly
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condense and collect in the halo center. The central entropy and general behavior of the core is

directly related to the amount of heating compared to cooling in the halo center. A certain amount

of heating in the center is necessary to offset the central cooling but an excess of heating in the halo

center causes central entropies higher than observed in CC clusters.

To explore this behavior, we track the ratio of the total heating within the inner 10 kpc of the

halo to the total cooling within the same volume.2 Figure 2.6 shows 𝑡multi and the time average of

𝐾𝐻 versus the initial central heating to cooling ratio. A ratio of heating-to-cooling of approximately

two is needed to maintain quasi-stability for any significant amount of time, while a ratio greater

than five always leads to high central entropies. Inside this range of ratios of heating to cooling,

different heating kernels produce all three categories of central entropy behaviors.

When the integrated heating in the inner region is less than twice the cooling in the same region,

a cooling catastrophe happens within 1 Gyr. For simulations with less heating than cooling in the

central region, cooling quickly causes the central entropy profile to approximate a power law down

to the halo center. Cooling gas then flows down the entropy gradient, collecting in the center,

and forming multiphase gas. In simulations with average heating one to two times the average

cooling rate in the center, density inhomogeneities in the gas allow cooling to exceed heating in

some locations. As the cooling of that gas increases, the total heating rate rises but is insufficient to

counter the localized increase in cooling, thus leading a runaway cooling catastrophe. Additionally,

as central entropy falls and density increases in the lead up to the catastrophe, central pressure

increases and compresses clumps of cooling gas. This further accelerates their cooling during the

runaway catastrophe. With simulations having heating-to-cooling ratios above two in the center

region, the central cooling is more successfully countered so that the formation of multiphase gas

happens on a longer timescale connected to 𝑡𝑐 (𝑟𝐿) and 𝑡𝑐 (𝑟−), as discussed in Section 2.3.3. The

left plot in Figure 2.6 also shows this distinction in behavior.

When central heating rates are more than two times greater than the cooling rate, excess heating

2The inner 10 kpc volume was chosen to coincide with the region within which the initial
entropy profile is nearly flat. We also tested this analysis using the inner 20 kpc volume and found
similar results.
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leads to central entropies that are higher than what is observed for CC clusters. The right plot in

Figure 2.6 shows the relationship between the ratio of central heating to cooling and the maximum

entropy in the central region averaged over time. Some simulations with two to five times heating

to cooling in the center stay under the typical 30 keV cm2 specific entropy for CC clusters, but all

of the simulations with heating-to-cooling ratios of greater than five produce unrealistically high

entropies. With values of 𝐾𝐻 above the 30 keV cm2 specific entropy where the isentropic entropy

profile changes into power law, these simulations form an inverse convective zone where hot gas

collects in the halo center and cold gas collects at 𝑟𝐿 at intermediate radii.

2.4 Discussion

2.4.1 No Adequate Heating Kernel

None of the 91 heating kernels we simulated meet all three of the adequacy criteria specified

in Section 2.1. The failure modes we observe in the simulations can be discussed in terms of the

same behavioral categories listed in Section 2.3.1 for the central entropy profile:

1. Central Cooling. Heating kernels with low central heating fail to meet our first criterion by

producing a cooling catastrophe within ∼ 1 Gyr that radically changed the structure of the

ambient medium.

2. Central Convective Zone. Heating kernels with high central heating produces central

convective zones that fail to meet our second criterion by producing central entropy levels

greatly exceeding those observed among typical CC clusters. Some of the simulations in this

group also fail our longevity criterion because the heating kernel is unable to prevent an early

cooling catastrophe due to insufficient heating at intermediate radii.

3. Central Entropy Floor. The heating kernels closest to being adequate, according to our

criteria, were those with intermediate central heating that exceeds central cooling, but not by

a large factor. Those simulations maintain a quasi-stable entropy floor and prevents cooling

catastrophe for billions of years. However, the central entropy profiles of those simulations,
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Figure 2.7: Left: Relationships between the initial ratio of heating to cooling averaged over the
inner 10 kpc and the time-averaged radius ⟨𝑟−⟩ beyond which cooling begins to dominate over
heating. Only those simulations in which 𝑟− can be defined for at least 50 Myr are included.
The box in the lower right shows hypothetical simulations with an average 𝑟− over 30 kpc and
an inner heating to cooling ratio under five. Right: Relationships between the time average of
𝐾𝐻 (the maximum level of the median entropy profile within the inner 25 kpc) and the time
𝑡m𝑢𝑙𝑡𝑖 until multiphase gas forms in the simulation. The plot includes all simulations, assigning
𝑡multi = 16 Gyr to simulations that do not form cold gas by that time. An empty box in the lower
right corner indicates where points representing heating kernels satisfying adequacy criteria would
fall, by persisting for more than 5 Gyr before forming multiphase gas while maintaining a maximum
entropy level < 30 keV cm−2 within 25 kpc. However, no heating kernel we tested satisfies those
those criteria.

while lower than those in the previous category, were still elevated compared to observed

CC clusters and thus do not meet our second criterion. Lowering the central heating rates in

an attempt to bring their entropy profiles more in line with observation also causes cold gas

to form much more quickly. The simulation that provides results closest to a realistic cluster

(with kernel parameters 𝑟𝑠 = 12 kpc, 𝑟𝑙 = kpc, and 𝛼 = 2.4) maintains a flat entropy core of

30 keV cm2 and lasts for just under 4 Gyr, which may be sufficiently long to maintain a CC

cluster between external heating events.

No heating kernel we tested is able to maintain a low entropy floor close to observations of

CC clusters for longer than 4 Gyr. Figure 2.7 summarizes the failure modes of the heating kernels
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probed in this study. The right panel shows 𝐾𝐻 versus 𝑡multi, a measure of the longevity of the

simulation before a cooling catastrophe strongly altered it. Some simulations prevent a multiphase

cooling catastrophe for many Gyr while others maintain low central entropy, but no heating kernel

accomplished both aims. The left panel shows the ratio of central heating to cooling versus 𝑟−, the

two parameters that most strongly influenced the central entropy and longevity, respectively.

2.4.2 Robustness of Feedback Algorithm

The ultimate obstacle to finding an adequate thermal heating kernel is the difficulty of preventing

gas in the halo center from overcooling while still maintaining a reasonably low entropy profile. In

order to prevent a cooling catastrophe, central heating must be sufficient to raise the median entropy

profile enough to keep the lowest-entropy gas from undergoing runaway cooling. Our simulations

show that an integrated central heating rate within the inner 10 kpc that is approximately two times

the cooling rate in that same region is necessary. Otherwise, too large a proportion of the gas

within the central region ends up with cooling exceeding heating, causing a rapid increase in the

total radiative cooling rate.

The consequences of that rapid rise in cooling are dramatic, because the total heating rate

is set equal to the radiative cooling rate and rises just as rapidly. However, that heat input is

distributed more evenly across a large volume and cannot counteract radiative cooling of localized

dense gas clumps. As a result, the ambient pressure sharply rises, compressing the dense clumps

of low-entropy gas, causing both radiative cooling and the matching heating rate to increase. That

coupling therefore causes the cooling/heating rate to spike to unphysically high levels during a

cooling catastrophe (see Figure 2.4). Central internal energies and velocities then rapidly rise and

create discontinuities in the fluid. Due to the Courant condition, the time steps sometimes became

too small to continue evolving the simulations. In other cases, those discontinuities lead to negative

densities and/orz internal energies in the hydro solver, ultimately ending the simulation.

In reality, CC clusters can form cold gas (as is evident from observed star formation rates

ranging from 1 to 100 M⊙ per year), and so a physically accurate model should accommodate
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the formation of moderate amounts of cold gas. However, a heating kernel that immediately

responds by injecting compensating thermal energy with a fixed spatial distribution appears unable

to accommodate multiphase condensation without causing excessive heating.

2.4.3 Comparison to Observations

Figure 2.8 shows the time-averaged median entropy profile and projected X-ray surface bright-

ness profile, along with the 1𝜎 dispersion in the median profiles. It also shows the median entropy

profile of observed CC clusters in the ACCEPT dataset (Cavagnolo et al., 2009), along with the 1𝜎

dispersion and the full range. The dispersion in the simulated profiles is computed in radial bins

over the lifetime of each simulation up until the formation of cold gas or the end of the simulation.

The dispersion in the ACCEPT data is generated from a table of power-law fits to the entropy

profiles. Only CC clusters from ACCEPT with 𝐾0 < 30 keV cm2 are used.

No quasi-stable simulation maintains a central entropy close to the majority of the CC clusters

in the ACCEPT dataset. Heating kernels that keep low entropies within the range of the ACCEPT

CC clusters are not steady for more than 1 Gyr, and all experience central cooling catastrophes.

Heating kernels that form central convective regions have higher central entropies than the ACCEPT

CC clusters. Simulations that form a central entropy floor have lower entropies than the central

convective zone simulations and are steady for longer periods than the low central heating kernels,

but still have higher central entropies than the majority of observed CC clusters in the ACCEPT

dataset.

The differences among the X-ray surface brightness profiles are more subdued, with more

centralized feedback corresponding to a lower central surface brightness. The median central

surface brightness of the simulation shown here with a central catastrophe is within an order of

magnitude of the simulations that form a convective zone. Additionally, the surface brightness

profiles from the simulations fall inside the 1𝜎 interval of the CC clusters from ACCEPT.
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Figure 2.8: Top: Time-averaged median entropy profiles of the simulated cluster halos in Figure
2.3. The dotted line shows the simulation with low central heating ( 𝛼 = 2.0, 𝑟𝑠 = 8 kpc,
𝑟𝑐 = 1000 kpc), and the blue shaded region around it shows the 1𝜎 dispersion of its median profile
over time. The dashed line shows the simulation with high central heating (𝛼 = 2.6, 𝑟𝑠 = 1 kpc,
𝑟𝑐 = 150 kpc), and the orange shaded region around it shows its 1𝜎 dispersion. The dot-dashed line
shows the simulation with intermediate central heating (𝛼 = 2.6, 𝑟𝑠 = 12 kpc, 𝑟𝑐 = 150 kpc), and
the green shaded region around it shows its 1𝜎 dispersion. In each case, entropy is weighted by the
x-ray luminosity in the 0.5–2.0 keV band, to mimic data obtainable with Chandra. The median, 1𝜎
interval, and full extent of the entropy profiles of clusters with less than 30 keV cm2 from ACCEPT
are shown in grayscale, using the broken power law fits from Cavagnolo et al. (2009) for the entropy
profiles. Bottom: X-ray surface brightness in the 0.5–2.0 keV band for the same simulated halos,
with shaded regions showing the 1𝜎 dispersion and black lines showing the median. The median,
1𝜎 interval, and full extent of the entropy profiles of CC clusters from ACCEPT are shown in
grayscale, using surface brightness profiles derived from electron density and temperature profiles.
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2.4.4 Comparison to Other Simulations

Thermal regulation of galaxy clusters by AGN jets has been studied previously through numer-

ical simulation using many different models of AGN feedback. These approaches include injection

of buoyant bubbles (Brüggen, 2003b; Hillel & Soker, 2016), magnetic fields (Li et al., 2006; Naka-

mura et al., 2006, 2007; Huarte-Espinosa et al., 2012), kinetic jets (Wu et al., 2015; Martizzi et al.,

2016; Hahn et al., 2017; Meece et al., 2017), stochastic momentum feedback (Weinberger et al.,

2017; Nelson et al., 2019), cosmic rays (Jubelgas et al., 2008; Butsky & Quinn, 2018), and turbulent

heating (Gaspari et al., 2012a; Zhuravleva et al., 2014; Banerjee & Sharma, 2014), either explicitly

or implicitly driven by the central SMBH. Some simulations have also used purely thermal feedback

models like the model used in this work, to which we can compare.

Meece et al. (2017), the predecessor to this work, tested a AGN feedback model consisting of

a precessing bipolar jet that injected kinetic and thermal energy. They tested different fractions of

AGN feedback going into thermal heating versus the kinetic jet. For triggering the feedback they

tested three different models: a cold gas triggering model from Li & Bryan (2014a), a boosted

Bondi-like triggering, and a Booth and Schaye accretion model (Booth & Schaye, 2009). Like

this work, Meece et al. (2017) found that AGN models with purely thermal feedback led to an

overabundance of cold gas in the simulation core. However, their thermal feedback was limited

to a small region around the AGN, less than 1 kpc in diameter. In their simulations, hot bubbles

inflated via AGN heating at the cluster center buoyantly rose a short distance out of the center to

10 − 30 kpc and created a flatter entropy profile that was unstable to multiphase condensation and

therefore failed to suppress large accumulations of multiphase gas. Many of the heating kernels

tested in this paper rectify the problem of overly centralized heating but result in elevated core

entropy beyond what is reasonable for a CC cluster. globally our heating prescription is no longer

robust to the formation of cold gas.

The Rhapsody-G simulations of galaxy clusters explored cosmological zoom-in simulations

with star formation and feedback (SFF) and supermassive black hole (SMBH) formation and

feedback, using the Ramses Eulerian AMR code (Wu et al., 2015; Teyssier, 2002). In their AGN
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feedback prescription, mass accreted onto the SMBH following a density-boosted Bondi-Hoyle

accretion rate (Booth & Schaye, 2009). Thermal energy was deposited into a small radius around

the SMBH (Martizzi et al., 2016). Compared to CC cluster entropy profiles from the ACCEPT

catalogue, CC clusters in the Rhapsody-G had lower central entropies, showing overcooling in the

inner tens of kpc (Hahn et al., 2017).

Tremmel et al. (2017) presented the Romulus galaxy simulations using the ChaNGa smoothed

particle hydrodynamics code and includes SMBH feedback and SFF models tuned to observations.

Their SMBH feedback model had two free parameters: (1) the efficiency of the accretion rate onto

the SMBH and (2) the gas coupling efficiency 𝜖𝑐. These parameters were calibrated to produce

galaxies with observed values of the stellar-mass to halo ratio, HI gas fraction as a function of

stellar mass, galaxy specific angular momentum versus stellar mass, and the SMBH to stellar mass

relation. Their simulations used a thermal-only feedback model that deposited feedback energy

into the 32 gas particles nearest to the SMBH. Mass accretion was governed by a modified Bondi

accretion rate. Gas cooling was suppressed when heated by the SMBH for a time step equal to the

time step of the SMBH. This allowed energy to escape away from the SMBH, although it may not

be physically realistic. This feedback model produced galaxies with regulated SFF compared to

observation.

In the follow-up paper Tremmel et al. (2019) on the cosmological RomulusC simulations, the

same SFF and SMBH feedback models were used in a zoom-in simulation of a single halo. In

an isolated halo, purely thermal feedback from the SMBH led to a conic structure with a highly

collimated jet-like outflow. The outflows evolved over time, changing in shape and direction with

the angular momentum of the gas near the SMBH. Energy was carried out to large radii through the

outflows, which suppressed cooling at large radii. Star formation rates were regulated and matched

observed rates in clusters. Additionally, the entropy profile of the clusters was within the range

of observed profiles in CC clusters. Although the outflows were not explicitly introduced by their

feedback prescription, their ability to transport AGN feedback energy tens of kiloparsecs from the

center without inverting the large-scale entropy profile and overstimulating thermal instability is

69



the key to proper thermal regulation of their simulated CC cluster.

2.4.5 Implications

Since the heating kernels explored here failed to produce quasi-stable CC clusters with realistic

entropy profiles, extrapolations to real CC clusters may not be accurate. However, a few lessons

can be drawn from these simulations:

• In the context of purely thermal AGN feedback, feedback that is highly centrally concentrated

and tied directly to the global radiative cooling rate produces cores with entropy levels that

greatly exceed those of observed CC clusters and in some cases are physically unreasonable.

• When the total heating rate is directly tied to the total cooling rate in the halo, rapid cooling of

gas into cold clumps causes the heating rate to reach unphysically high levels. In comparison,

in simulations using Bondi accretion or cold gas accretion such as in Meece et al. (2017)

AGN feedback increases more gradually with the formation of cold gas, allowing feedback

energy output to tune itself to physically reasonable values.

• The heating kernels considered here, in which heating per unit volume had a fixed radial

distribution, were unable to maintain thermal stability of the cluster halo. In cases where a

cold clump of gas formed, the purely thermal AGN feedback was insufficient to disrupt the

clump without injecting unphysically high amounts of energy. The thermal heating in these

simulations was unable to reproduce the effects caused by kinetic outflows from AGN jets

such as in Meece et al. (2017).

A spherically symmetric heating kernel for purely thermal feedback that satisfies all of our

criteria may exist but would need to have different parameters than are explored here. Such an

idealized heating kernel would be useful to efficiently include AGN feedback in cosmological

simulations.
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2.4.6 Other Models Investigated

In search of a satisfactory heating kernel, we investigated several extensions to the spherically

symmetric ones described in Section 2.2. First, we applied a polar angle dependence of cos2 𝜃 to

mimic the conical distribution of heat from a kinetic jet. Total heating remained linked to total

cooling. However, decreased heating near the equatorial plane leads to cold gas forming several

tens of Myr sooner than for the corresponding spherical kernel and did not change the general

behavior of the cooling catastrophe. Next, we tried a model in which cold gas was removed from

the center of the simulation as it formed, to decrease the central density, potentially avoid fluid

discontinuities in the fluid solver, and allow robust simulations with the formation of cold gas.

However, explosive heat input triggered by the formation of cold gas still causes the hydrodynamics

solver to fail. We also tested equating total heating to total cooling of only the warm gas, testing

separately temperature thresholds of 106.5 K and 107 K, to exclude the rapid cooling of cold gas and

avoid explosive AGN feedback. However, this filtering of cold gas in the calculation of the heating

rate leads to more cold gas forming and the leftover warm gas having an elevated central entropy.

In some cases the heat input is still great enough to halt the simulation because of the Courant

condition. Lastly, we tried smoothing out the rise in AGN heating by setting the total feedback to

the average of the cooling rate over the last 50 Myr, in essence implementing a temporal kernel as

well as a spatial kernel. However, this approach also leads to high rates of formation of cold gas

due to the delayed heating response, as well as an eventual spike in AGN heating since the cooling

catastrophe ultimately is not counteracted.

2.4.7 Future Models

There remain conceivable modifications to this heating kernel approach that we did not inves-

tigate, but which could produce more physically realistic CC clusters. For example, total heating

could be capped at a physically reasonable value to avoid the overheating that coincides with the

formation of cold gas. Additionally, we could investigate a radially piecewise conic feedback kernel

in which AGN heating is spherically symmetric at small radii and conical at large radii. Another
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alternative would be a kernel with a spatial distribution that depends on the total heat input, adjust-

ing to spikes in heating/cooling by distributing increased heating over a larger volume, as would

happen with an increase in total jet power.

2.5 Summary

We have presented simulation results for simplified models of AGN feedback using heating

kernels for purely thermal feedback. In those kernels, heat input has a spatial dependence following

a radial power law ¤𝑒 ∝ 𝑟−𝛼 having a smoothing length 𝑟𝑠 at small radii, an exponential cutoff radius

𝑟𝑐 at large radii, and a total heating rate set equal to the total cooling rate measured within the cluster

halo. This approach differs from previous simulations approximating feedback rates using Bondi

and cold gas accretion models, which can temper the feedback response but are computationally

more expensive. Our intention was to identify a heating kernel that would be both computationally

inexpensive and able to maintain the hot atmosphere of a galaxy cluster in realistic quasi-steady

state.

All of the heating kernels we tested failed to maintain a quasi-steady state with an entropy

profile consistent with those observed among cool-core clusters (see Figures 2.3 and 2.7). We

compared entropy profiles from our simulations to observational data from the ACCEPT dataset.

Some simulations exhibit small to large central peaks in entropy that differ significantly from the

entropy profiles seen in the ACCEPT sample. The central entropy peaks are most pronounced

in simulations with highly centralized feedback. Simplified AGN models with overly centralized

thermal heating therefore do not produce realistic entropy profiles.

A few lessons can be drawn from this work. Thermalization of AGN feedback energy must

occur over a large region in order for the entropy profiles of simulated clusters to agree with those

of observed cool-core clusters. However, it is difficult to distribute thermal feedback over a large

region while also preventing a cooling catastrophe. Also, requiring total heating to equal total

cooling becomes particularly problematic near the onset of a cooling catastrophe, because the

increased cooling rate during the formation of large clumps of cold gas raises the heating rate to

very high levels.
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No configuration of purely thermal feedback explored here achieved thermal stability nor

prevented a run away collapse into a cold clump, in contrast to simulations that introduce feedback

energy in the form of kinetic jets. A heating kernel for purely thermal AGN feedback that produces

realistic CC clusters may still exist but would need to significantly differ from the kernels we tested.

Such a heating kernel that functions as an accurate and efficient proxy for more complex AGN

feedback physics would allow larger cosmological simulations without increasing resolution.
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CHAPTER 3

MAGNETIZED DECAYING TURBULENCE IN THE WEAKLY COMPRESSIBLE
TAYLOR-GREEN VORTEX

This chapter first appeared as the published paper Glines et al. (2021). I include the original

abstract as the introduction to this chapter.

Chapter Abstract

Magnetohydrodynamic turbulence affects both terrestrial and astrophysical plasmas. The

properties of magnetized turbulence must be better understood to more accurately char-

acterize these systems. This work presents ideal MHD simulations of the compressible

Taylor-Green vortex under a range of initial sub-sonic Mach numbers and magnetic field

strengths. We find that regardless of the initial field strength, the magnetic energy becomes

dominant over the kinetic energy on all scales after at most several dynamical times. The

spectral indices of the kinetic and magnetic energy spectra become shallower than 𝑘−5/3

over time and generally fluctuate. Using a shell-to-shell energy transfer analysis frame-

work, we find that the magnetic fields facilitate a significant amount of the energy flux

and that the kinetic energy cascade is suppressed. Moreover, we observe nonlocal energy

transfer from the large scale kinetic energy to intermediate and small scale magnetic energy

via magnetic tension. We conclude that even in intermittently or singularly driven weakly

magnetized systems, the dynamical effects of magnetic fields cannot be neglected.

3.1 Introduction

Magnetized turbulence is present in many terrestrial and astrophysical plasmas. Turbulence

in magnetohydrodynamics (MHD) has been studied extensively over recent decades, from ex-

perimental, theoretical, and numerical perspectives, as the field continues to work towards a full
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understanding of magnetized turbulent plasmas. However, much of the theoretical and numerical

work focuses on continuously driven plasmas, where a continuous (although potentially stochastic)

force adds energy to the plasma, resulting in stationary turbulence. In many natural systems, the

turbulence can be intermittently driven by infrequently occurring events or initialized from the ini-

tial conditions. For example, in the circumgalactic medium (CGM), the hot diffuse gas surrounding

galaxies, or in the intracluster medium (ICM), the plasma in galaxy cluster that accounts for the

majority of baryonic mass, turbulence can be introduced by various mechanisms. These include

mergers with other galaxies, brief increases in the birth rate of stars, temporary outflows from jets

driven by gas accreting onto supermassive black holes, supernovae, and many more transient events

(Norman & Bryan, 1999; Larson, 1981; Britzen et al., 2017; Korpi et al., 1999). In pulsed power

plasmas such as in a z-pinch, the plasma is driven by a single initial event and then allowed to

decay into turbulence as kinetic and magnetic energy in the plasma dissipate into heat (Rudakov &

Sudan, 1997; Kroupp et al., 2018). Therefore, to bridge the gap between observed, intermittently

driven turbulent systems and theories of stationary MHD turbulence, we can study the behavior of

decaying magnetized turbulence in an idealized environment.

In decaying turbulence, the turbulent flow arises purely from the initial conditions in the absence

of a continuous driving force that injects energy. Essentially, the driving force is a delta function

forcing at the initialization of the flow. The absence of external forces can avoid some of the

shortfalls of driven turbulence simulations. As an example of these shortfalls, previous studies

have shown that seemingly unimportant driving parameters such as the autocorrelation time and

normalization of the driving field can bias plasma properties in turbulence simulations, in some

cases affecting the scaling of the energy spectra (Grete et al., 2018). In addition, the driving forces

contaminate the driven scales, making studies of turbulent plasma properties on those scale difficult

to interpret. Simulations of decaying turbulence with fixed initial conditions avoid these issues

since there are no driving forces.

The Taylor-Green (TG) vortex provides a useful set of smooth initial conditions that devolve

into a turbulent flow. It was first proposed by Taylor & Green (1937) as an early mathematical
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exploration of the development of the turbulent cascade in a three dimensional hydrodynamic

fluid. In the modern era, it is a canonical transition-to-turbulence problem also used for validation

and verification of numerical schemes (Wang et al., 2013). From a physics point of view, the

TG vortex has been explored from numerous angles, including numerical simulations of inviscid

and viscous incompressible hydrodynamics with an emphasis on the development of small scale

structures through vortex stretching (Brachet et al., 1983). Multiple configurations for TG vortices

with magnetic fields were proposed in Lee et al. (2008) in order to study decaying turbulence in

incompressible MHD. The new magnetic field configurations maintain all of the symmetries of the

original hydrodynamic flow (Lee et al., 2008), and later works (Lee et al., 2010; Pouquet et al.,

2010; Brachet et al., 2013) used these symmetries to save computational resources and allow more

highly resolved simulations of the vortex. These simulations produced differing 𝑘−2, 𝑘−5/3, and

𝑘−3/2 spectra depending on the initial magnetic field, where the 𝑘−2 spectra was speculated to be

due to weak turbulence. Later work by Dallas & Alexakis (2013a,b) investigated the mechanism

behind the different spectra. They concluded that the 𝑘−2 spectra produced by one configuration

of the magnetic field was due to magnetic discontinuities in the plasma and not weak turbulence

as previously thought. In Dallas & Alexakis (2013c), perturbations added to the initial conditions

lead the symmetries of the TG vortex to break and the 𝑘−2 spectra to dissipate to shallower 𝑘−5/3

spectra. A similar problem using the hydrodynamic initial configuration of the TG vortex but

with an Orszag-Tang magnetic field was studied in imcompressible resistive MHD by Vahala et al.

(2008), where a 𝑘−5/3 energy spectra was found in their simulations.

All of these studies are concerned with incompressible turbulence, whereas many astrophysical

systems (such as the interstellar, circumgalactic, intracluster, and intergalactic media) are comprised

of compressible magnetized plasmas. To our knowledge, the formulation of the TG vortex from

Lee et al. (2008) remains unexplored in the compressible MHD regime. Moreover, there have been

recent advances in analytical tools to study the transfer of energy between reservoirs in compressible

MHD (Yang et al., 2016; Grete et al., 2017). Energy transfer analysis enables measurement of

the flux of energies between length scales within and between the kinetic, magnetic, and thermal
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energies of the plasma. In a compressible ideal MHD plasma, energy can be redistributed within the

kinetic and within the magnetic energy budget via advection and compression. Moreover, magnetic

tension can facilitate energy transfer between kinetic and magnetic energies as vortical motion in

the turbulent plasma contributes to magnetic fields and magnetic fields constrain the motion of the

plasma. In turbulent flow, intra-budget energy transfers via advection and compression typically

manifest from a larger scale to a smaller but similar scale (i.e., “down scale-local"), defining the

turbulent cascade. Inter-budget energy transfer via, e.g., magnetic tension, complicates the picture

of a turbulent cascade as it moves energy between reservoirs and potentially allows for nonlocal

transfer of energy from large scales directly to much smaller scales. Given the transient nature of

the TG vortex, we expect the energy transfers to change over time as, e.g., the ratio of kinetic to

magnetic energy evolves over time or due to the development of increasingly small-scale structure.

This is in contrast to stationary turbulence where the dynamics remain constant over time in a

statistical sense.

For these reasons, we focus on a detailed study of the dynamics in the magnetized, weakly com-

pressible Taylor-Green vortex. Moreover, to explore magnetized decaying turbulence in different

regimes we present nine simulations of the TG vortex probing all combinations of three different

initial ratios of kinetic to magnetic energy (1, 10, and 100, corresponding to initial Alfvénic Mach

numbers of M𝐴 = {1, 3.2, 10}) and three different initial fluid velocities (initial root mean squared,

or RMS, sonic Mach numbers of M𝑠,0 = {0.1, 0.2, 0.4}). Thus, we explore strongly and weakly

magnetized, subsonic plasmas in which density perturbations are present but limited.

To summarize our results, we find that magnetic fields significantly influence the decaying

turbulence in the plasma regardless of the initial field strength. In all cases, we find that at

late times the magnetic dynamics dominate kinetic dynamics even if the initial magnetic energy

is 100 times smaller than the kinetic energy. Moreover, the spectral indices of the kinetic and

magnetic energies are not fixed in time but evolve from steep ≃ 𝑘−2 spectra at earlier times to

shallower ≃ 𝑘−4/3 spectra at later times. Using the energy transfer analysis, we see that most

energy transfer is dominated by magnetic field dynamics. This includes both energy flux from
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kinetic to magnetic energy via magnetic tension and the flux of energy within the magnetic energy

budget via compression and advection. Overall, the kinetic energy cascade is effectively absent

and the initial sonic Mach number (M𝑠,0) only weakly affects the observed dynamics. We also

see several transient phenomena during the transition to turbulence, including temporary inverse

turbulent cascades in both the magnetic and kinetic energies and large nonlocal energy transfers

between scales separated by up to two orders of magnitude from the kinetic to the magnetic energy.

We organize the paper as follows. In Section 3.2, we describe the simulation and analysis

setup including numerical methods, detailed Taylor-Green vortex initial conditions, and the energy

transfer analysis. In Section 3.3, we present results of the simulations (focusing on M𝑠,0 = 0.2)

such as the bulk properties of the plasma, the evolution of the energy spectra, and the transient

behaviors seen through the energy transfer analysis:Section 3.4, we discuss our findings in the

broader context of magnetized turbulence and astrophysical plasmas and conclude in Section 3.5

with a summary of our key findings. The online supplementary materials for this paper contain

detailed plots of the results of all initial M𝑠,0.

3.2 Method

3.2.1 MHD Equations and Numerical Method

The equations for compressible ideal MHD plasma can be written as a hyperbolic system of

conservation laws. In differential form the ideal MHD equations are

𝜕𝑡𝜌 + ∇ · (𝜌u) = 0

𝜕𝑡𝜌u + ∇ · (𝜌u ⊗ u − B ⊗ B) + ∇
(
𝑝 + B2/2

)
= 0

𝜕𝑡B − ∇ × (u × B) = 0

𝜕𝑡𝐸 + ∇ ·
[(
𝐸 + 𝑝 + B2/2

)
u − (B · v) B

]
= 0

where 𝜌 is the density, u is the flow velocity, B is the magnetic field (that includes a factor of

1/
√

4𝜋), 𝑝 is the thermal pressure, and 𝐸 is the total energy density. We close the system of
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equations with the equation of state for an adiabatic ideal gas with

𝑝 = 𝜌 (𝛾 − 1) 𝑒

where 𝛾 is the ratio of specific heats and 𝑒 is the internal energy found from

𝐸 = 𝜌

(
1
2

u · u + 1
2

B · B + 𝑒
)
.

We use the open source K-Athena Grete et al. (2021a) astrophysical MHD code, which is a

performance portable version of Athena++ Stone et al. (2020a) using the Kokkos performance

portability library Carter Edwards et al. (2014). K-Athena uses an unsplit finite volume Godunov

scheme to evolve the ideal MHD equations originally presented and implemented in Athena Stone

& Gardiner (2009). The method consists of a second-order Van Leer predictor-corrector integrator

with piecewise linear reconstruction (PLM) and HLLD Riemann solver, and constrained transport

to preserve a divergence-free magnetic field.

3.2.2 Magnetized TG Vortex

The TG vortex was first proposed by Taylor & Green (1937) as a mathematical exploration of

the development of hydrodynamic turbulence in 3D. The initial flow was made to be periodic and

symmetrical in order to accommodate simple approximations to a solution. There exist a number of

different formulations. We follow the setup described in Wang et al. (2013) for the hydro variables

and Lee et al. (2008) for the initial magnetic field configuration.

The simplest hydrodynamic setup of a TG vortex begins with a periodic field of fluid velocity

in the xy-plane and periodic pressure and density field with constant sound speed throughout the

domain. Using a cubic periodic domain with side length 2𝜋𝐿, the initial fluid velocity is set to

𝑢𝑥 = 𝑢0 sin
𝑥

𝐿
cos

𝑦

𝐿
cos

𝑧

𝐿

𝑢𝑦 = −𝑢0 cos
𝑥

𝐿
sin

𝑦

𝐿
cos

𝑧

𝐿

𝑢𝑧 = 0
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where 𝑢0 is the maximum initial velocity. Note that in this formulation the initial flow velocity is

confined to the xy-plane. The initial pressure and density are set to

𝑃 = 𝑃0 +
𝜌0𝑢

2
0

16

(
cos

2𝑥
𝐿

+ cos
2𝑦
𝐿

) (
cos

2𝑧
𝐿

+ 2
)

𝜌 = 𝑃𝜌0/𝑃0

so that 𝑃 and 𝜌 are proportional to each other. This means that the sound speed

𝑐𝑠 =
√︁
𝛾𝑃/𝜌 =

√︁
𝛾𝑃0/𝜌0

is initially constant throughout the domain.

The root mean square (RMS) of the initial Mach number is related to 𝑢0 by

M𝑠,0 =
𝑢0
2𝑐𝑠

.

For simplicity, we set 𝑃0 = 1 and 𝜌0 = 1. We assume the fluid is a monatomic ideal gas with

an adiabatic index 𝛾 = 5/3. The resulting total initial kinetic energy is

𝐸𝑈,0 = 𝜌0𝑢
2
0 (𝜋𝐿)

3 . (3.1)

Magnetic fields were first added to the TG vortex in Lee et al. (2008) with the express constraint

of preserving the same symmetries of the hydrodynamic flow. Here, we follow the proposed

insulating configuration so that currents are confined to 𝜋𝐿 boxes, e.g., the cube [0, 𝜋𝐿]3 forms an

insulating box. The corresponding initial magnetic fields are given by

𝐵𝑥 = 𝐵0 cos
𝑥

𝐿
sin

𝑦

𝐿
sin

𝑧

𝐿

𝐵𝑦 = 𝐵0 sin
𝑥

𝐿
cos

𝑦

𝐿
sin

𝑧

𝐿

𝐵𝑧 = −2𝐵0 sin
𝑥

𝐿
sin

𝑦

𝐿
cos

𝑧

𝐿
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where 𝐵0 is the initial magnetic field strength. In practice, we initialize the magnetic field from the

magnetic vector potential A

𝐴𝑥 = −𝐵0 sin
( 𝑥
𝐿

)
cos

( 𝑦
𝐿

)
cos

( 𝑧
𝐿

)
𝐴𝑦 = 𝐵0 cos

( 𝑥
𝐿

)
sin

( 𝑦
𝐿

)
cos

( 𝑧
𝐿

)
𝐴𝑧 = 0

using B = ∇×A. This guarantees ∇ ·B = 0 to machine precision in the initial conditions, which is

then preserved by the constrained transport algorithm throughout the simulation. The total initial

magnetic energy is

𝐸𝐵,0 = 3𝐵2
0 (𝜋𝐿)

3 (3.2)

so that the initial ratio of kinetic to magnetic energy is

𝐸𝑈,0
𝐸𝐵,0

=
𝜌0𝑢

2
0

3𝐵2
0
. (3.3)

Since the magnetic field is zero is some regions of the domain, the Alfvénic Mach number

M𝐴 = 𝑢
√
𝜌/𝐵 is also undefined in some regions. For this reason, we use a proxy based on the

mean energies for the Alfvénic Mach number

M𝐴 :=
√︁
⟨𝐸𝑈⟩/⟨𝐸𝐵⟩ (3.4)

throughout the rest of the paper. We also adopt a similar proxy for the plasma 𝛽 (ratio of thermal

to magnetic pressure)

𝛽 :=
2
𝛾

M2
𝐴

M2
𝑠

(3.5)

where M𝑠 is the RMS of the sonic Mach number.

The hydrodynamic and magnetic initial conditions exhibit a number of symmetries that are

maintained throughout the simulation. In each of the three dimensions there are two planes across

which the fluid is antisymmetric. For our setup, these are planes through 𝑥 = 0 and 𝑥 = 𝜋𝐿;

planes through 𝑦 = 0 and 𝑦 = 𝜋𝐿; and planes through 𝑧 = 0 and 𝑧 = 𝜋𝐿. Additionally, the

81



flow is rotationally symmetric through a rotation of 𝜋 around the two axes 𝑥 = 𝑧 = 𝜋𝐿/2 and

𝑥 = 𝑧 = 𝜋𝐿/2 and rotationally symmetric through a rotation of 𝜋/2 around the axis 𝑥 = 𝑦 = 𝜋𝐿/2.

These symmetries are more thoroughly explored in Lee et al. (2008).

We explore the transition to magnetized turbulence and the following decay in different regimes

with our simulation suite of TG vortices and focus on two parameters: the initial RMS Mach number

using M𝑠,0 = {0.1, 0.2, 0.4} and the initial ratio of kinetic to magnetic energy using 𝐸𝑈,0/𝐸𝐵,0 =

{1, 10, 100}, or alternatively, the initial RMS Alfvénic Mach number M𝐴,0 = {1, 3.2, 10}. We

simulate all nine combinations of the three values of these two parameters. Throughout the rest of

the text, we use MsX to refer to simulations with M𝑠,0 = 𝑋 and MaY to refer to simulations with

M𝐴,0 = 𝑌 .

The initial magnetic field amplitude 𝐵0 is obtained from Equation 3.3 using given a specific

value of M𝑠,0 and M𝐴,0. All simulations employ a cubic [−0.5, 0.5]3 domain with periodic

boundaries, with 𝐿 = 1
2𝜋 to be consistent with the definition of the initial condition that is presented

above. We use a uniform Cartesian grid with 1,0243 cells. The characteristic length scale of the

initial vortices is 𝜋𝐿, so that we define

𝑇 =
𝜋𝐿

𝑢0

as the dynamical time 1 In order to evolve the simulations for sufficient time to allow a turbulent

flow to form and evolve, we run each simulation for ≈ 6 dynamical times.

In our results, we present all measurements of time in terms of the dynamical time 𝑇 and all

measurements of wavenumber in terms of 1/𝐿. Unless otherwise noted, all other results are in

terms of simulation units.

3.2.3 Energy Transfer Analysis

In order to probe the movement of energy between different energy reservoirs, we use the shell-

to-shell energy transfer analysis from Grete et al. (2017), which extends the framework presented

1Note that other works such as Wang et al. (2013); Pouquet et al. (2010) use a nondimensional
time, 𝑡∗ = 𝐿/𝑢0, in contrast to the dynamical time used here.
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in Alexakis et al. (2005) to the compressible regime.

The total transfer of energy from some shell𝑄 in energy reservoir 𝑋 to some shell 𝐾 in reservoir

𝑌 is denoted by

T𝑋𝑌 (𝑄, 𝐾) 𝑋,𝑌 ∈ [𝑈, 𝐵] (3.6)

where we use𝑈 and 𝐵 to denote the kinetic and magnetic energy reservoirs, respectively.

In this work we focus on the energy transfer within the kinetic and magnetic energy reservoirs

via advection and compression which are respectively

T𝑈𝑈 (𝑄, 𝐾) = −
∫

w𝐾 · (u · ∇) w𝑄𝑑x

−1
2
∫

w𝐾 · w𝑄∇ · u𝑑x

T𝐵𝐵 (𝑄, 𝐾) = −
∫

B𝐾 · (u · ∇) B𝑄𝑑x

−1
2
∫

B𝐾 · B𝑄∇ · u𝑑x

and the energy transferred from kinetic energy to magnetic energy via magnetic tension (and vice

versa) given by

T𝑈𝐵𝑇 (𝑄, 𝐾) =

∫
B𝐾 · ∇

(
v𝐴 ⊗ w𝑄

)
𝑑x (3.7)

T𝐵𝑈𝑇 (𝑄, 𝐾) =

∫
w𝐾 · (v𝐴 · ∇) B𝑄𝑑x . (3.8)

Here we use the mass weighted velocity w =
√
𝜌u so that the spectral energy density is positive

definite Kida & Orszag (1990), and v𝐴 is the Alfvénic wave speed.

The velocity w𝐾 and magnetic field B𝐾 in a shell K (or Q) are obtained using a sharp spectral

filter in Fourier space. The shell bounds are logarithmically spaced and given by 1 and 2𝑛/4+2

for 𝑛 ∈ {−1, 0, 1, . . . , 32}. Shells (uppercase, e.g., K) and wavenumbers (lowercase, e.g., 𝑘) obey

a direct mapping, i.e., 𝐾 = 24 corresponds to the logarithmic shell that contains 𝑘 = 24, i.e.,

𝑘 ∈ (22.6, 26.9].

3.3 Results

In this section we present results of the Taylor-Green vortices we simulated, showing bulk

properties of the fluid (Section 3.3.1), including the evolution of the different energy spectra. These
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results demonstrate that the kinetic, magnetic, and thermal energy reservoirs interact with each

other in a manner that depends significantly on the initial strength of the magnetic field. The

energy spectra evolves to a turbulent cascade over 1-2 dynamical times and then stays there for the

remainder of the simulation. In Section 3.3.2, we examine in detail the transfer of energy between

different energy reservoirs, including the transient behaviors we observed in the simulations. We

see robust transfer of energy at all scales within the kinetic and magnetic energy reservoirs when

examined separately, as well as complex and time-varying nonlocal transfer of energy between the

kinetic and magnetic energy reservoirs, including evidence for an intermittent inverse turbulent

cascade. Since the initial Mach number had much less of an effect on the results compared to the

initial ratio of kinetic to magnetic energy, we focus on results using only the three Ms0.2 simulations

as reference. We provide more complete plots of all nine simulations spanning all Mach numbers

in the online supplements.

Starting with a visual demonstration of the TG vortex, Figure 3.1 shows the sonic Mach number

and magnetic pressure from the Ms0.2_Ma10 simulation after 0.77 dynamical times and after 5.16

dynamical times in a slice in the 𝑥𝑦−plane through the origin. Only one quadrant of the 𝑥𝑦-place is

shown, as it exhibits symmetry across 4 quadrants in the 𝑥𝑦-plane. From the slice plot, we can see

that the TG vortex begins as a smooth vortical flow and magnetic field. After several dynamical

times, the smooth flow devolves into a chaotic magnetized turbulent flow. Kinetic and magnetic

structures at all scales persist throughout the simulation, as will be shown in energy spectra later in

this work.

3.3.1 Bulk Properties

3.3.1.1 Evolution of energy reservoirs

Figure 3.2 shows the total kinetic, magnetic, and thermal energies and the dimensionless RMS

sonic Mach number M𝑠, Alvénic Mach number M𝐴, and plasma beta 𝛽 of the Ms0.2 simulations

as a function of time. In this figure, we can see that in all simulations kinetic and magnetic energy

convert into thermal energy over time. This decay into thermal energy is not immediate; rather,
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it requires at least one dynamical time to begin (i.e., it is observed to occur at a minimum of

𝑡 = 1𝑇 in all simulations). In the Ma1 simulations, due to the initial conditions there is even a

small transient transfer of thermal energy into kinetic and magnetic energies. After 𝑡 = 2𝑇 , all

simulations dissipate kinetic and magnetic energy into thermal energy. The sonic Mach number

generally decreases by less than a factor of 4 over time from its initial 0.2 value, and 𝛽 remains

high (from ∼> 20 for Ms0.2_Ma1 to ∼> 100 for Ms0.2_Ma10) throughout the simulations.

In all cases, the flow becomes dominated by magnetic energy (i.e., become sub-Alfvénic with

M𝐴 < 1) at different dynamical times depending on the initial ratio of kinetic to magnetic energy

and mostly independent of the initial Mach number. In other words, even for the simulations with

initially 100 times more kinetic than magnetic energy (Ma10), in the final state the magnetic energy

dominates over the kinetic energy. This already highlights the importance of kinetic to magnetic

energy transfer. The initial growth of magnetic energy is characteristic of the insulating magnetic

field configuration and is seen in other works on the TG vortex Lee et al. (2010). This behavior of

the magnetic field is likely due to the magnetic fields and vorticity beginning parallel to each other

everywhere. All simulations experience a peak in the magnetic energy evolution before 𝑡 = 3𝑇

depending on the initial magnetic energy. At 𝑡 = 6𝑇 , all simulations are still losing total kinetic

and magnetic energy to thermal energy, although the rate of energy dissipation is slowing by the

simulation end. The magnetic and kinetic energies also become similar in magnitude, cf., M𝐴 ≃ 1.

The Ms0.2_Ma1 simulation displays notably different behavior than those where the kinetic

energy initially dominates. In particular, we observe periodic exchanges of energy between these

two reservoirs before the bulk of the energy is converted into heat, rather than a smooth transfer of

energy from the kinetic to magnetic reservoir, followed by a decline of both as the flow thermalizes.

At approximately 𝑡 = 1𝑇 , more than five times as much energy is stored in the magnetic reservoir as

compared to the kinetic reservoir, which is in stark contrast with other calculations. These results

suggest that the large initial magnetic field facilitates a more rapid transfer of kinetic energy, which

will be examined in more detail later in this paper. For reference, we also plot the temporal evolution

of the energies in the incompressible, magnetized Taylor-Green vortex with Ma=1 presented in
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Pouquet et al. (2010) in the top left panel of Fig. 3.2 next to our Ms0.2_Ma1 results. The evolution

in (Pouquet et al., 2010) covers the first oscillation and is in good agreement with our simulation.

Finally, the oscillations observed in the energy reservoirs for the Ma1 simulations in general have a

period that depends on the initial Mach number, which can be seen in the figures that we leave for

the online supplements.

3.3.1.2 Energy Spectra

Figure 3.3 shows the temporal evolution of the kinetic and magnetic energy spectra of the three

Ms0.2 simulations, compensated by 𝑘4/3, which demonstrates how both the kinetic and magnetic

energy spectra change from the smooth initial large scale flow to fully developed turbulence. The

top row shows the three simulations earlier in the evolution (𝑡 = 0.77𝑇), when the spectra are

still steep with large scale structure from the initial conditions. In the case of the strongest initial

magnetization (Ma1), the magnetic energy is larger than the kinetic energy on all scales and their

spectral scaling is comparable. For Ma3.2 and Ma10 the kinetic energy spectrum is steeper than

the magnetic one. The spectra cross at 𝑘 ≃ 7 and 𝑘 ≃ 20, respectively, so that the kinetic energy

is still dominant on large scales. The middle row in Figure 3.3 shows intermediate times with

Ms0.2_Ma1 at 𝑡 = 1.29𝑇 , which is the time that is discussed in Section 3.3.2.2 and Ms0.2_Ma3.2

and Ms0.2_Ma10 simulations at 𝑡 = 1.81𝑇 , which is the time is discussed in Section 3.3.2.1. Note

that the spectra are still evolving at this intermediate stage. In the Ms0.2_Ma10 simulation at

𝑡 = 1.81𝑇 , the magnetic spectra has reached a 𝑘−4/3 spectrum while the kinetic spectra shows a

broken power law with excess energy at larger length scales. In both Ma1 and Ma3.2 the magnetic

energy is now dominant on effectively all scales (with the exception of the noisy part of the spectrum

at the largest scales, 𝑘 ∼< 4). The bottom row shows all three Ms0.2 simulations at 𝑡 = 5.16𝑇 .

Here, the magnetic energy is effectively dominant on all scales in all simulations and the kinetic

and magnetic spectra exhibit a scaling close to 𝑘−4/3. The spectral indices still fluctuate, which we

explore in Section 3.3.1.3.

In Figure 3.4 we show the kinetic and magnetic energy at specific wavenumbers and compensated
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by 𝑘4/3 plotted over time. At early times (before 𝑡 = 2𝑇) the large scale (𝑘 = 8) kinetic energy

shows the fastest growth rate compared to smaller scales as expected from an initial entirely large

scale configuration. The kinetic energy at 𝑘 = 8 peaks between 𝑡 = 1𝑇 and 𝑡 = 2𝑇 with larger

initial magnetic field leading to an earlier peak. The magnetic energy at 𝑘 = 8 in the Ms0.2_Ma1

simulation oscillates throughout the duration of the simulation, with the kinetic energy oscillating

once. No oscillatory behavior is observed in Ms0.2_Ma3.2 and Ms0.2_Ma10 for these quantities.

From this plot we can also see that the small scale (𝑘 = 128) energies saturate at 𝑡 ≃ 1𝑇 , 𝑡 ≃ 1.5𝑇 ,

and 𝑡 ≃ 2.5𝑇 , respectively.

3.3.1.3 Spectral Index

We measured the spectral indices of the kinetic and magnetic energy spectra 𝛼 by fitting a

power-law 𝐸 ∝ 𝑘𝛼 to the energy spectra of each reservoir at each time step. For the inertial

range of wavenumbers across which we fit the power-law to the spectra, we used wavenumbers

𝑘 = 10 to 𝑘 = 32. We chose this inertial range because very little large scale structure persists

below 𝑘 = 10 and wavenumbers above 𝑘 = 32 are not entirely free of numerical dissipation any

more. The kinetic and magnetic spectral indices measured across the inertial range are not fixed in

time across the different simulations, with the most variation being due to initial magnetic energy.

Figure 3.5 shows the spectral indices of the kinetic, magnetic, and sum of kinetic and magnetic

energy spectra over time for the Ms0.2 simulations. In all simulations, the spectral index evolves

over time, decaying from the initial steep spectral index (𝛼 ∼< −2) as energy is transferred to small

scales. The kinetic and magnetic spectral indices evolves separately in the calculations until the

magnetic energy exceeds the kinetic energy, after which the spectral indices of the separate and

combined reservoirs fluctuate within Δ𝛼 ≃ 0.2. The crossover of kinetic and magnetic energies

happens immediately in the Ms0.2_Ma1 simulation, early in the Ms0.2_Ma3.2 simulation before

𝑡 = 2𝑇 , and later in the Ms0.2_Ma10 simulation at 𝑡 ≃ 4𝑇 . After the kinetic and magnetic spectral

indices reach rough parity and the magnetic field becomes dominant, both spectral indices reach

comparable values and reach a rough constant 1 − 2 dynamical times later, although they continue
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to vary over time. Since the magnetic fields in the Ma1 simulations immediately become dominant,

the spectral indices reach a rough constant at 𝑡 ≃ 2𝑇 , while in the Ma3.2 simulations they reach a

rough constant at 𝑡 ≃ 4𝑇 and in the Ma10 simulations this happens at 𝑡 ≃ 5𝑇 . The Ms0.2_Ma3.2

simulation experiences a brief peak in the spectral index around 𝑡 ≃ 1.5𝑇 while the flow is still in

transition. This is also reflected in the large uncertainty of the spectral index during that time, e.g.,

the index of the kinetic energy spectrum varies between −1 and −2.25 by choosing slightly different

fitting ranges (as indicated by the shaded blue bands in Fig. 3.5). Note that in the Ma10 case, the

magnetic spectrum flattens and the spectral index reaches a roughly constant value much sooner

than in the other two cases, at 𝑡 ≃ 2𝑇 when the kinetic energy still dominates. Later on in the Ma10

simulations, the kinetic spectral index becomes comparable to the magnetic spectral index. For the

high initial magnetic field simulations, the spectral index levels out at about 𝛼 ≃ −5/3 while the

initially kinetically dominated simulations level out at 𝛼 ≃ −4/3.

The final spectral indices depend on the initial ratio of kinetic to magnetic energy, with more

magnetic energy leading to shallower magnetic spectra. The Ma1 simulations end with 𝛼 ≃ −1.7

(close to −5/3), Ma3.2 ends with 𝛼 ≃ −1.3 (close to −4/3), and Ma10 ends with slightly lower

values of 𝛼 ≃ −1.2. In the presence of the stronger magnetic fields in the Ma1 simulations, the

flattening of the spectra seems to be suppressed. Before the kinetic and magnetic spectral indices

become comparable in each simulation, there is also greater variance in the spectral slope when

measured using different inertial ranges. This indicates that a power-law might be a poor fit for

the spectra at those early times, showing that the spectra is not fully developed until the magnetic

energy is dominant. For example, as seen in Figure 3.3, the kinetic energy spectra appears as a

broken power law at intermediate times, which is especially evident in the Ms0.2_Ma10 simulation

at 𝑡 = 1.81𝑇 to a lesser extent the Ms0.2_Ma1 simulation at 𝑡 = 1.29𝑇 and the Ms0.2_Ma3.2

simulation at 𝑡 = 1.81𝑇 . Oscillations in the spectral index of the Ma1 simulations also appear,

whose period seems to be linked to the initial Mach number, with larger Mach numbers leading to

a smaller period of oscillation.

We note that between the three values of M𝐴, the simulations shown here exhibit a wide variety
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of behaviors, highlighted by the spectral indices in Fig. 3.5. More simulations with intermediate

values of M𝐴 would be required to determine if the transition between these behaviors is smooth

or abrupt.

3.3.2 Energy Transfer

While the total energy and spectra of the kinetic and magnetic reservoirs can broadly describe

the isolated behavior of the different energy reservoirs, examining the energy transfer within and

between reservoirs using the analysis described in Section 3.2.3 can provide deeper insights into the

physical phenomena, including demonstrating the mechanisms that are responsible for the transfer

of energy. The shell-to-shell energy transfer fluxes examined in this section demonstrate the flux

from wavenumber𝑄 to wavenumber𝐾 within and between energy reservoirs via different pathways.

Figure 3.6 shows the energy transfer within the kinetic (left) and magnetic (right) energy

reservoirs via advection and compression in the Ms0.2_Ma1 simulation at 𝑡 = 0.77𝑇 (top) and at

𝑡 = 5.16𝑇 (bottom). This plot encapsulates the energy transfer of a turbulent cascade. Near the

beginning of the simulation in the top panels, most of the energy is in large scale modes, with energy

from larger 𝑄 wavenumbers moving to smaller 𝐾 wavenumbers. Note that the energy transfer is

constrained to the diagonal because the bulk of the energy transfer is local, occurring between

comparable scales of𝑄 to 𝐾 . White space fills the off-diagonals because very little nonlocal energy

transfer occurs internally within reservoirs. The energy transfer shown in this figure is solely within

the kinetic and magnetic reservoirs – there is no energy transfer shown between these reservoirs

(although it is occurring, as will be discussed in the next paragraph). In the simulation shown

here, the magnetic energy transfer is larger in magnitude than the kinetic energy transfer. In all

simulations, the magnetic energy transfer extends to higher wavenumbers more rapidly than the

kinetic energy. After the flow has decayed into turbulence (as shown in the bottom panels), energy

transfer to smaller local scales happens across the resolved modes down to numerical dissipation

scales. At large wavenumbers (𝑄 > 16), the energy transfers are scale-local and of comparable

magnitude. This phenomenon continues to at least 𝑄 ≃ 200 in both the kinetic and magnetic
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energy transfer – i.e., to much larger wavenumbers than an inertial range is observed (see, e.g.,

Figure 3.3). Thus, the effective (numerical) viscosity and resistivity are not affecting the turbulent

cascade encoded by these transfers to a significant degree.

Figure 3.7 shows the energy transfer within the kinetic (top) and magnetic (bottom) energy

reservoirs in the Ms0.2_Ma1 simulation at 𝑡 = 1.29𝑇 (just before the magnetic energy peaks).

Energy transfer within the kinetic and magnetic reservoirs briefly reverses directions and moves

energy from smaller local scales to larger local scales (note the purple color indicating energy loss

above the diagonal and orange color below the diagonal, which is in contrast to Fig. 3.6). This

constitutes a transient inverse cascade. Additionally, the inverse cascade is present throughout most

scales of the magnetic energy (𝐾,𝑄 ∼< 100) but only apparent at large scales in the kinetic energy

(𝐾,𝑄 ∼< 16). As seen in Figure 3.4, at this early time the turbulent flow is just beginning to saturate

the smallest scales while the large scale energy oscillates, so the energy transfer inversion lasts less

than a dynamical time (see Section 3.3.2.2 for further exploration of the duration).

Figure 3.8 shows the energy transfer between the kinetic to magnetic energy reservoirs due to

magnetic tension at 𝑡 = 1.81𝑇 in the Ms0.2_Ma10 simulation. This Figure displays nonlocal transfer

from kinetic to magnetic energy. Unlike the advection- and compression-driven modes within the

magnetic and kinetic energy reservoirs, energy transfers from kinetic to magnetic reservoirs via

tension can support nonlocal energy transfers. The nonlocal transfer happens from large kinetic

scales to much smaller magnetic scales, spanning more than an order of magnitude downward in

spatial scale from the largest kinetic modes. The nonlocal energy transfer between kinetic and

magnetic energy was significant in simulations with lower initial magnetic energy, and especially in

the Ma10 simulations where the magnetic field is dynamically unimportant at early times. Kinetic

energy moves significant energy to all magnetic scales from early times at 𝑡 ≃ 1.5𝑇 to intermediate

times at 𝑡 ≃ 4𝑇 in these simulations, although some energy continues to flow via this mechanism at

later times. Additionally, since the transfer of energy via tension is between two different reservoirs,

the energy transfer can transfer at equivalent scales from one reservoir to the other. This is shown

as non-zero transfer along the diagonal of the plot.

90



3.3.2.1 Nonlocal Energy Transfer

Like in some driven turbulence simulations Alexakis et al. (2005); Grete et al. (2017), these

decaying turbulence simulations also demonstrate significant nonlocal energy transfer between

kinetic and magnetic energy reservoirs. Unlike in driven simulations, the energy transfers in this

work are solely due to the fluid flow and not due to externally-applied driving forces. Figure 3.9

shows the total local, nonlocal, and equivalent-scale energy transfers via magnetic tension in the

Ms0.2 simulations over time. We obtain these quantities by integrating the transfer functions over

different sets of scales:

Nonlocal lower
∑︁
𝑄

∑︁
𝐾∈[1,2−ℓ𝑄)

T𝑋𝑌 (𝑄, 𝐾)

Local-Lower
∑︁
𝑄

∑︁
𝐾∈[2−ℓ𝑄,𝑄)

T𝑋𝑌 (𝑄, 𝐾)

Equivalent
∑︁
𝑄

∑︁
𝐾=𝑄

T𝑋𝑌 (𝑄, 𝐾)

Local-Higher
∑︁
𝑄

∑︁
𝐾∈(2ℓ𝑄,𝑄]

T𝑋𝑌 (𝑄, 𝐾)

Nonlocal Higher
∑︁
𝑄

∑︁
𝐾∈(2ℓ𝑄,∞]

T𝑋𝑌 (𝑄, 𝐾)

where ℓ is a parameter for differentiating local versus nonlocal separation of wavenumbers in log

space. In Figure 3.9, we show the analysis using ℓ = 5/4 with a solid line, which corresponds to

5 logarithmic bins above or below 𝑄 (see 3.2.3 for the description of the binning), and show the

extent of the fluxes if ℓ = 5/4 ± 1/4 is used in shaded regions. As seen in this figure from the red

line, the nonlocal energy transfer from large scale kinetic modes to small scale magnetic modes

(“downscale” transfer) is present in all simulations but is only dominant when the initial kinetic

energy exceeds the initial magnetic energy – this nonlocal energy transfer is more significant in the

Ma3.2 and Ma10 simulations. Nonlocal energy transfer downscale (red line) peaks depending on the

initial magnetic field and in all cases before the total magnetic energy peaks. The nonlocal transfer

helps fill out the magnetic energy spectrum faster than the kinetic energy spectrum, especially in the

Ma10 simulations, which is consistent with the spectral index shown in Figure 3.3 and the turbulent
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cascades shown in the shell-to-shell energy transfer in Figure 3.6. By the time the magnetic energy

has exceeded the kinetic energy in the Ma3.2 and Ma10 simulations, nonlocal energy transfer is

largely diminished due to the lack of kinetic energy to feed the transfer.

Local energy transfer downscale (orange line) depends more strongly on the initial magnetic

field, with local transfer to smaller scales reaching double the nonlocal transfer in the Ma1 simulation

and being less than half in other cases. Local energy transfer upscale (blue line) is positive for

some early times in the Ma1 and Ma3.2 simulations.

The Ma1 simulations also display two different oscillatory behaviors, with a low frequency

oscillation in the local energy transfer and a high frequency oscillation clearly visible in the

equivalent energy transfer but also present in local and nonlocal down scale transfer.

3.3.2.2 Inverted Turbulent Cascades

At early times during the evolution of the Ma1 simulations, a temporary inverse cascade forms

within the kinetic and magnetic energy reservoirs where small scale energy transfers to larger

spatial scales. Figure 3.10 shows the local and nonlocal energy transfers within the kinetic and

magnetic energies to both smaller and larger length scales. In the Ma1 simulations, the local energy

transfer from larger to smaller length scales temporarily reverses into an inverse cascade in both the

kinetic and magnetic energy reservoirs shortly after peak magnetic energy is reached. The inversion

appears with all three sonic Mach numbers simulated, with the longest inversion appearing in the

Ms0.1_Ma1 simulation for ≃ 1𝑇 and shortest in the high Ms0.4_Ma1 simulation for ≃ 0.5𝑇 . For the

Ms0.1_Ma1 simulation, the kinetic energy reservoir briefly reverses to the normal configuration,

moving energy from large scales to scales while the magnetic energy is in an inverted cascade,

before returning to the inverted cascade, lingering longer than the magnetic field in the inverted

state and finally transitioning into a turbulent cascade for the rest of the simulation. As seen in

Figure 3.7, the movement of energy to larger scales is not limited to any region of the spectra –

it is present at all length scales. The Ma1 simulations, which are the only simulations to exhibit

an inverse cascade, are also the only ones in which the total kinetic energy increases during any
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period. After peak magnetic energy in the Ma1, the magnetic energy increases while the kinetic

energy increases for ≃ 1𝑇 ; the inverse cascade appears during this same period.

3.3.2.3 Cross-Scale Flux

With additional analysis of the shell-to-shell transfer, we can extract more insight into the move-

ment of energy. We can measure the cross-scale flux of energy from scales below a wavenumber 𝑘

to scales above a wave number 𝑘 by integrating the transfer function

Π𝑋<𝑌> (𝑘) =
∑︁
𝑄≤𝑘

∑︁
𝐾≥𝑘

T𝑋𝑌 (𝑄, 𝐾) (3.9)

Figure 3.11 shows the cross-scale fluxes via different transfer mechanisms for the simulations with

Ms0.2. The top row shows cross-scale fluxes early in the simulation at 𝑡 = 0.77𝑇 , when the large

scale flow is still decaying into smaller scales. The magnetic cross-scale flux at low wavenumbers

predictably depends on the initial magnetic energy, while the kinetic energy cross-scale flux is

largely the same between simulations at a given sonic Mach number. For example, for Ma10 the

cross-scale flux is strongly dominated by Π𝑈<
𝑈>

, whereas for Ma3.2 it is still the most significant

contribution to the cross-scale flux, but substantial contributions are also seen from Π𝑈<
𝐵>

(≃ 60% of

Π𝑈<
𝑈>

(4)), Π𝐵<
𝐵>

(≃ 30%), and Π𝐵<
𝑈>

(≃ 20%). For the strongest initial magnetization (Ma1) the early

cross-scale flux is dominated by magnetic tension-mediated transfers from the kinetic-to-magnetic

budget (Π𝑈<
𝐵>

) on all scales having a non-zero cross-scale flux (𝑘 ∼< 64), with a similar contribution

by the magnetic cascade on intermediate scales (9 ∼< 𝑘 ∼< 64). The kinetic cascade is suppressed

on all scales, generally contributing less than 10% to the total cross-scale flux.

At later times (𝑡 = 5.16𝑇 , bottom row of Fig. 3.11), magnetic energy dominates both the

energy budget and cross-scale energy flux. Cross-scale energy flux via kinetic interactions is

near zero across the inertial range of the spectrum, and thus does not significantly contribute to

the total cross-scale energy flux. Only the magnetic fields facilitate down scale cross-scale flux

at intermediate scales, both within the magnetic energy and from kinetic to magnetic energy.

Moreover, the relative contributions of the individual transfer Π𝑈<
𝐵>

, Π𝐵<
𝐵>

, Π𝐵<
𝑈>

, and Π𝑈<
𝑈>

(in order
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of decreasing contribution) on intermediate scales (16 ∼< 𝑘 ∼< 64) is the same independent of initial

magnetization. This continuous cross-scale flux is consistent with the evolving spectral index

discussed in Section 3.3.1.3. Cross-scale flux through large physical scales is irregular, variable,

and sometimes negative due to the lack of structure and driving forces at large scales.

3.4 Discussion

3.4.1 Comparison to driven turbulence simulations

The Taylor-Green vortex provides an interesting study of a freely evolving transition to decaying

turbulence. In other words, no external force is applied to the simulation as is the case in driven

turbulence simulations. This external force may introduce unintended dynamics to the flow (Grete

et al., 2018). For example, in a simulation that is mechanically driven at large scales, energy may

still be injected on intermediate scales both in the incompressible regime (Domaradzki et al., 2010)

as well as in the compressible regime due to density coupling (Grete et al., 2017). Moreover,

mechanical driving generally results in an excess of energy on the excited, kinetic scales that

presents a barrier for magnetic field amplification on those scales in cases without a dynamically

relevant mean magnetic field. This barrier is often expressed in the lack of a clear power law

regime in the magnetic spectrum and resembles an inverse parabolic shape. At the same time, the

magnetic energy spectrum drops below the kinetic one on the driving scales (see, e.g., Figure 1 in

(Grete et al., 2021c) and references therein). In the simulations presented here no such barrier is

observed. Both kinetic and magnetic energy spectra exhibit a (limited) regime where power law

scaling is observed once a state of developed turbulence is reached.

Another important question raised from driven turbulence simulations pertains the locality of

energy transfers. While there is agreement that T𝑈𝑈 and T𝐵𝐵 mediated transfers, i.e., within a

budget, are highly local, the energy transfers between budgets (here, T𝑈𝐵𝑇 ) have been observed to

be weakly local and/or contain a nonlocal component from the driven scales (Alexakis et al., 2005;

Yang et al., 2016; Grete et al., 2017). Here, we show that in the absence of the driving force the

energy transfer mediated by magnetic tension contains both a local component as well as nonlocal
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component. The latter directly transfers large-scale kinetic energy to large and intermediate scales

in the magnetic energy budget. Thus, the nonlocal component is not an artifact of an external

driving force.

Finally, we recently showed that the kinetic energy spectra in driven turbulence simulations

follow a scaling close to 𝑘−4/3, i.e., shallower than Kolmogorov scaling, and explained this by the

suppression of the kinetic energy cascade due to magnetic tension (Grete et al., 2021c). This is in

agreement with our findings in the work presented here, where the same dynamics are observed at

late times when turbulence is fully developed.

Naturally, this does not demonstrate that the same physical mechanisms are causing the similar

slopes. Nevertheless, the late time evolution of the simulations presented here is still comparable

to a limited degree to driven simulation of stationary turbulence. For example, even at late times

(see, e.g., 𝑡 = 5.16𝑇 in Fig. 3.6), energy is still cascading down from the largest scales (𝑘 ∼< 8) but

the cascade is weaker than its initial magnitude. The reduction in strength of the cascade on large

scale is directly linked to the decay of the large initial vortices. Nevertheless, even at late times

the overall energy balance is still dominated by the largest scales, cf., the spectra shown in Fig. 3.3

when taking into account the 𝑘4/3 compensation used in the plot. Overall, while here the inertial

range shrinks and becomes weaker (to a limited degree) over time as the large scale modes lose

energy, the dynamics within the inertial range is similar to driven turbulence simulations.

3.4.2 Comparison to previous results

In general, our results in the weakly compressible MHD regime are in agreement with the

𝛼 ≃ −2 spectrum reported by previous works on the TG vortex in Pouquet et al. (2010); Lee

et al. (2010); Dallas & Alexakis (2013a,b) in the imcompressible MHD regime using the insulating

magnetic field configuration. We see the same 𝛼 ≃ −2 spectrum early in the evolution before 𝑡 = 2𝑇 ,

which corresponds to the time period near maximum energy dissipation that these other studies

focused on. In all cases that we simulated the spectra became shallower at later times, independent

of the initial magnetization (whereas these other works focused on 𝐸𝑈/𝐸𝐵 = 1, i.e., M𝐴,0 = 1,
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configurations, which are in good agreement with the Ms0.2_Ma1.0 simulation presented here, see

top left panel of Fig. 3.2). As noted by Dallas & Alexakis (2013a), the 𝛼 ≃ −2 spectrum is likely

due to discontinuities in a small volume of the flow that can be disrupted by symmetry breaking at

either large or small scales Dallas & Alexakis (2013c). According to Dallas & Alexakis (2013c),

a simulated Taylor-Green vortex with sufficiently high Reynolds number should show symmetry

breaking at the small scales at late times in the evolution, causing a break from the −2 power law at

large wavenumbers. Since our simulations do not impose symmetries on the flow, this is a possible

explanation for the observed behavior. However, we see an 𝛼 ≃ −4/3 inertial range scaling at late

times, instead of the 𝛼 ≃ −2 and 𝛼 ≃ −5/3 broken power law theorized by Dallas & Alexakis

(2013c).

Finally, work done in Lee et al. (2010); Brachet et al. (2013); Dallas & Alexakis (2013b)

shows that the behavior of the magnetic field and spectra changes with the initial magnetic field

configurations. With the insulating initial magnetic fields that we use, the vorticity begins parallel

to the magnetic field. This facilitates the early energy flux from kinetic to magnetic energy. The

insulating case tends towards stronger large magnetic fields compared to the other magnetic field

configurations. Both of the other initial magnetic fields result in different energy spectra, with the

conducting magnetic field setup leading to a 𝑘−3/2 spectra and the alternative insulating field setup

leading to spectra interpreted as either a 𝑘−5/3 or 𝑘−2 spectra as argued by Lee et al. (2010) and

Dallas & Alexakis (2013b) respectively.

3.4.3 Implication of results

In all of our simulations, we see magnetic fields and effects facilitated by the magnetic fields

dominating the evolution of the decaying turbulence, even when the initial kinetic energy exceeds

the magnetic energy by a factor of 100 in the Ma10 simulations. Energy transfer from kinetic to

magnetic energy via tension and energy transfer within the magnetic energy far exceed energy flux

via the kinetic turbulent cascade at later times. Energy transfer from kinetic to magnetic energy at

earlier times leads to the magnetic energy dominating over kinetic energy in all cases in both total

96



magnitude as well as in terms of the scale-wise budget, cf., magnetic versus kinetic energy spectra.

This is similar to what has been found in incompressible (Alexakis et al., 2005) and compressible

simulations (Grete et al., 2017, 2021c) of driven turbulence. Thus, even in intermittently-driven

systems one can expect the magnetic field to significantly influence the dynamics after a few

dynamical times.

Our simulations exhibit a magnetic energy spectra with a measurable power law after the

turbulent flow is realized. The inertial range is short, from approximately 𝑘 = 10 to 𝑘 = 32,

due to the resolution of these simulations. Nevertheless, within this region we can reasonably

fit a power law to both the kinetic and magnetic spectra, which is often not possible in driven

turbulence simulation without a dynamically relevant mean magnetic field, cf., Sec. 3.4.1. Thus,

freely evolving and driven turbulence simulations complement each other and both are required to

disentangle environmental from intrinsic effects.

From an observational point of view, we demonstrated that the spectral indices evolve over time

and fluctuate even for similar parameters. Therefore, the derived spectral indices from observation

(e.g., velocity maps in astrophysics), which represent individual snapshots in time, need to be

interpreted with care when trying to infer the “nature” of turbulence (e.g., Kolmogorov or Burgers)

in the object of interest.

Finally, the observed nonlocal energy transfer has implications on the dynamical development

of small scale structures from intermittent or singular energy injection events. Within the context of

natural astrophysical and terrestrial plasmas, the nonlocal energy transfer from kinetic to magnetic

energies suggests that small magnetic field structures develop before small scale kinetic structures.

3.4.4 Limitations

While our analysis showed that the results are generally robust (e.g., with respect to varying the

fitting range in the spectral indices or varying range in the definition of scale-local in the energy

transfers), higher resolution simulations are desirable. With higher resolution in an implicit large

eddy simulation (ILES) the dynamic range is increased and, thus, the effective Reynolds numbers
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of the simulated plasma are raised.

Similarly, due to the nature of ILES the effective magnetic Prandtl number in all simulations is

Pm ≃ 1. However, in natural systems (both astrophysical and terrestrial/experimental) Pm is either

≫ 1 or ≪ 1, motivating the exploration of these regimes in the future as well.

All of our simulations started with subsonic initial conditions, leaving the supersonic regime

unexplored. The additional shocks, discontinuities, and strong density variations that may arise

in a supersonic flow could alter the energy transfer as the flow transitions into turbulence. In the

simulations we present here, the Mach number generally did not significantly affect the growth

and behavior of the turbulence. In a supersonic flow, however, the transitory effects such as the

nonlocal energy transfer and inverse cascade may be altered or suppressed in addition to generally

richer dynamics related to compressive effects and effective space-filling of turbulent structures

(Federrath, 2013).

Figure 5 indicates that the spectral index of both the kinetic and magnetic energy cascades

evolves as a function of magnetic field strength (i.e., initial M𝐴.) It is unclear whether there is

a threshold of M𝐴 above which the spectra become shallower, or whether there is a continuum

of behavior as the initial M𝐴 is increased. While we would like to engage in a more thorough

exploration of the dependence of these behaviors on M𝐴, the simulations in question are com-

putationally expensive and it is infeasible to do so at present. Exploration of this transition is a

promising venue for future work. Finally, the shell decomposition used here to study energy transfer

has been shown to violate the inviscid criterion for decomposing scales in the compressible regime

(Zhao & Aluie, 2018). However, this only pertains to flows with significant density variations and,

thus, is effectively irrelevant for the subsonic simulations presented here.

3.5 Conclusions

We have presented in this work nine simulations of the Taylor-Green vortex using the insulating

magnetic field setup from Lee et al. (2008) to study magnetized decaying turbulence in the com-

pressible ideal MHD regime using the finite volume code K-Athena. As a first for the Taylor-Green

vortex, we have also presented an energy transfer analysis to show the movement of energy between
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scales and energy reservoirs as facilitated via different mechanisms. Our key results are as follows:

• Magnetic fields significantly affect the evolution of the decaying turbulence, regardless of

initial field strength. Energy flux from kinetic energy to magnetic energy leads to the

magnetic energy dominating the energy budget, even in simulations where the magnetic

energy is initially very small.

• The Taylor-Green vortex simulations explored here display a power law in both the kinetic

and magnetic energy spectra with a measurable spectral index, which is in contrast with the

lack of a power law in the magnetic energy spectrum seen in driven turbulence calculations

without a significant mean field.

• Decaying turbulent flows do not exhibit a spectral index that is constant in time in either

the kinetic nor magnetic energy reservoirs – these spectra continually evolve over time.

The spectral indices of the kinetic and magnetic energies become comparable and roughly

constant around 1−2 dynamical times after the magnetic energy has become dominant. This

can happen as early as 𝑡 = 2𝑇 when the initial magnetic energy equals initial the kinetic

energy, and as late as 𝑡 = 5𝑇 when initial kinetic energy exceeds the magnetic by a factor

of 100. For simulations with more initial kinetic energy than magnetic energy, the spectral

indices reach a rough constant slightly steeper than 𝛼 ≃ −4/3.

• Before the turbulent flow fully develops, an inverse cascade within the kinetic and magnetic

energy reservoirs is intermittently observed. This intermittent behavior moves energy from

smaller scales to larger scales, and is possible when the magnetic energy is comparable to

the kinetic energy.

• Analysis of energy transfer within and between reservoirs indicates that within fully-developed

turbulence, the cross-scale flux of energy in both the kinetic and magnetic cascades are dom-

inated by energy transfer mediated by the magnetic field.
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• Magnetic tension facilitates nonlocal transfer from larger scales in the kinetic energy to

smaller scales in the magnetic energy, and is particularly prominent in simulations where the

magnetic field is initially weak.
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Figure 3.1: Slices of sonic Mach number (left) and magnetic pressure (right) at 𝑡 = 0.77𝑇 and
𝑡 = 5.16𝑇 in the 𝑥𝑦−plane through 𝑧 = 𝜋

2 𝐿, with streamlines on the left showing the direction
of flow and streamlines on the right showing the direction of the magnetic fields, plotting only
the 1st quadrant from the Ms0.2_Ma10 simulation, demonstrating the transition of the flow into
turbulence.
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Figure 3.2: Mean energies over over time in the top row with kinetic energy (solid blue), magnetic
energy (solid orange), the sum of kinetic and magnetic energies (solid green), and the change in
thermal energy since the simulation start (solid red), and dimensionless numbers over time in the
bottom row with RMS sonic Mach number M𝑠 (blue), Alvénic Mach number M𝐴 (orange), and
plasma beta 𝛽 (green) for the Ms0.2 simulations. Energy over time from the simulation from Fig. 3a
in Pouquet et al. (2010) (adjusted to the normalization used here), which matches the setup of the
Ms0.2_Ma1 simulation, is shown with dashed lines in the upper left panel for reference. Energies
and mach numbers for all nine simulations are shown in the online supplements.

102



10 8

10 6

10 4

10 2

100

Ms0.2_Ma1 
 t = 0.77T

Ms0.2_Ma3.2 
 t = 0.77T

Ms0.2_Ma10 
 t = 0.77T

10 8

10 6

10 4

10 2

100

Ms0.2_Ma1 
 t = 1.29T

Ms0.2_Ma3.2 
 t = 1.34T

Ms0.2_Ma10 
 t = 1.81T

101 102
10 8

10 6

10 4

10 2

100

Ms0.2_Ma1 
 t = 5.16T

101 102

Ms0.2_Ma3.2 
 t = 5.16T

101 102

Ms0.2_Ma10 
 t = 5.16T

Wavenumber k [units of 1/L]

E(
k)

k4/
3

Figure 3.3: Kinetic energy spectra (in solid blue) and magnetic energy spectra (in solid orange)
compensated by 𝑘4/3, with black dashed lines showing the power law fit to the spectral to obtain a
spectral index. In the left column we show the Ms0.2_Ma1 simulation, in the middle column we
show the Ms0.2_Ma3.2 simulation, and in the right column we show the Ms0.2_Ma10 simulation.
In the top row we show all simulations at 𝑡 = 0.77𝑇 , in the middle row we show the three simulations
at different times (𝑡 = 1.29, 𝑡 = 1.81𝑇 , 𝑡 = 1.81𝑇) when the simulations are displaying interesting
behavior discussed in sections 3.3.2.2 and 3.3.2.1, and in the bottom row we show all simulations
at 𝑡 = 5.16𝑇 when the initial flow has completely decayed into turbulence and both energy spectra
fluctuate around a 𝑘−4/3 spectrum.
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Figure 3.4: The kinetic energy (top) and magnetic energy (bottom) at wavenumbers 𝑘 =

8, 22, 64, 128 plotted separately in different colors versus time, where the energy at each wavenum-
ber has been compensated by 𝑘4/3 to make them comparable. In the left column we show the
Ms0.2_Ma1 simulation, in the middle column we show the Ms0.2_Ma3.2 simulation, and in the
right column we show the Ms0.2_Ma10 simulation. Energy at the smallest length scales in both
reservoirs saturates at 𝑡 ≃ 1𝑇 , 𝑡 ≃ 1.5𝑇 , and 𝑡 ≃ 2.5 in the Ms0.2_Ma1, Ms0.2_Ma3.2, and
Ms0.2_Ma10 simulations respectively, showing approximately when the turbulence has developed
at all scales.
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Figure 3.5: Evolution of the spectral indices of the kinetic (blue), magnetic (orange), and sum
of kinetic and magnetic energy (green) spectra over time for the Ms0.2 simulations. The slope
is computed from a least squares fit of the energy spectra limited to wavenumbers 𝑘 ∈ [10, 32]
which is approximately the inertial range. Shaded bands show how the fitted slope differs if a range
𝑘 ∈ [8, 34], 𝑘 ∈ [10, 32], or 𝑘 ∈ [12, 30] is used. Note that the spectral index using the range
𝑘 ∈ [10, 32] is not guaranteed to be bounded by the spectral indices obtained using 𝑘 ∈ [8, 34],
𝑘 ∈ [10, 32] and 𝑘 ∈ [12, 30], which is especially evident in the Ms0.2_Ma3.2 and Ms0.2_Ma10
simulations from 𝑡 ≃ 2𝑇 to 𝑡 ≃ 4𝑇 . Horizontal dashed lines show −4/3 and −5/3 spectral indices.
The slope is only shown after 𝑡 = 1𝑇 as the initial flow conditions dominate the spectra at early
times, leading to steep spectra. We include the spectral indices versus time for all nine simulations
in the online supplements.
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Figure 3.6: Shell-to-shell energy transfer plots for the energy transfer within the kinetic (left)
and magnetic (right) energy reservoirs via advection and compression at 𝑡 = 0.77𝑇 (top) and
𝑡 = 5.16𝑇 (bottom) from the simulations with Ms0.2_Ma1, showing the development of the kinetic
and magnetic turbulent cascades. Annotations on the figure highlight key features of the energy
transfer that are characteristic of a developing turbulence cascade. Each bin shows the flux of
energy from shell 𝑄 to shell 𝐾 , where orange with white circles showing a positive flux of energy,
so that 𝐾 is gaining energy, and purple with white x’s showing a negative flux, so that 𝐾 is losing
energy. The energy flux in each bin is normalized by 𝜀 = max𝑄,𝐾 |T𝑋𝑌 (𝑄, 𝐾) | so that a higher 𝜀
means a higher energy flux. The solid black line shows equivalent scale transfers. As the turbulent
cascade develops in the magnetic and kinetic energy reservoirs, more energy transfers along the
diagonal fill out the energy spectrum down to numerical dissipation scales.
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Figure 3.7: Shell-to-shell energy transfer plots for the energy transfer within the kinetic (top)
and magnetic (bottom) energy reservoirs via advection and compression at 𝑡 = 1.29𝑇 from the
Ms0.2_Ma1 simulation, showing a transient inverse cascade within the magnetic energy reservoir
(on all scales 𝐾,𝑄 ∼< 100) and kinetic energy reservoir (on large scales 𝐾,𝑄 ∼< 16). Annotations
show where along the diagonal the inverse cascade is present.
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Figure 3.8: Shell-to-shell energy transfer plots for the energy transfer from kinetic to magnetic
energy via magnetic tension at 𝑡 = 1.81𝑇 from the Ms0.2_Ma10 simulation, showing the nonlocal
energy transfer from large kinetic scales to many smaller magnetic scales. Annotations show where
the nonlocal transfer is present.
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Figure 3.9: Integrated energy flux over time from kinetic to magnetic energy via tension from
larger wavenumbers to smaller nonlocal wavenumbers (purple), from larger wavenumbers to smaller
local wavenumbers (blue), between equivalent wavenumbers (green), from smaller wavenumbers to
larger local wavenumbers (orange), and from smaller wavenumbers to larger nonlocal wavenumbers
(red) in the Ms0.2 simulations. We normalize the energy flux in each panel so that the absolute
maximum of all of the flux bins is 1.0, where 𝜀 is the normalization factor use in each panel.
Comparisons of the relative strength of energy fluxes in different simulations must consider 𝜀. The
inset plot in the lower right panel shows the color coded regions that are integrated to calculate
each line at a single time for the same shell-to-shell transfer from Figure 3.8. Solid lines show the
integrated flux if “local" wavenumbers as defined as 5 logarithmic bins away from the equivalent
wavenumber. The shaded regions show the integrated flux if 4 or 6 bins are used, showing that the
behavior is robust if the range “local" wavenumbers is defined closer or further away from transfer
between equivalent scales. We include the integrated flux from kinetic to magnetic energy via
tension for all nine simulations in the online supplements
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Figure 3.10: Integrated energy flux over time within the kinetic energy (top) and within the magnetic
energy (bottom) from larger wavenumbers to smaller nonlocal wavenumbers (purple), from larger
wavenumbers to smaller local wavenumbers (blue), between equivalent wavenumbers (green),
from smaller wavenumbers to larger local wavenumbers (orange), and from smaller wavenumbers
to larger nonlocal wavenumbers (red) in the Ms0.2_Ma1 simulation. The inset plot in the lower
middle panel demonstrates the color coded regions that are integrated to calculate each line at
𝑡 = 1.29𝑇 from the shell-to-shell transfer from Figure 3.7. Solid lines show the integrated flux if
"local" wavenumbers as defined as 5 logarithmic bins away from the equivalent wavenumber. The
results change very little if 4 or 6 bins are used. We include the integrated flux within the kinetic
energy and magnetic energy for all nine simulations in the online supplements.
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Figure 3.11: Cross-scale flux within the kinetic energy (blue line), within the magnetic energy
(orange line), and from kinetic to magnetic energy via tension (green line) in the three Ms0.2
simulations across columns and at dynamical time 𝑡 = 0.77𝑇 (top) and later at dynamical time
𝑡 = 5.16𝑇 . Note that the cross-scale fluxes at later times are an order of magnitude less than early
cross-scale fluxes. Positive values of this quantity denote energy transfer from larger to smaller
scales.
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CHAPTER 4

K-ATHENA: A PERFORMANCE PORTABLE STRUCTURED GRID FINITE VOLUME
MAGNETOHYDRODYNAMICS CODE

This chapter first appeared as the published paper Grete et al. (2021a), on which I am equal

co-first author. I include the original abstract as the introduction to this chapter.

Chapter Abstract

Large scale simulations are a key pillar of modern research and require ever-increasing

computational resources. Different novel manycore architectures have emerged in recent

years on the way towards the exascale era. Performance portability is required to pre-

vent repeated non-trivial refactoring of a code for different architectures. We combine

Athena, an existing magnetohydrodynamics (MHD) CPU code, with Kokkos, a perfor-

mance portable on-node parallel programming paradigm, into K-Athena to allow efficient

simulations on multiple architectures using a single codebase. We present profiling and

scaling results for different platforms including Intel Skylake CPUs, Intel Xeon Phis, and

NVIDIA GPUs. K-Athena achieves > 108 cell-updates/s on a single V100 GPU for

second-order double precision MHD calculations, and a speedup of 30 on up to 24,576

GPUs on Summit (compared to 172,032 CPU cores), reaching 1.94 × 1012 total cell-

updates/s at 76% parallel efficiency. Using a roofline analysis we demonstrate that the

overall performance is currently limited by DRAM bandwidth and calculate a performance

portability metric of 62.8%. Finally, we present the implementation strategies used and

the challenges encountered in maximizing performance. This will provide other research

groups with a straightforward approach to prepare their own codes for the exascale era.

K-Athena is available at https://gitlab.com/pgrete/kathena.
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4.1 Introduction

The era of exascale computing is approaching. Different projects around the globe are working

on the first exascale supercomputers, i.e., supercomputers capable of conducting 1018 floating point

operations per second. This includes, for example, the Exascale Computing Initiative working with

Intel and Cray on Aurora as the first exascale computer in the US in 2021, the EuroHPC collaboration

working on building two exascale systems in Europe by 2022/2023, Fujitsu and RIKEN in Japan

working on the Post-K machine to launch in 2021/2022, and China who target 2020 for their first

exascale machine. While the exact architectural details of these machines are not announced yet

and/or are still under active development, the overall trend in recent years has been manycore

architectures. Here, manycore refers to an increasing number of (potentially simpler) cores on a

single compute node and includes CPUs (e.g., Intel’s Xeon Scalable Processor family or AMD’s

Epyc family), accelerators (e.g., the now discontinued Intel Xeon Phi line), and GPUs for general

purpose computing. MPI+OpenMP has been the prevailing parallel programming paradigm in

many areas of high performance computing for roughly two decades. It is questionable, however,

whether this generic approach will be capable of making efficient use of available hardware features

such as parallel threads and vectorization across different manycore architectures and between

nodes.

In addition to extensions of the MPI standard such as shared-memory parallelism, several

approaches in addition to MPI+OpenMP exist and are being actively developed to address either

on-node, inter-node, or both types of parallelism. These include, for example, partitioned global

address space (PGAS) programming models such as UPC++ Zheng et al. (2014), or parallel

programming frameworks such as Charm++ or Legion, which are based on message-driven

migratable objects Kale & Krishnan (1993); Bauer et al. (2012).

Our main goal is a performance portable version of the existing MPI+OpenMP finite volume

(general relativity) magnetohydrodynamics (MHD) code Athena++ White et al. (2016b); Stone

et al. (2020b). This goal includes enabling GPU-accelerated simulations while maintaining CPU
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performance using a single code base. More generally, performance portability refers to achiev-

ing consistent levels of performance across heterogeneous platforms using as little architecture-

dependent code as possible. Given the uncertainties in future architecures (and the broad availability

of different architecture already today) performance portability is an active field of research in many

areas Straatsma et al. (2017); Bennett et al. (2015). This includes (but is not limited to) idealized

benchmarks and miniapps Heroux et al. (2009); Martineau et al. (2017); Deakin et al. (2018);

Hammond & Mattson (2019), algorithm libraries Heroux & Willenbring (2012), structured mesh

codes Holmen et al. (2019), or particle in cell codes Artigues et al. (2019).

In order to keep the code changes minimal, and given the MPI+OpenMP basis of Athena++, we

decided to keep MPI for inter-node parallelism and focus on on-node performance portability. For

on-node performance portability several libraries and programming language extensions exist. With

version 4.5 OpenMP Dagum & Menon (1998) has been extended to support offloading to devices

such as GPUs, but support and maturity is still highly compiler and architecture dependent. This

similarly applies to OpenACC, which has been designed from the beginning to target heterogeneous

platforms. While these two directives-based programming models are generally less intrusive with

respect to the code base, they only expose a limited fraction of various platform-specific features.

OpenCL Stone et al. (2010) is much more flexible and allows fine grained control over hardware

features (e.g., threads), but this, on the other hand, adds substantial complexity to the code. Kokkos

Edwards et al. (2014) and RAJA Hornung et al. (2015) try to combine the strength of flexibility with

ease of use by providing abstractions in the form of C++ templates. Both Kokkos and RAJA focus

on abstractions of parallel regions in the code, and Kokkos additionally provides abstractions of the

memory hierarchy. At compile time the templates are translated to different (native) backends, e.g.,

OpenMP on CPUs or CUDA on NVIDIA GPUs. A more detailed description of these different

approaches including benchmarking in more idealized setups can be found in, e.g., Martineau et al.

(2017); Deakin et al. (2018).

We chose Kokkos for the refactoring of Athena++ for several reasons. Kokkos offers the

highest level of abstraction without forcing the developer to use it by setting reasonable implicit
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platform defaults. Moreover, the Kokkos core developer team actively works on integrating the

programming model into the C++ standard. New, upcoming features, e.g., in OpenMP, will replace

manual implementations in the Kokkos OpenMP backend over time. Kokkos is already used in

several large projects to achieve performance portability, e.g., the scientific software building block

collection Trilinos Heroux et al. (2005) or the computational framework for simulating chemical

and physical reactions Uintah Holmen et al. (2017). In addition, Kokkos is part of the DOE’s

Exascale Computing Project and we thus expect a backend for Aurora’s new Intel Xe architecture

when the system launches. Finally, the Kokkos community, including core developers and users,

is very active and supportive with respect to handling issues, questions and offering workshops.

The resulting K-Athena code successfully achieves performance portability across CPUs (Intel,

AMD, and IBM), Intel Xeon Phis, and NVIDIA GPUs. We demonstrate weak scaling at 76%

parallel efficiency on 24,576 GPUs on OLCF’s Summit, reaching 1.94 × 1012 total cell-updates/s

for a double precision MHD calculation. Moreover, we calculate a performance portability metric

of 62.8% across Xeon Phis, 6 CPU generations, and 3 GPU generations. We make the code

available as an open source project1.

The paper is organized as follows. In Section 4.2 we introduce Kokkos, Athena++, and the

changes made and approach chosen in creating K-Athena. In Section 4.3 we present profiling,

scaling and roofline analysis results. Finally, we discuss current limitations and future enhancements

in Sec. 4.4 and make concluding remarks in Sec. 4.5.

4.2 Method

4.2.1 Kokkos

Kokkos is an open source2 C++ performance portability programming model Edwards et al.

(2014). It is implemented as a template library and offers abstractions for parallel execution of

code and data management. The core of the programming model consists of six abstractions.

1K-Athena’s project repository is located at https://gitlab.com/pgrete/kathena.
2See https://github.com/kokkos for the library itself, associated tools, tutorial and a wiki.
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First, execution spaces define where code is executed. This includes, for example, OpenMP

on CPUs or Intel Xeon Phis, CUDA on NVIDIA GPUs, or ROCm on AMD GPUs (which is

currently experimental). Second, execution patterns are parallel patterns, e.g. parallel_for or

parallel_reduce, are the building blocks of any application that uses Kokkos. These parallel

regions are often also referred to as kernels as they can be dispatched for execution on execution

spaces (such as GPUs). Third, execution policies determine how an execution pattern is executed.

There exist simple range policies that only specify the indices of the parallel pattern and the order of

iteration (i.e., the fastest changing index for multidimensional arrays). More complicated policies,

such as team policies, can be used for more fine-grained control over individual threads and nested

parallelism. Fourth, memory spaces specify where data is located, e.g., in host/system memory or

in device space such as GPU memory. Fifth, the memory layout determines the logical mapping of

multidimensional indices to actual memory location, cf., C family row-major order versus Fortran

column-major order. Sixth, memory traits can be assigned to data and specify how data is accessed,

e.g., atomic access, random access, or streaming access.

These six abstractions offer substantial flexibility in fine-tuning application, but the application

developer is not always required to specify all details. In general, architecture-dependent defaults

are set at compile time based on the information on devices and architecture provided. For example,

if CUDA is defined as the default execution space at compile time, all Kokkos::Views, which are

the fundamental multidimensional array structure, will be allocated in GPU memory. Moreover,

the memory layout is set to column-major so that consecutive threads in the same warp access

consecutive entries in memory.

4.2.2 Athena++

Athena++ is a radiation general relativistic magnetohydrodynamics (GRMHD) code focusing

on astrophysical applications White et al. (2016b); Stone et al. (2020b). It is a rewrite in modern

C++ of the widely used Athena C version Stone et al. (2008b). Athena++ offers a wide variety

of compressible hydro- and magnetohydrodynamics solvers including support for special and rela-
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tivistic (M)HD, flexible geometries (Cartesian, cylindrical, or spherical), and mixed parallelization

with OpenMP and MPI. Apart from the overall feature set, the main reasons we chose Athena++

are a) its excellent performance on CPUs and KNLs due to a focus on vectorization in the code

design, b) a generally well written and documented code base in modern C++, c) point releases are

publicly available that contain many (but not all) features3, and d) a flexible task-based execution

model that allows for a high degree of modularity.

Athena++’s parallelization strategy evolves around so-called meshblocks. The entire simu-

lation grid is divided into smaller meshblocks that are distributed among MPI processes and/or

OpenMP threads. Each MPI processes (or OpenMP thread) owns one or more meshblocks that

can be updated independently after boundary information have been communicated. If hybrid

parallelization is used, each MPI process runs one or more OpenMP threads that each are assigned

one or more meshblock. This design choice is often referred to as coarse-grained parallelization as

threads are used at a block (here meshblock) level and not over loop indices. In general, Athena++

uses persistent MPI communication handles in combination with one-sided MPI calls to realize

asynchronous communication. Moreover, each thread makes its own MPI calls to exchange bound-

ary information. As a result, using more than one thread per MPI process may increase overall

on-node performance due to hyperthreading but also increases both the number of MPI messages

sent and the total amount of data sent. The latter may result in overall worse parallel performance

and efficiency, as demonstrated in Sec 4.3.3.2.

Given the coarse-grained OpenMP approach over meshblocks the prevalent structures in the

code base are triple (or quadruple) nested for loops that iterate over the content of each meshblock

(and variables in the quadruple case). A prototypical nested loop is illustrated in Listing 4.1.

Generally, all loops (or kernels) in Athena++ have been written so that OpenMP simd pragmas

are used for the innermost loop. This helps the compiler in trying to automatically vectorize the

loops resulting in a more performant application.

3Our code changes are based on the public version, Athena++ 1.1.1, see https://github.
com/PrincetonUniversity/athena-public-version
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Listing 4.1: Example triple for loop for a typical operation in a finite volume method on a structured
mesh such as in a code like Athena++, where ks, ke, js, je, is, and ie are loop bounds and u is
an athena_array object of, for example, an MHD variable.

for( int k = ks; k < ke; k++){
for( int j = js; j < je; j++){
#pragma omp simd
for( int i = is; i < ie; i++){
/* Loop Body */
u(k,j,i) = ...

}}}

4.2.3 K-Athena = Kokkos + Athena++

In order to combine Athena++ and Kokkos, four major changes in the code base were required:

1) making Kokkos::Views the fundamental data structure, 2) converting nested for loop structures

to kernels, 3) converting “support” functions, such as the equation of state, to inline functions, and

4) converting communication buffer filling functions into kernels.

First, Views are the Kokkos’ abstraction of multidimensional arrays. Thus, the multidimen-

sional arrays originally used in Athena++, e.g., the MHD variables for each meshblock, need

to be converted to Views so that these arrays can transparently be allocated in arbitrary memory

spaces such as device (e.g., GPU) memory or system memory. Athena++ already implemented an

abstract athena_array class for all multidimensional arrays with an interface similar to the inter-

face of a View. Therefore, we only had to add View objects as member variables and to modify the

functions of athena_arrays to transparently use functions of those member Views. This included

using View constructors to allocate memory, using Kokkos::deep_copy or Kokkos::subview

for copy constructors and shallow slices, and creating public member functions to access the Views.

The latter is required in order to properly access the data from within compute kernels.

Second, all nested for loop structures (see Listing 4.1 need to be converted to so-called kernels,

i.e., parallel region that can be dispatched for execution by an execution space. As described in

Sec. 4.2.1 multiple execution policies are possible, such as a multidimensional range policy (see
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Listing 4.2: Example for loop using Kokkos. The loop body is reformulated into a lambda
function and passed into Kokkos::parallel_for to execute on the target architecture. The class
Kokkos::MDRangePolicy specifies the loop bounds. The array u is now a Kokkos::View, a
Kokkos building block that allows transparent access to CPU and GPU memory. The loop body,
i.e., the majority of the code, remains mostly unchanged.

parallel_for( MDRangePolicy <Rank<3>>
({ks,js,is},{ke,je,ie}),

KOKKOS_LAMBDA(int k, int j, int i){
/* Loop Body */
u(k,j,i) = ...

});

Listing 4.3: Same as Listing 4.2 but using a one dimensional Kokkos::RangePolicy (implicit
through default template parameter) with explicit index calculation.

int nk = ke-ks, nj = je-js, ni = ie-is;
parallel_for(nk*nj*ni,
KOKKOS_LAMBDA(int idx){
int k = idx / (nj*ni);
int j = (idx - k*(nj*ni) / ni;
int i = idx - k*(nj*ni) - j*ni;
/* Loop Body */
u(k,j,i) = ...

});

Listing 4.2), a one dimensional policy with manual index mapping (see Listing 4.3), or a team

policy that allows for more fine-grained control and nested parallelism (see Listing 4.4).

Generally, the loop body remained mostly unchanged. Given that it is not a priori clear what

kind of execution policy yields the best performance for a given implementation of an algorithm, we

decided to implement a flexible loop macro4. That macro allows us to easily change the execution

policy for performance tests – see profiling results in Sec. 4.3.3.1 and discussion in Sec. 4.4, and this

intermediate abstraction is similar to the approach chosen in other projects Holmen et al. (2019).

Third, all functions that are called within a kernel need to be converted into inline functions

(here, more specifically using the KOKKOS_INLINE_FUNCTIONmacro). This is required because if

4Note, that in newer versions of the code we replaced the macro with a template.
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Listing 4.4: Another approach using Kokkos’ nested team-based parallelism through the
Kokkos::TeamThreadRange and Kokkos::ThreadVectorRange classes. This interface is
closer to the underlying parallelism used by the backend such as CUDA blocks on GPUs and
SIMD vectors on CPUs.

parallel_for(team_policy(nk, AUTO),
KOKKOS_LAMBDA(member_type thread) {
const int k = thread.league_rank() + ks;
parallel_for(
TeamThreadRange <>(thread,js,je,
[&] (const int j) {
parallel_for(
ThreadVectorRange <>(thread,is,ie,
[=] (const int i) {
/* Loop Body */
u(k,j,i) = ...

});});});

the kernels are executed on a device such as a GPU, the function need to be compiled for the device

(e.g., with a __device__ attribute when compiling with CUDA). In Athena++, this primarily

concerned functions such as the equation of state and coordinate system-related functions.

Fourth, Athena++ uses persistent communication buffers (and MPI handles) to exchange data

between processes. Originally, these buffers resided in the system memory and were filled directly

from arrays residing in the system memory. In the case where a device (such as a GPU) is used as

the primary execution space and the arrays should remain on the device to reduce data transfers,

the buffer filling functions need to be converted too. Thus, we changed all buffers to be Views

and converted the buffer filling functions into kernels that can be executed on any execution space.

In addition, this allows for CUDA-aware MPI– GPU buffers to be directly copied between the

memories of GPUs (both on the same node and on different nodes) without an implicit or explicit

copy of the data to system memory.

In general, the first three changes above are required in refactoring any legacy code to make

use of Kokkos. We note that the original Athena++ design made it mostly straightforward to

implement those changes, e.g., because of the existence of an abstract array class and the prevailing
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tightly nested loops already optimized for vectorized instructions. More broadly, we expect that

structured grid fluid codes will require similar changes and that other algorithms and application

may require more subtle refactoring in order to achieve good performance. The fourth change was

required more specifically for Athena++ due to the existing MPI communication patterns.

Finally, for the purpose of the initial proof-of-concept, we only refactored the parts required

for running hydrodynamic and magnetohydrodynamic simulations on static and adaptive Cartesian

meshes. Running special and general relativistic simulations on spherical or cylindrical coordinates

is currently not supported. However, the changes required to allow for these kind of simulations

are straightforward and we encourage and support contributions to re-enable this functionality.

Throughout the development process, we continuously measured the code performance in detail

using so-called Kokkos profiling regions as well as the automated profiling of all Kokkos kernels.

Moreover, we employed automated regression testing using GitLab’s continuous integration features

and included specific tests to address changes related to Kokkos (such as running on different

architectures and testing different loop patterns).

4.3 Results

If not noted otherwise, all results in this section have been obtained using a double precision,

shock-capturing, unsplit, adiabatic MHD solver consisting of Van Leer integration, piecewise linear

reconstruction, Roe Riemann solver, and constrained transport for the integration of the induction

equation (see, e.g., Stone & Gardiner (2009) for more details). The test problem is a linear

fast magnetosonic wave on a static, structured, three-dimensional grid. In GPU runs there is no

explicit data transfer between system and GPU memory except during problem initialization, i.e.,

the exchange of ghost cells is handled either by direct copies between buffers in GPU memory on

the same GPU or between buffers in GPU memory on different GPUs using CUDA-aware MPI.

Similarly, there is also no implicit data transfer as unified memory was not used. Generally, we used

the Intel compilers on Intel platforms, and gcc and nvcc on other platforms as we found that (recent)

Intel compilers are more effective in automatic vectorization than (recent) gcc compilers. We used

the identical software environment and compiler flags for both K-Athena and Athena++ where
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Table 4.1: Software Environment and Compiler Flags Used In Scaling Tests.

Machine Compiler Compiler flags MPI version
Summit GPU GCC 6.4.0

& Cuda
9.2.148

-O3 -std=c++11 -fopenmp
-Xcudafe –diag_suppress=\
esa_on_defaulted_function_ignored
-expt-extended-lambda -arch=sm_70
-Xcompiler

Spectrum MPI 10.2.0.11

Summit CPU GCC 8.1.1 -O3 -std=c++11 -fopenmp-simd
-fwhole-program -flto -ffast-math
-fprefetch-loop-arrays -fopenmp
-mcpu=power9 -mtune=power9

Spectrum MPI 10.2.0.11

Titan GPU GCC 6.3.0
& Cuda
9.1.85

-O3 -std=c++11 -fopenmp
-Xcudafe –diag_suppress=\
esa_on_defaulted_function_ignored
-expt-extended-lambda -arch=sm_35
-Xcompiler

Cray MPICH 7.6.3

Titan CPU GCC 6.3.0 -O3 -std=c++11 -fopenmp Cray MPICH 7.6.3
Theta ICC 18.0.0 -O3 -std=c++11 -ipo -xMIC-AVX512

-inline-forceinline -qopenmp-simd
-qopenmp

Cray MPICH 7.7.3

Electra ICC 18.0.3 -O3 -std=c++11 -ipo
-inline-forceinline -qopenmp-simd
-qopt-prefetch=4 -qopenmp
-xCORE-AVX512

HPE MPT 2.17

possible. Details are listed in Table 4.1. We used Athena++ version 1.1.1 (commit 4d0e425)

and K-Athena commit 73fec12d for the scaling tests. Additional information on how to run

K-Athena on different machines can be found in the code’s documentation.

4.3.1 Profiling

In order to evaluate the effect on performance of the different loop structures presented in

Sec. 4.2.3 we compare the timings of different regions within the main loop of the code. The results

using both an NVIDIA V100 GPU and an Intel Skylake CPU for a selection of the computation-

ally most expensive regions are shown in Fig. 4.1. The 1DRange loop structure refers to a one

dimensional range policy over a single index that is explicitly unpacked to the multidimensional

indices in the code (cf. Listing 4.3). While this 1DRange is the fastest loop structure for all regions

on the GPU, it is the slowest for all regions on the CPU. According to the compiler report this

particular one dimensional mapping prevents automated vectorization optimizations. All other

loop structures tested, i.e., simd-for (cf. Listing 4.1), MDRange (cf. Listing 4.2), and TeamPolicy

(cf. Listing 4.4) logically separate the nested loops and, thus, make it easier for the compiler to auto-
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Figure 4.1: Profiling results on a GPU (left) and CPU (right) for selected regions (x-axis) within
the main loop of an MHD timestep using the algorithm described in Sec. 4.3. The different lines
correspond to different loop structures, see Sec. 4.2.3 and the timings are normalized to the fastest
Riemann region in each panel.

matically vectorize the innermost loop. This also explains why the results for simd-for, MDRange,

and TeamPolicy are very close to each other for all regions except the Riemann solver. The

Riemann solver is the most complex kernel in the chosen setup so that the compiler is not automat-

ically vectorizing this loop despite the #pragma ivdep in Kokkos’ MDRange and TeamPolicy.

Only the more aggressive explicit #pragma omp simd results in a vectorized loop. The aggregate

performance differences (all kernels of a cycle combined) to the fastest simd-for pattern are 0.78

(TeamPolicy), 0.71 (MDRange), and 0.51 (1DRange).

On the GPU, MDRange is the slowest loop structure, being several times (2x-4x) slower than the

1DRange across all regions. TeamPolicy is on par with 1DRange for half of the regions shown.

Here, the aggregate performance differences to the fastest 1DRange pattern are 0.75 (TeamPolicy)

and 0.078 (MDRange). As discussed in more detail in Sec. 4.4, we expected these non-optimized

raw loop structures to not cause any major differences in performance.

The results shown here for V100 GPUs and Skylake CPUs equally apply to other GPU gener-

ations and other CPUs (and Xeon Phis), respectively. For all tests conducted in the following, we

use the loop structure with the highest performance on each architecture, i.e., 1DRange on GPUs
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and simd-for on CPUs and Xeon Phis.

4.3.2 Performance portability

Our main objective for writing K-Athena is an MHD code that runs efficiently on any current

supercomputer and possibly any future machines. A code that runs efficiently on more architectures

is said to be performance portable. Determining what is meant by “efficient code” can be vague,

especially when comparing performance across different architectures. The memory space sizes,

bandwidths, instruction sets, and arrangement of cores on different architectures can all affect how

efficiently a code can utilize the hardware.

In order to make fair comparisons of K-Athena’s performance across different machines (see

Sec. 4.3.2.1), we used the roofline model Williams et al. (2009), described in Sec. 4.3.2.2, to

compute on several architectures the architectural efficiency of K-Athena, or the fraction of the

performance achieved compared to the theoretical performance as limited hardware. We then used

the architectural efficiencies to compute the performance portability metric from Pennycook et al.

(2019), described in Sec. 4.3.2.3, to quantify the performance portability of K-Athena.

4.3.2.1 Overview of architectures used

In total, we created roofline models for six Intel CPUs, Intel Xeon Phis, and three NVIDIA

GPUs. The CPU models roughly follow Intel’s tick-tock production model and, thus, span pairs

of three different instructions sets (AVX, AVX2, and AVX512) with one CPU introducing a new

instruction set and the other an increase in cores and/or clock rate with the same instruction set.

The Intel Xeon Phi (Knights Landing) also supports AVX512 instructions and differs from the

CPUs at the highest level by an increased core count, lower clock rate, and access to MCDRAM.

The three different NVIDIA GPUs span three different microarchitectures (Kepler, Pascal, and

Volta), which also translates to an increased core count in the GPUs used. L1 data caches are also

implemented differently across the three microarchitectures. On Kelper and Volta GPUs, the L1

cache is physically in the same memory device as CUDA "shared" memory while on Pascal GPUs
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Table 4.2: Technical specifications for devices used in the performance portability metric. Cache
size and core counts for CPUs specify the aggregate sizes and counts for a two-socket node while
numbers for GPUs show the aggregate for a single device. For the Tesla K80, the cache size and
core count is for just one of the two GK210 chips in the GPU. For DRAM bandwidth (BW) we
use the empirically measured bandwidth of the DRAM on CPUs and the global memory on GPUs.
Data for Intel devices comes from Intel Corporation (2016) and data for NVIDIA devices comes
from NVIDIA Corporation (2014, 2016, 2017); Jia et al. (2018).

Manufacturer Intel Intel Intel Intel Intel Intel Intel NVIDIA NVIDIA NVIDIA
Family Xeon

E5
Xeon
E5

Xeon
E5

Xeon
E5

Xeon
Gold

Xeon
Gold

Xeon
Phi

Tesla Tesla Tesla

Microarchitecture Sandy
Bridge

Ivy
Bridge

Haswell Broadwell Skylake Cascade
Lake

Knights
Land-
ing

Kepler Pascal Volta

Model 2670 2680v2 2680v3 2680v4 6148 6248 7250 K80 P100 V100
Instruction Set AVX AVX AVX2 AVX2 AVX512 AVX512 AVX512
CUDA Capability 3.7 6.0 7.0
Clock Rate (GHz) 2.6 2.8 2.5 2.4 2.4 2.5 1.4 0.562 1.328 1.29
Num. Cores 16 20 24 28 40 40 68 832 1792 2560
Max L1 Cache (KB) 512 640 768 896 1280 1280 2176 1456 1344 10240
Total L2 Cache (KB) 4096 2560 5120 7168 40000 40000 34000 1536 4096 6144
Total L3 Cache (MB) 40 50 60 70 55 55
DRAM BW (GB/s) 97.9 121 139 147 246 247 494 195 521 782

the L1 cache is combined with texture memory NVIDIA Corporation (2014, 2016, 2017). Load

throughput to L1 cache on Pascal GPUs achieves lower bytes/cycle compared to Kelper and Volta

GPUs Jia et al. (2018), which led to K-Athena maintaining a higher fraction of peak L1 bandwidth.

An comparative overview of the technical specifications for all architectures is given in Table 4.2.

4.3.2.2 Roofline model

The roofline model is a graphical tool to demonstrate the theoretical peak performance of an

application on an architecture by condensing the performance limits imposed by the bandwidth of

each memory space and peak throughput of the device into a single plot. In a roofline model plot,

peak throughputs and bandwidths of the hardware are plotted on a log Performance [FLOPS] versus

log arithmetic intensity [FLOP/B] axis so that throughputs are horizontal lines and bandwidths as

𝑃 ∝ 𝐼 lines (since bandwidth-limited 𝑃 = 𝐵 × 𝐼), where 𝑃 [FLOPS] is performance5, 𝐼 [FLOP/B]

5In this work we consider double precision throughput and count FMA instructions as two
FLOP on architectures that support it.
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Figure 4.2: Roofline models of a 2 socket Intel Xeon Gold 6248 "Cascade Lake" CPU node
on NASA’s Aitken (4.2a) and a single NVIDIA Tesla V100 "Volta" GPU on MSU HPCC (4.2b).
Theoretical L1 and DRAM bandwidths and theoretical peak throughputs according to manufacturer
specifications are shown in dashed line. for For both cases shown here and all other architectures
we tested, DRAM bandwidth (or MCDRAM bandwidth for KNLs) is the limiting bandwidth for
K-Athena’s performance.

is arithmetic intensity (the operations executed per byte read and written), and 𝐵 [B/s] is the

bandwidth. The arithmetic intensities of each memory space for a specific application appear as

vertical lines, extending up where the bandwidth of the memory space limits performance.

The maximum theoretical performance of an application is limited by the bandwidth and

throughput ceilings displayed in the roofline model. For the given device and application, the
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maximum obtainable performance in FLOPS is limited by

𝑃max(𝑎, 𝑝, 𝑖) ≤ min
𝑚∈𝑀

{min [ 𝑇Peak(𝑖), (4.1)

𝐵(𝑖, 𝑚) × 𝐼 (𝑎, 𝑝, 𝑖, 𝑚)]} ,

where 𝑃max(𝑎, 𝑝, 𝑖)[FLOPS] is the maximum possible FLOPS obtainable by application 𝑎 solving

problem 𝑝 on architectural platform 𝑖,𝑇Peak(𝑖)[FLOPS] is the peak throughput on the platform, 𝑀 is

all the memory spaces on the device (L1 cache, L2 cache, DRAM, etc.), and 𝐼 (𝑎, 𝑝, 𝑖, 𝑚)[FLOP/B]

is the arithmetic intensity the application solving the problem on the memory space 𝑚, or the

number of FLOP executed per number of bytes written and read to and from 𝑚. We can also mark

the actual performance of application with a horizontal dashed line, indicating the actual average

FLOPS achieved. Figures 4.2a and 4.2b show roofline models of K-Athena solving a 2563 linear

wave on an Intel Cascade Lake CPU node on NASA’s Aitken and a single NVIDIA Volta V100

GPU on MSU’s HPCC.

Using the roofline model, we can quantify the architectural efficiency of the K-Athena, or

the fraction of performance achieved compared to the theoretical maximum performance of the

algorithm as limited by bandwidth. In this work, we further distinguish multiple architectural

efficiencies per platform as limited by the bandwidth of different memory spaces. The architectural

efficiency 𝑒(𝑎, 𝑝, 𝑖, 𝑚) of the application 𝑎 solving the problem 𝑝 on platform 𝑖 as limited by the

bandwidth of the memory space 𝑚 on platform 𝑖 is

𝑒(𝑎, 𝑝, 𝑖) = 𝜀(𝑎, 𝑝, 𝑖)
min (𝑇Peak(𝑖), 𝐵(𝑖, 𝑚) × 𝐼 (𝑎, 𝑝, 𝑖, 𝑚))

(4.2)

where 𝜀(𝑎, 𝑝, 𝑖) is the achieved performance of the application 𝑎 for solving the problem 𝑝 on

the platform 𝑖, 𝐵(𝑖, 𝑚) is the peak DRAM bandwidth on the platform, and 𝐼 (𝑎, 𝑝, 𝑖, 𝑚) is the

arithmetic intensity of the for solving the problem on that platform. For example, on Summit’s

Volta V100s, K-Athena achieves 0.82 TFLOPS while the DRAM bandwidth limits performance

to 1.13 TFLOPS, giving to a 72.5% architectural performance as limited by DRAM bandwidth.

Although bandwidths and throughputs can be obtained from vendor specifications and arith-

metic intensities can be computed by hand, empirical testing more accurately reflects the actual
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performance. Acquiring these metrics requires a variety of performance profiling tools on the

different architectures and machines. For gathering the bandwidths and throughputs on GPUs, we

used GPUMembench Konstantinidis & Cotronis (2017) for measuring the L1 bandwidth and the

Empirical Roofline Tool (Version 1.1.0) Lo et al. (2015) for measuring all other bandwidths and

the peak throughput. For computing arithmetic intensities on GPUs, we used NVIDIA’s nvprof

(CUDA Toolkit 9.2.88 on MSU HPCC, 9.2.148 on SDSC Comet) to measure memory usage to

calculate arithmetic intensities and total FLOP count to estimate FLOP per finite volume cell up-

date. To measure memory usage of the different caches, we specifically measured total memory

transactions from global memory to the SMs (gld_transactions and gst_transactions, as

a rough proxy for L1 usage), transactions to and from L2 cache (l2_read_transactions and

l2_write_transactions), and transactions to and from DRAM/HBM (dram_read_transactions

and dram_write_transactions). Since we do not use atomic memory operations, texture mem-

ory, or shared memory, we measured zero transactions from these memory spaces. For Intel CPUs

and KNLs, we used Intel Advisor’s (version 2019 update 5) built-in hierarchical roofline gathering

tools to collect memory bandwidths, throughputs, and arithmetic intensities Marques et al. (2017)

using the arithmetic intensity from the cache-aware roofline model for the roofline of the highest

memory level. For both CPUs and GPUs, we use total memory transactions to cores and SMs as

a surrogate for L1 cache usage due to limitations in the memory transaction metrics available. Al-

though some of the memory transactions may not be through L1 cache, in a best case performance

scenario the memory transactions to the registers are limited by the fastest cache bandwidth, which

is the L1 cache bandwidth.

We used a 3D linear wave on a 2563 cell grid for benchmarking K-Athena’s performance and

arithmetic intensities for the roofline model. Our metric for CPU machines are for two sockets on

a node while the metric for KNLs and GPUs are for a single device, or a single GK210 chip for

the Tesla K80. In all cases we found that K-Athena’s performance is limited by the main memory

space that accommodates the data for a single MPI task. For GPUs, this is on device DRAM/HBM,

for CPUs this is the DDR3/DDR4 DRAM, and for KNLs this was the MCDRAM. This result
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is expected, since the finite volume MHD method in K-Athena is implemented as a series of

simple triple or quadruple for-loop kernels that loop over the data in a task without explicitly

caching data. Since the data can only fit in its entirety in DRAM, it must be loaded from and

written to DRAM within each kernel. Future improvements can be made to K-Athena to explicitly

cache data in smaller 1D arrays and kept in higher level caches. This would raise the DRAM

arithmetic intensity and facilitate faster throughput Glines et al. (2015). Similar improvements

have already been implemented upstream in Athena++. A more complete solution would involve

fusing consecutive kernels into one kernel to reduce DRAM accesses. Given the virtually identical

performance between Athena++ and K-Athena on CPUs (cf. 4.3.3.1) we expect the roofline model

of Athena++ to be practically indistinguishable from K-Athena on non-GPU platforms.

4.3.2.3 Performance portability metric

Performance portability is at present nebulously defined. It is generally held that a performance

portable application can execute wide variety of architectures and achieve acceptable performance,

preferably maintaining a single code base for all architectures. In order to make valid comparisons

between codes, an objective metric of performance portability is needed.

The metric proposed by Pennycook et al. (2019) quantifies performance portability by the

harmonic sum of the performance achieved on each platform, so that

𝑃(𝑎, 𝑝, 𝐻) =


|𝐻 |∑

𝑖∈𝐻
1

𝑒(𝑎,𝑝,𝑖)
if 𝑖 is supported ∀𝑖 ∈ 𝐻

0 otherwise
(4.3)

where 𝐻 is the space of all relevant platforms and 𝑒(𝑎, 𝑝, 𝑖) is the performance efficiency of

application 𝑎 to solve the problem 𝑝 on a platform 𝑖. If an application does not support a platform,

then it is not performance portable across the platforms and is assigned a metric of 0. The

performance efficiency can also be defined as either the application efficiency, the fraction of

the performance of the fastest application that can solve the problem on the platform; or as the

architectural efficiency, the achieved fraction of the theoretical peak performance limited by the

hardware that we computed in Sec. 4.3.2.2. Since we did not have MHD codes implementing
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the same method as K-Athena on all architectures, we used the architectural efficiencies obtained

from the roofline model to compute the performance portability metric. For completeness, we

considered the architectural efficiencies as limited by the both the L1 cache and DRAM bandwidths

to compute separate performance portability metric against both memory spaces.
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Figure 4.3: Performance Portability plot of several CPU and GPU machines with different archi-
tectures. Individual bars show the performance of K-Athena compared to the theoretical peak
performance limited by the empirically measured DRAM and L1 bandwidths. Black bars with
diamonds denote the theoretical performance limited by the manufacturer reported bandwidths.
The performance portability metrics across all architectures for DRAM and L1 are shown with
horizontal orange lines where solid orange used the empirically measured bandwidths and dashed
orange uses manufacturer reported bandwidths.6

In Fig. 4.3, the architectural efficiencies as measured against the DRAM bandwidth and L1 cache

bandwidth are shown with the computed performance portability metrics. K-Athena achieved

62.8% DRAM performance portability and 7.7% L1 cache performance portability, measured

across a number of CPU and GPU architectures. In general, K-Athena achieved higher efficiencies

on newer architectures.
6The high L1 efficiency on the NVIDIA Tesla Pascal P100 is due to a lower obtainable bytes

loaded to L1 per cycle compared to the Kepler and Volta GPUs Jia et al. (2018, 2019). The lower
L1 cache performance makes it easier to obtain a higher efficiency.
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4.3.3 Scaling

4.3.3.1 Single CPU and GPU performance
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total # cells
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GAMER Pascal
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Figure 4.4: Raw performance for double precision MHD (algorithm described in Sec. 4.3) of K-
Athena, Athena++, and GAMER on a single GPU (left) or CPU (right) for varying problem sizes.
Volta refers to an NVIDIA V100 GPU, Pascal refers to an NVIDIA P100 GPU, BDW (Broadwell)
refers to a 14-core Xeon E5-2680 CPU, and SKX (Skylake) refers to a 20-core Xeon Gold 6148
CPU. The GAMER numbers were reported in Zhang et al. (2018) for the same algorithm used here.

In order to compare the degree to which the refactoring of Athena++ affected performance

we first compare Athena++ and K-Athena on a single CPU. The right panel of Fig. 4.4 shows

the cell-updates/s achieved on an Intel Broadwell and an Intel Skylake CPU for both codes for

varying problem size. Overall, the achieved cell-updates/s are practically independent of problem

sizes reaching ≈ 8 × 106 on a single Broadwell CPU and ≈ 1.4 × 107 on a single Skylake

CPU. Moreover, without any additional performance optimizations (see discussion in Sec. 4.4),

K-Athena is virtually on par with Athena++, reaching 93% or more of the original performance.

For comparison, we also show the results of GAMER Zhang et al. (2018). It is another recent

(astrophysical) MHD code with support for CPU and (CUDA-based) GPU accelerated calculations

and has directly been compared to Athena++ in Zhang et al. (2018). We also find that Athena++

(and thus K-Athena) is about 1.5 times faster than GAMER on the same CPU.

A slightly smaller difference (factor of ≈ 1.25) is observed when comparing results for GPU

runs as shown in the left panel of Fig. 4.4. On a P100 Pascal GPU, K-Athena is about 1.3 times
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faster than GAMER, suggesting that the difference in performance is related to the fundamental

code design and not related to the implementation of specific computing kernels. On a single V100

Volta GPU, K-Athena reaches a peak performance of greater than 108 cell-updates/s for large

problem sizes. In general, the achieved performance in cell-updates/s is strongly dependent on the

problem size. For small grids the performance is more than one order of magnitude lower than

what is achieved for the largest permissible grid sizes that still fit into GPU memory. The plateau

in performance on GPUs at larger grid sizes is due to DRAM bandwidth impeding K-Athena’s

performance, as discussed in Section 4.3.2.2.

4.3.3.2 Weak scaling

Weak scaling results (using the same test problem and algorithm as in Sec. 4.3.3.1) for K-Athena

and the original Athena++ version on different systems and architectures are shown in Fig. 4.5.

Note that the chosen problem setup (using a single meshblock per MPI process) is effectively not

making use of of the asynchronous communication capabilities to allow for overlapping computation

and communication.

Overall, the differences between K-Athena and Athena++ on CPUs and Xeon Phis are

marginal. This is expected as K-Athena employed simd-for loops for all kernels that are

similar to the ones already in Athena++. Therefore, the parallel efficiency is also almost identical

between both codes, reaching ≈ 80% on NASA’s Electra system with Skylake CPUs (first column

in Fig. 4.5) and ≈ 70% on ALCF’s Theta system with Knights Landing Xeon Phis (second column

in Fig. 4.5) at 2,048 nodes each. Using multiple hyperthreads per core on Theta has no significant

influence on the results given the intrinsic variations observed on that system7.

The first major difference is observed on OLCF’s Titan (third column in Fig. 4.5), where results

for K-Athena on GPUs are included. While the parallel efficiency for both codes remains at 94%

up to 8,192 nodes using only CPUs, it drops to 72% when using GPUs with K-Athena. However,

the majority of loss in parallel efficiency already occurs going from 1 to 8 nodes using GPUs and
7According to the ALCF support staff, system variability contributes around 10% to the fluctu-

ations in performance between identical runs.
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Figure 4.5: Weak scaling for double precision MHD (exact algorithm described in Sec. 4.3) on
different supercomputers and architectures for K-Athena and the original Athena++ version.
Numbers correspond to the 80th percentile of individual cycle performances of several runs in
order to reduce effects of network variability. The top row shows the raw performance in number
of cell-updates per second per node and can directly be compared between different system and
architectures. The bottom row shows the parallel efficiency normalized to the individual single
node performance. The first column contains results for a workload of 643 and 1283 cells per
core on NASA’s Electra system using two 20-core Intel Xeon Gold 6148 processors per node. The
second column shows results for a workload of 643 per core on ALCF’s Theta system with one
64-core Intel Xeon Phi 7230 (Knights Landing) per node. HT-1, HT-2, and HT-4 refers to using
1, 2, and 4 hyperthreads per core, respectively. The third column shows results for a workload
of 1283 per CPU core and 1923 per GPU on OLCF’s Titan system with one AMD Opteron 6274
16-core CPU and one NVIDIA K20X (Kepler) GPU per node. The last column contains results for
a workload of 643 per CPU core and 2563 per GPU on OLCF’s Summit system with two 21-core
IBM POWER9 CPUs and six NVIDIA V100 (Volta) GPUs per node. On all systems the GPU runs
used 1D loops and the CPU runs used simd-for loops with the the exception of the dashed purple
line on Summit that used Kokkos nested parallelism, see Sec. 4.2.3 for more details.
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afterwards remains almost flat. This behavior is equally present for CPU runs but less visible due

to the higher parallel efficiency in general. The differences in parallel efficiency between CPU and

GPU runs can be attributed to the vastly different raw performance of each architecture. On a single

node the single Kepler K20X GPU is about 7 times faster than the 16-core AMD Opteron CPU.

Given that the interconnect is identical for GPU and CPU communication, the effective ratio of

computation to communication is worse for GPUs. Despite the worse parallel efficiency on GPUs

the raw per-node performance using GPUs is still about 5.5 times faster than using CPUs at 8,192

nodes, which is overall comparable to the ratio of theoretical peak performances in both FLOPS

and DRAM bandwidth.

K-Athena on OLCF’s Summit system (last column in Fig. 4.5) with six Volta V100 GPUs and

two 21-core POWER9 CPUs exhibits a GPU weak scaling behavior similar to the one observed

on Titan. Going from 1 to 8 nodes results in a loss of 15% and afterwards the parallel efficiency

remains almost flat to 76% on 4,096 nodes. The CPU weak scaling results for both codes using

CPUs reveal properties of the interconnect. The weak scaling is almost perfect up to 256 nodes

using 1 hyperthread per core and afterwards rapidly plummets. Using 2 hyperthreads per core (i.e.,

doubling the number of threads making MPI calls and doubling the number of MPI messages sent

and received, as described in Sec. 4.2.2) the steep drop in parallel efficiency is already observed

beyond 128 nodes. No such drop is observed using GPUs, which perform 42/6 = 7 times fewer

MPI calls (compared to using 1 hyperthread per core) with larger message sizes in general.

Naturally, this is tightly related to the existing communication pattern in Athena++, i.e., coarse

grained threading over meshblocks with each thread performing one-sided MPI calls. Without

making additional changes to the code base, we can evaluate the effect of reducing the number of

MPI calls for a fixed problem size in a multithreaded CPU setup using Kokkos nested parallelism in

K-Athena. More specifically, we use the triple nested construct illustrated in Listing 4.4 allowing

multiple threads handling a single meshblock. As a proof of concept, the results for using using 1

MPI process per 2 cores each with one thread are shown in the purple dash line in the last column of

Fig. 4.5. While the raw performance on a single node is slightly lower (about 16%), the improved
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communication pattern results in a higher overall performance for > 1,024 nodes. Similarly, the

sharp drop in parallel efficiency has been shifted to first occur at 2,048 nodes.

At the single node level the six GPUs on Summit are tightly connected via NVLink. The

weak scaling efficiency from one GPU to six GPUs on a single node is ≈ 99% (cf., > 6 × 108

cell-updates/s/node for a single node in the top right panel of Fig. 4.5). In addition, the host

interconnect has a lower bandwidth and higher latency compared to NVLink. Thus, the intra-node

parallel overhead is generally negligible in our analysis.

Finally, the raw per-node performance is overall comparable between Intel Skylake CPUs, Intel

Knight Landing Xeon Phis, IBM POWER9 CPUs, and a single NVIDIA Kepler GPU, ranging

between ≈ 1.5 – 3×107 cell-updates/s/node. The latest NVIDIA Volta GPU is a notable exception,

reaching more than 108 cell-updates/s/GPU. This performance, in combination with six GPUs

per node on Summit and a high parallel efficiency, results in a total performance of 1.94 × 1012

cell-updates/s on 4,096 nodes.

4.3.4 Strong scaling

Strong scaling results for K-Athena on Summit on both CPUs and GPUs are shown in Fig. 4.6

(same test problem and algorithm as in Sec. 4.3.3.1). Overall, strong scaling in terms of parallel

efficiency is better on CPUs than on GPUs. For example, for a 1,4083 domain the parallel efficiency

using CPUs remains > 83% going from 32 to 512 nodes whereas it drops to 45% for the similar

GPU case (1,5363 domain using 36 to 576 nodes). This is easily explained by comparing to the

single CPU/GPU performance discussed in Sec. 4.3.3.1, which effectively corresponds to on-node

strong scaling. The more pronounced decrease in parallel efficiency on the GPUs is a direct result

of the decreased raw performance of GPUs with smaller problem sizes per GPU. The increased

communication overhead of the strong scaling test plays only a secondary role. Therefore, the strong

scaling efficiency of K-Athena in comparison to Athena++ is expected to be identical. Moreover,

additional performance improvements, as discussed in the following Section, will greatly benefit

the strong scaling behavior of GPUs in general. Nevertheless, the raw performance of the GPUs
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Figure 4.6: Strong parallel scaling for double precision MHD (algorithm described in Sec. 4.3)
of K-Athena on NVIDIA V100 GPUs (6 GPUs per node; green solid lines) and IBM Power 9
CPUs (42 cores per node; orange/red dash dotted lines) on Summit. The top panel shows the raw
performance in cell-updates per second per node and the bottom panel shows the parallel efficiency.
The effective workload per GPU goes from 2563 to 643 for the 1,5363 domain and from 2563 to
1283 for the 30723 domain. In the CPU case the effective workload per single Power9 CPU (21
cores) goes from 3533 to 883 for the 1,4083 domain and from 3533 to 1773 for the 2,9443 domain.
The resulting effective workloads per node are comparable (within few percent) between GPU and
CPU runs.

still outperforms CPUs by a large multiple despite the worse strong scaling parallel efficiency. For

example, in the case discussed above on Summit, the per-node performance of GPUs over CPUs is

still about 14 times higher at > 512 nodes.

4.4 Current limitations and future enhancements

Our primary goal for the current version of K-Athena was to make GPU-accelerated simulations

possible while maintaining CPU performance, and to do so with the smallest amount of code changes

necessary. Naturally, this resulted in several trade-offs and leaves room for further (performance)
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improvements in the future.

For example, we are currently not making use of the memory hierarchy abstraction provided by

Kokkos. This includes more advanced hardware features such as scratch spaces on GPUs. Scratch

space can be shared among threads of a TeamPolicy and allows for efficient reuse of memory.

We could use scratch space to reduce the number of reads from DRAM in stenciled kernels (like

the fluid solver’s reconstruction step). We could also fuse consecutive kernels to further reduce

reads and writes to DRAM, although this would also increase register and possibly spill store

usage. Moreover, complex kernels such as a Riemann solver could be broken down further by using

TeamThreadRanges and ThreadVectorRanges structures that are closer to the structure of the

algorithm. This is in contrast to our current approach where all kernels are treated equally, with the

same execution policies independent of the individual algorithms within the kernels. The Riemann

solver could also be split into separate kernels to reduce the number of registers needed, eliminate

the use of spill stores on the GPU, and allow higher occupancy on the GPU.

Similarly, on CPUs and Xeon Phis we are currently not using a Kokkos parallel execution

pattern. The macro we introduced to easily exchange parallel patterns replaces the parallel region

on CPUs and Xeon Phis with a simple nested for loop including a simd pragma, as shown in

Listing 4.1. This is required for maximum performance as the implicit #pragma ivdep hidden

in the Kokkos templates is less aggressive than the explicit #pragma omp simd with respect to

automated vectorization. We reported this issue and future Kokkos updates will address this by

either providing an explicit tightly nested vectorized loop pattern and/or adding support for a simd

property to the execution policy template.

Another possible future improvement is an increase in parallel efficiency by overlapping com-

munication and computation. While Athena++ is already built for asynchronous communication

through one-sided MPI calls and a task based execution model, more fine-grained optimizations

are possible. For example, spatial dimensions in the variable reconstruction step that occurs after

the exchange of boundary information could be split, so that the kernel in the first dimension could

run while the boundary information of the second and third dimension are still being exchanged.
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In addition, the next major Kokkos release will contain more support for architecture-dependent

task based execution and, for example, will allow for the transparent use of CUDA streams.

CUDA streams may also help in addressing another current limitation of K-Athena on GPUs.

Our minimal implementation approach currently limits all meshblocks to be allocated in a fixed

memory space. This means that the total problem size that can currently be addressed with K-

Athena is limited by the total amount of GPU memory available. An alternative approach is

keeping the entire mesh in system memory, which is still several times larger than the GPU memory

on most (if not all) current machines. For the execution of kernels individual meshblocks would

be copied back and forth between system memory and GPU memory. Here, CUDA streams could

be used to hide these expensive memory transfers as they would occur in the background while

the GPU is executing different kernels. Theoretically, meshes larger than the GPU memory could

already be used right now with the help of unified memory. However, given that the code is not

optimized for efficient page migrations the resulting performance degradation is large (more than

a factor of 10). Thus, using unified memory with meshes larger than the GPU memory is not

recommended.

4.5 Conclusions

We presented K-Athena – a Kokkos-based performance portable version of the finite volume

MHD code Athena++. Kokkos is a C++ template library that provides abstractions for on-

node parallel regions and the memory hierarchy. Our main goal was to enable GPU-accelerated

simulations while maintaining Athena++’s excellent CPU performance using a single code base

and with minimal changes to the existing code.

Generally, four main changes were required in the refactoring process. We changed the underly-

ing memory management in Athena++’s multi-dimensional array class to make transparently use

of Kokkos’s equivalent multi-dimensional arrays, i.e., Kokkos::Views. We exchanged all (tightly)

nested for loops with the Kokkos equivalent parallel region, e.g., a Kokkos::parallel_for,

which are now kernels that can be launched on any supported device. We inlined all support func-

tions (e.g., the equation of state) that are called within kernels. We changed the communication
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buffers to be Views so that MPI calls between GPUs buffers are directly possible without going

through system memory.

With all changes in place we performed both profiling and scaling studies across different

platforms, including NASA’s Electra system with Intel Skylake CPUs, ALCF’s Theta system with

Intel Xeon Phi Knights Landing, OLCF’s Titan with AMD Opteron CPUs and NVIDIA Kepler

GPUs, and OLCF’s Summit machine with IBM Power9 CPUs and NVIDIA Volta GPUs. Using a

roofline model analysis, we demonstrated that the current implementation of the MHD algorithms

is memory bound by either the DRAM, HBM, or MCDRAM bandwidths on CPUs and GPUs.

Moreover, we calculated a performance portability metric of 62.8% across Xeon Phis, and 6 CPU

and 3 GPU generations.

Detailed Kokkos profiling revealed that there is currently no universal Kokkos execution policy

(how a parallel region is executed) that achieves optimal performance across different architectures.

For example, a one-dimensional loop with manual index matching from 1 to 3D/4D is fastest on

GPUs (achieving > 108) double precision MHD cell-updates/s on a single NVIDIA V100 GPU)

whereas tightly nested for loops with simd directives are fastest on CPUs. This is primarily a result

of Kokkos’s specific implementation details and expected to improve in future releases through

more flexible execution policies.

Strong scaling on GPUs is currently predominately limited by individual GPU performance

and not by communication. In other words, insufficient GPU utilization outweighs additional

performance overhead with decreasing problem size per GPU.

Weak scaling is generally good, with parallel efficiencies of 80% and higher for more than

1,000 nodes across all machines tested. Notably, on Summit K-Athena achieves a total calculation

speed of 1.94 × 1012 cell-updates/s on 24,567 V100 GPUs at a speedup of 30 compared to using

the available 172,032 CPU cores.

Finally, there is still a great deal of untapped potential left, e.g., using more advanced hardware

features such as fine-grained nested parallelism, scratch pad memory (i.e., fast memory that can

be shared among threads), or CUDA streams. These are currently being addressed within the
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new Parthenon collaboration (https://github.com/lanl/parthenon), which is developing

a performance portable adaptive mesh refinement framework based on the results presented here.

Nevertheless, we achieved our primary performance portability goal of enabling GPU-accelerated

simulations while maintaining CPU performance using a single code base. Moreover, we consider

the current results highly encouraging and will continue with further development on the project’s

GitLab repository at https://gitlab.com/pgrete/kathena. Contributions of any kind are

welcome!
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CHAPTER 5

RELATIVISTIC DISCONTINUOUS-GALERKIN HYDRODYNAMICS

This chapter has been submitted for publication as Glines et al. (2022). I include the original

abstract as the introduction to this chapter.

Chapter Abstract

In this work, we present a discontinuous-Galerkin method for evolving relativistic hydro-

dynamics. We include an exploration of analytical and iterative methods to recover the

primitive variables from the conserved variables for the ideal equation of state and the Taub-

Matthews approximation to the Synge equation of state. We also present a new operator

for enforcing a physically permissible conserved state at all basis points within an element

while preserving the volume average of the conserved state. We implement this method

using the Kokkos performance-portability library to enable running at performance on

both CPUs and GPUs. We use this method to explore the relativistic Kelvin-Helmholtz

instability compared to a finite volume method. Last, we explore the performance of our

implementation on CPUs and GPUs.

5.1 Introduction

Many high energy astrophysical and terrestrial plasmas attain relativistic velocities and tem-

peratures. Examples from astrophysics include jets from active galactic nuclei (Blandford et al.,

2019), accretion flows onto black holes (Villiers et al., 2003), and gamma-ray bursts (Kumar &

Zhang, 2015). In terrestrial systems, relativistic flows can also play a crucial role in a broad range

of accelerator systems, including magnetically insulated transmission lines (MITLs) utilized in (for

example) the Z machine at Sandia National Laboratories Sinars et al. (2020). In all of these plasmas,
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velocities close to the speed of light lead to an apparent increase of mass as measured by a station-

ary observer while relativistic particle velocities at high temperatures lead to a non-linear increase

in pressure. Non-relativistic hydrodynamics are insufficient to model such flows – a relativistic

treatment of the fluid is required. Numerical solutions for relativistic hydrodynamics were first

pioneered in the 1960’s and 1970’s by May & White (1966) and Wilson (1972). High-resolution

shock-capturing solutions followed suit, with an early review of those methods given by Martí &

Müller (2003).

When modeling complex systems with small time step constraints, higher order methods are

advantageous for efficiently achieving high accuracy. Discontinuous Galerkin methods have become

standard in fluid dynamics for enabling high-order methods in complex geometries. High-order

discontinuous-Galerkin methods afford enhanced data locality when compared with finite volume

methods of similar order (Fuhry et al., 2014). Given the trend in compute performance outpacing

memory performance in newer architectures such as graphics processing units (GPUs), the higher

arithmetic intensity of discontinuous-Galerkin methods will permit higher computational efficiency

due to higher arithmetic intensity algorithms using more of the growing computational throughput

while using less of the stagnant memory bandwidth, enabling higher fidelity simulations compared

to finite volume simulations for equivalent computational resources.

In this work, we present a robust, performance-portable discontinuous-Galerkin method for

relativistic hydrodynamics. In §5.2.1 we present a formulation of the equations of relativistic

hydrodynamics that allows for a range of equations of state; we present two such possibilities: (1)

an ideal equation of state, which approximates a perfect gas but assumes a constant adiabatic index

for a relativistic perfect gas, and (2) an approximation to the Synge gas from Mathews (1971),

where the Synge equation of state models a relativistic perfect gas (Synge, 1957). We discuss the

discretization of the system using a discontinuous-Galerkin technique and discuss strong-stability-

preserving time discretization techniques. To enable robust higher order discretization, in §5.2.5

we present a new and novel physicality-enforcing operator for discontinuous-Galerkin methods for

relativistic hydrodynamics. The method smooths conserved variables within individual cells to
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the cell volume averages until all basis points within the cell satisfy conditions for physicality (i.e.

positive density and pressure and flow speed under the speed of light). We implement the method

for relativistic hydrodynamics using the Kokkos performance portability library to enable running

on both CPUs and GPU (Carter Edwards et al., 2014).

A key part of any algorithm for relativistic hydrodynamics is the method by which the non-

linear relationship between primitive variables and the conserved state is solved. In §5.3, we

compare analytical and iterative methods for recovering the primitive variables from the conserved

variables for both equations of state, across a range of different hardware platforms and compilers

as facilitated by Kokkos, finding that for the ideal gas our iterative method following Riccardi &

Durante (2008) is faster, more robust, and more accurate than an analytical method, but the exact

reverse is true for an approximation to the Synge gas.

We proceed to validate the method using several tests (discussed in detail in §5.4), exploring

convergence of the method to analytical solutions of relativistic linear waves, convergence to high

resolution reference solutions of a range of 1D shock tubes, evolution of 2D Riemann problems, and

growth rates of the relativistic Kelvin-Helmholtz instability with two different initial perturbations.

Using a 0th order basis, we find that the method performs comparably to 1st order finite volume

methods, as expected. Using higher order bases we see the expected level of convergence for

smooth flows. In fluid systems with shocks, the method requires the physicality-enforcing operator

presented here and exhibits expected rates of convergence around shocks. Additionally, with the

exploration of the growth rate of the Kelvin-Helmholtz problem, we show that using the more

accurate HLLC Riemann solver (Mignone & Bodo, 2006) instead of the HLL solver (Schneider

et al., 1993) has a greater impact on the growth rate than basis order or resolution. We further

utilize this test problem to demonstrate a range of performance portability results in §5.4.6 before

summarizing our results and conclusions in §5.5.

5.2 Theoretical Background and Discretization

In this section, we describe our method for relativistic hydrodynamics in a discontinuous-

Galerkin code, starting by reviewing the equations for relativistic hydrodynamics in §5.2.1, includ-
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ing a discussion of the equation of state. Then, in §5.2.3, we give the general discontinuous-Galerkin

method for solving the relativistic hydrodynamics equations as a set of hyperbolic equations with

computation of fluxes given in §5.2.4. Last, in §5.2.5, we present a new operator that enforces

physicality of all basis points within a cell while maintaining the volume average within the cell.

5.2.1 Special Relativistic Hydrodynamics

The special relativistic hydrodynamics equations for a relativistic fluid are given by a set of

hyperbolic conservation laws,

𝜕𝑡U + ∇ · F [W(U)] = 0 (5.1)

where the conserved variables U = [𝐷,M, 𝐸]𝑇 are the relativistic density, relativistic specific

momentum, and the total energy density including energy from the rest mass. The flux is

F [W(U)] =


𝜌u

𝜌ℎ

𝑐2
u ⊗ u + 𝑃I

𝛾𝜌ℎu


, (5.2)

where the rest mass density 𝜌, the three spacelike components of the 4-velocity denoted here with

u, and the pressure 𝑃 comprises the primitive state W(U) = [𝜌, u, 𝑃]𝑇 . The specific enthalpy ℎ is

given by

ℎ =
𝑒 + 𝑃
𝜌

(5.3)

where 𝑒 is the specific internal energy. The conserved state U can be determined from the primitive

state W by

U =


𝛾𝜌

𝛾(𝑒 + 𝑃)u/𝑐2

𝛾2(𝑒 + 𝑃) − 𝑃


=


𝛾𝜌

𝛾𝜌ℎu/𝑐2

𝛾2𝜌ℎ − 𝑃


≡


𝐷

M

𝐸


(5.4)

where 𝛾 ≡
√︁

1 + |u|2/𝑐2 is the Lorentz factor and𝐷, M, and 𝐸 are the relativistic density, relativistic

momentum density, and total energy density respectively. We also find it convenient to use the

three-velocity v at times, which relates to u following u = 𝛾v and the Lorentz velocity following

𝛾 = 1/
√︁

1 − |v|2/𝑐2.
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5.2.2 Equations of State

The relativistic hydrodynamics equations in Eq. 5.1 are not complete; an equation of state is

used to close the system. Following Ryu et al. (2006), we express the equation of state by relating

ℎ to the primitive variables

ℎ ≡ ℎ(𝜌, 𝑃). (5.5)

The equation of state also determines the sound speed 𝑐𝑠, which is given by

𝑐2
𝑠 = − 𝜌

𝑛ℎ

𝜕ℎ

𝜕𝜌
with 𝑛 = 𝜌

𝜕ℎ

𝜕𝑃
− 1 (5.6)

where 𝑛 is the polytropic index. In this work, we explore two choices of equation of state: the

equation of state of an ideal gas and the Taub-Matthews approximation to the Synge equation of

state described in Mathews (1971).

In a relativistic perfect gas, the adiabatic index decreases with temperature, starting with

Γ = 5/3 for non-relativistic temperatures when 𝑃/𝜌 ≪ 𝑐2 and decreasing to Γ = 4/3 for relativistic

temperatures when 𝑃/𝜌 ≫ 𝑐2. The equation of state of the perfect gas is given by the Synge gas

(Synge, 1957) :

ℎ = 𝑐2
𝐾3

(
𝑐2/Θ

)
𝐾2

(
𝑐2/Θ

) (5.7)

where 𝐾2 and 𝐾3 are modified Bessel functions of the second kind and Θ ≡ 𝑃/𝜌 is a temperature-

like variable. From a computational standpoint, however, there are significant drawbacks, as

these Bessel functions are both expensive to compute and can introduce inaccuracy due to limited

machine precision. Even worse, the Bessel functions need to be inverted to recover the primitive

variables from conserved variables, which greatly increases computational costs. Consequently,

approximations to the equation of state are usually used in simulations.

The simplest approximation to the relativistic perfect gas is the ideal equation of state, which

assumes a constant adiabatic index. The enthalpy for the ideal gas is given by

ℎ = 𝑐2 + Γ

Γ − 1
Θ (5.8)
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where the constant Γ is the adiabatic index (ratio of specific heats.) The corresponding speed of

sound is then:
𝑐2
𝑠

𝑐2 = Γ
Θ

ℎ
. (5.9)

For non-relativistic temperatures when Θ ≪ 𝑐2, an adiabatic index of Γ = 5/3 best approximates

the perfect gas (consistent with non-relativistic theory) while for relativistic temperatures when

Θ ≫ 𝑐2 and adiabatic index of Γ = 4/3 is appropriate. The ideal equation of state is common

for relativistic hydrodynamics simulations. However, relativistic fluid systems can have relativistic

and non-relativistic temperatures simultaneously at different locations within the fluid, throwing

into question the use of a constant adiabatic index across the simulation. Additionally, Taub (1948)

showed that Γ ≥ 4/3 becomes inconsistent with relativistic kinetic theory asΘ/𝑐2 → ∞, suggesting

that adiabatic indices above 4/3 are unphysical for ultra-relativistic temperatures.

A more accurate approximation to the Synge gas that is still computationally efficient is the

Taub-Matthews approximation to the Synge gas, which we will refer to as the Taub-Matthews

equation of state (Mathews, 1971). In this approximation, the enthalpy is given by:

ℎ =
5
2
Θ + 3

2

√︂
Θ2 + 4

9
𝑐4 (5.10)

with the corresponding sound speed:

𝑐2
𝑠

𝑐2 =
3Θ2 + 5Θ

√︃
Θ2 + 4

9𝑐
4

12Θ2 + 2𝑐4 + 12Θ
√︃
Θ2 + 4

9𝑐
4
. (5.11)

The Taub-Matthews equation of state satisfies the conditions for causality at high temperatures while

correctly approximating the ideal gas equation of state for a subrelativistic gas at low temperatures

(Mathews, 1971). As such, the Taub-Matthews equation of state effectively simulates an ideal gas

with an adiabatic index that varies from Γ = 5/3 as Γ = 4/3 as Θ is taken from Θ → 0 to Θ → ∞.

More formally, this can be seen through defining an equivalent adiabatic index1 (see, e.g. Mignone

1Note that since we have not defined a canonical equation of state for the Taub-Matthews equation
of state (i.e. ℎ(𝑆, 𝑃) where 𝑆 is entropy), we have not defined a relationship with temperature 𝑇 ,
and we cannot compute specific heat capacities and subsequently Γ. Hence the need for the proxy
Γeq.
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& McKinney, 2007):

Γeq =
ℎ − 𝑐2

ℎ − 𝑐2 − Θ
, (5.12)

This relationship, along with the enthalpy and speed of sound, for ideal gases with Γ = 4/3 and

𝛾 = 5/3, the Synge gas, and the Taub-Matthews equation of state is shown in Fig. 5.1.

5.2.3 Spatial and Temporal Discretizations

In this work, spatial discretization of the hyperbolic conservation law, Eq. 5.1, is performed

using a discontinuous-Galerkin method in a similar fashion as was proposed by Núñez-de la Rosa &

Munz (2018), following on the influential sequence Cockburn & Shu (1989); Cockburn et al. (1989,

1990); Cockburn & Shu (1998). The discontinuous-Galerkin method requires a mesh defined as

the subdivision of the domain into non-overlapping hexahedral (3𝐷) or quadrilateral (2𝐷) cells

denoted Ω𝑘 ⊂ Ω ⊂ R𝑑 . The approximation of the conserved variables on cell Ω𝑘 is written

U(x) ≈ Uℎ (x) =
∑︁
𝑖=1

U𝑖𝜙𝑖 (x) x ∈ Ω𝑘 (5.13)

where the set {𝜙𝑖 (x)} is a linearly independent basis that spans a polynomial space of fixed order

on element Ω𝑘 . Lagrange polynomials are employed here, where the nodal points are denoted as

x 𝑗 such that

𝜙𝑖 (x 𝑗 ) = 𝛿𝑖 𝑗 (5.14)

where 𝛿 is the Kronecker delta function. Globally, Uℎ is defined as a piecewise polynomial function

with discontinuities permitted at cell boundaries. The restriction of the numerical solution to a cell

Ω𝑘 is denoted Uℎ
𝑘
.

On each cell the approximate solution to Eq. 5.1 is computed by enforcing that the residual is

orthogonal to the test space, defined in the Galerkin fashion. Practically, after integration by parts,

this implies the satisfaction of the weak form∫
Ω𝑘

𝜕Uℎ

𝜕𝑡
𝜙(x)𝑑x +

∮
𝜕Ω𝑘

F [Wℎ (U)] · n𝜙(x)𝑑𝑠 −
∫
Ω𝑘

F [Wℎ (U)] · ∇𝜙(x)𝑑x = 0, ∀𝜙 ∈ {𝜙𝑖}

(5.15)
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Figure 5.1: Enthalpy (top), sound speed (middle), and equivalent adiabatic index (bottom) as
a function of the temperature proxy Θ/𝑐2 for the Synge gas (solid blue), ideal equation of state
with a relativistic Γ = 4/3 (dashed orange) and a non-relativistic Γ = 5/3 (finely dashed green),
and the Taub-Matthews approximation to the Synge gas (dot-dashed red). With the Synge and
Taub-Matthews equations of state, each of the quantities shown here vary smoothly between the
two extremes of the ideal equation of state as Θ/𝑐2 changes from non-relativistic to relativistic.
The Taub-Matthews equation of state provides a reasonable approximation to the Synge gas while
remaining simple for computation.
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on each cell. The second term is the integral of normal flux over the surface of an element. The

solution at cell interfaces is double-valued as indicated by the overline; one value corresponding to

the data inside the cell, the other from the neighboring cell. As such, the solution is discontinuous

and the flux must be computed using a Riemann solver in a fashion similar to the finite volume

method. We have implemented two approximate Riemann solvers: HLL and HLLC, discussed in

§5.2.4. Beyond the choice of Riemann solver, the discrete conservation law, Eq. 5.15 can admit

a range of different basis orders. A first order basis (e.g piecewise constant) will eliminate the

contribution of
∫
Ωℎ

F [W(U)] · ∇𝜙(x)𝑑x, resulting in a scheme equivalent to a first order finite

volume discretization. Moving to higher order bases (e.g. piecewise linear, etc.) will introduce the

need to provide additional stabilization (e.g. dissipation) at discontinuities and shocks. For this we

use the Moe limiter from Moe et al. (2015) and the minmod limiter (van Leer, 1979) as well as

the physicality enforcing operator tailored for relativistic hydrodynamics that we discuss in detail

in §5.2.5.

Before the integrals in Eq. 5.15 can be computed, the primitive variables must be calculated for

use in the numerical flux. There are different options for computation: interpolate conserved and

compute primitives at quadrature points, versus compute primitives at nodal points and interpolate.

In Newtonian hydrodynamics, the primitive variables, W, can be recovered algebraically from the

conserved state. As such, it is straightforward to interpolate the conserved quantities to the required

quadrature point and recover the necessary primitive quantities to construct the flux. In relativistic

hydrodynamics, such an algebraic recovery of the primitive quantities does not exist; prior work

(see e.g. Beckwith & Stone, 2011) has demonstrated that, in the context of finite volume schemes, it

is necessary to interpolate primitive variables (rather than conserved quantities) in order to ensure

that the state remains physical (e.g. |v|2 < 𝑐2, 𝜌 > 0, 𝑃 > 0). Here, we follow a similar procedure:

the primitive state is computed from the conserved state at the basis points and then interpolated

to quadrature points in order to compute fluxes. In addition to enhanced stability, this minimizes

the number of calls to the method that recovers the primitive variables from the conserved state,

minimizing the impact that this routine has on overall algorithm performance (see §5.3 for further
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discussion). Thus, the first step in the assembly is to compute the primitives at nodal points:

W𝑖 = 𝑝(U𝑖) (5.16)

where 𝑝 computes the primitive variables from the conserved (see Sec. 5.3 for specific details). With

this expression, the primitives are easily interpolated to points within the cell using Eq. 5.13, yielding

the primitive approximation Wℎ (x) = ∑
𝑖 Wi𝜙𝑖 (x). Thus a nonlinear conserved-to-primitive solve

is required at each nodal point.

The numerical quadrature for the volumetric contributions of the fluxes are computed as∫
Ω𝑘

F [Wℎ (U)] · ∇𝜙(x)𝑑x ≈
∑︁
𝑞

𝑤𝑞F [Wℎ (x𝑞)] · ∇𝜙(x𝑞) (5.17)

and the surface fluxes on the interface shared by Ω𝑘 and Ω𝑘′ are∫
𝜕Ω𝑘∩𝜕Ω𝑘′

F [Wℎ (U)] · n𝜙(x)𝑑𝑠 ≈
∑︁
𝑞

𝜔𝑞F (Wℎ
𝑘
(x𝑞),Wℎ

𝑘′ (x𝑞)) · n𝜙(x𝑞). (5.18)

Here it is understood that the quadrature rules are defined with respect to the domain of integration.

The volumetric term (Eq. 5.17) requires evaluation of the flux at each quadrature point while the

surface term (Eq. 5.18) requires evaluation of the numerical flux from cell 𝑘 and the neighbor 𝑘′ at

each quadrature point.

The temporal discretization we employ uses a multi-stage strong-stability preserving (SSP)

Runge-Kutta time integrator similar to that described in Cockburn & Shu (1989); Cockburn et al.

(1989, 1990); Cockburn & Shu (1998). SSP time discretization methods were designed to ensure

nonlinear stability properties in the numerical solution of spatially discretized hyperbolic partial

differential equations, such as Eq. 5.15. These methods assume that there is a time-step, Δ𝑡𝐹𝐸 such

that forward-Euler condition:

| |U + Δ𝑡F [W(U)] | | ≤ | |U| | for 0 ≤ Δ𝑡 ≤ Δ𝑡𝐹𝐸 (5.19)

is satisfied for all U. An explicit Runge-Kutta (ERK) method is called SSP if the methods can be

rewritten as a convex combination of forward Euler methods and the estimate | |U𝑛+1 | | < | |U𝑛 | |

holds for the numerical solution of Eq. 5.15 whenever the condition given in Eq. 5.19 holds and
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Δ𝑡 ≤ C𝑆𝑆𝑃Δ𝑡𝐹𝐸 , where C𝑆𝑆𝑃 is known as the SSP-coefficient. The convex combination above

ensures that the strong stability property is also satisfied by the intermediate stages in a Runge-Kutta

method ( see Gottlieb et al., 2011; Gottlieb, 2015). This may be desirable in many applications,

notably in simulations that require positivity (Ferracina & Spijker, 2005, 2004; Higueras, 2004,

2005). In this work, we make use of the second and third order schemes found in Shu & Osher

(1989), which were proved to be optimal in Gottlieb & Shu (1998).

5.2.4 Computation of the Surface Flux

The surface flux contributions on the interface shared by Ω𝑘 and Ω𝑘′ require the evaluation of

(Eq. 5.18): ∑︁
𝑞

𝜔𝑞F (Wℎ
𝑘
(x𝑞),Wℎ

𝑘′ (x𝑞)) · n𝜙(x𝑞) (5.20)

In the method presented here, this is accomplished by use of an approximate Riemann solver, of

which we have implemented the relativistic HLL and HLLC variants due to Schneider et al. (1993)

and Mignone & Bodo (2005). Both of these approximate Riemann solvers require an estimate of

the maximum and minimum wavespeeds on either side of the interface, which we compute through

the maximum and minimum eigenvalues of 𝜕F/𝜕U (Mignone & Bodo, 2005):

𝜆±(W) =
𝑣𝑥 ±

√︂
𝜎𝑠

(
𝑐2 − 𝑣2𝑥 + 𝑐2𝜎𝑠

)
1 + 𝜎𝑠

(5.21)

where

𝜎𝑠 = 𝑐
2
𝑠/

[
𝛾2

(
𝑐2 − 𝑐2

𝑠

)]
. (5.22)

We compute 𝜆±(W) for every Wℎ
𝑘
(x𝑞) and Wℎ

𝑘′ (x𝑞)) to find the maximum and minimum

wavespeeds at each surface quadrature point across interface:

𝜆𝐿 = min
(
𝜆−

(
Wℎ
𝑘
(x𝑞)

)
, 𝜆−

(
Wℎ
𝑘′ (x𝑞)

))
(5.23)

𝜆𝑅 = max
(
𝜆+

(
Wℎ
𝑘
(x𝑞)

)
, 𝜆+

(
Wℎ
𝑘′ (x𝑞)

))
. (5.24)
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5.2.5 Physicality Enforcing Operator

While using 0th order polynomials for a relativistic hydrodynamics discontinuous-Galerkin

method is guaranteed to produce a physical conserved state after every flux update even with

shocks when using a local-extremum-diminishing numerical fluxes such as HLL, higher order

bases can introduce spurious oscillations and non-physical conserved states within cells around

shocks (see Wu & Tang (2016)). To resolve this issue, an operator is needed to smooth the solution

within a cell. Taking inspiration from the limiter presented in Moe et al. (2015), we present here a

smoothing procedure that enforces physical conserved states within a cell with a physical volume

average.

Following Riccardi & Durante (2008) and Wu & Tang (2016), a conserved state that satisfies

𝐷 > 0, 𝑞 (U) ≡ 𝐸/𝑐2 −
√︃
𝐷2 − |M/𝑐 |2 > 0, (5.25)

is a physically admissible state as long as the specific energy 𝑒(𝜌, 𝑝) is continuously differentiable

under the chosen equation of state. If a conserved state satisfies Eq. 5.25, the state can be inverted

for a primitive state with positive density and pressure with a velocity less than 𝑐. Since the space

of permissible conserved states under Eq. 5.25 is convex (i.e. any conserved state interpolated

between two physically permissible conserved states is also physically permissible (Wu & Tang,

2016)), we can use the same strategies from Moe et al. (2015) in a simple smoothing procedure to

enforce physicality within a discontinuous-Galerkin cell. From a high level, we apply an operator

to average nodal points within a cell towards a physical volume average.

Before enforcing physicality within cells, we first screen for cells with non-physical nodal points

by checking that all conserved states at the nodal points – U𝑖 – satisfy Eq. 5.25. If any point fails,

we flag the cell as needing smoothing to ensure that all points are physical. We then check that the

cell volume average U of the conserved state satisfies Eq. 5.25. As long as the cell volume average

is physical, a smoothing factor can be found that ensures physicality without changing the global

conserved quantities. If the cell volume average is not physical, then the nodal points cannot be

made physical through the physicality-enforcing operator without changing the volume average.
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To enforce physicality within a cell, we first seek a smoothing factor 𝑠 ∈ [0, 1] such that the

smoothed states

Ũ𝑖 = 𝑠U𝑖 + (1 − 𝑠) U (5.26)

at all nodal points in the cell satisfy Eq. 5.25. At each point in the cell, we find the largest smoothing

factor such that

𝐷̃𝑖 > 0 𝑞𝑖 ≡ 𝐸̃𝑖/𝑐2 −
√︃
𝐷̃2
𝑖
+

(
|M̃𝑖 |/𝑐

)2
> 0. (5.27)

If we assume that U is physical, then 𝑠 := 0 would lead to a physical Ũ, so we can assume that such

a smoothing factor 𝑠𝑖 ≥ 0 exists. We find this factor in two stages.

In the first stage, we compute an intermediate stage smoothing factor 𝑠(1)
𝑖

for each nodal point

that ensures a positive 𝐷 and 𝐸 . We solve

𝐷̃
(1)
𝑖

= 𝑠
(1)
𝑖,𝐷
𝐷𝑖 +

(
1 − 𝑠(1)

𝑖,𝐷

)
𝐷 > 0 (5.28)

𝐸̃
(1)
𝑖

= 𝑠
(1)
𝑖,𝐸
𝐸𝑖 +

(
1 − 𝑠(1)

𝑖,𝐸

)
𝐸 > 0 (5.29)

for the largest 𝑠(1)
𝑖,𝐷
, 𝑠

(1)
𝑖,𝐸

∈ [0, 1] that satisfies the constraints and compute an intermediate smoothing

factor 𝑠(1)
𝑖

= min
(
𝑠
(1)
𝑖,𝐷
, 𝑠

(1)
𝑖,𝐸

)
. We use 𝑠(1)

𝑖
to compute an intermediate smoothed state

Ũ(1)
𝑖

= 𝑠
(1)
𝑖

U𝑖 +
(
1 − 𝑠(1)

𝑖

)
U (5.30)

so that we ensure that 𝐷̃ and 𝐸̃ are positive.

In the second stage, we compute a second stage smoothing factor 𝑠(2)
𝑖

∈ [0, 1] such that

𝑞
(2)
𝑖

= 𝐸̃
(2)
𝑖

/𝑐2 −
√︂(

𝐷̃
(2)
𝑖

)2
+

(
|M̃(2)

𝑖
|/𝑐

)2
> 0. (5.31)

where Ũ(2)
𝑖

= 𝑠
(2)
𝑖

U(1)
𝑖

+
(
1 − 𝑠(2)

𝑖

)
U is the second smoothed state. Note that since 𝑠(2) := 0

leads to Ũ(2) := U, we know that an acceptable smoothing factor exists. Solving Eq. 5.31 can be

simplified by noting that 𝐸̃ (2) is positive for any choice of 𝑠(2)
𝑖

∈ [0, 1] since 𝐸̃ (1) and 𝐸 are both

positive (for the same reasons, 𝐷̃ (2) is also always positive). We can rewrite Eq. 5.31 as(
𝐸̃
(2)
𝑖

/𝑐2
)2
>

(
𝐷̃
(2)
𝑖

)2
+

(
|M̃(2)

𝑖
|/𝑐

)2
(5.32)

𝑎

(
𝑠
(2)
𝑖

)2
+ 𝑏𝑠(2)

𝑖
+ 𝑐 > 0 (5.33)
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where

𝑎 =
1
𝑐4

(
𝐸̃
(1)
𝑖

− 𝐸
)2

−
(
𝐷̃
(1)
𝑖

− 𝐷
)2

− 1
𝑐2

���M̃(1)
𝑖

− M
���2 (5.34)

𝑏 =
2
𝑐4𝐸

(
𝐸̃
(1)
𝑖

− 𝐸
)
− 2𝐷

(
𝐷̃
(1)
𝑖

− 𝐷
)
− 2
𝑐2 M ·

(
M̃(1)
𝑖

− M
)2

(5.35)

𝑐 =
1
𝑐4𝐸

2 − 𝐷2 − 1
𝑐2

���M���2 . (5.36)

Since U is physical, 𝑠(2)
𝑖

:= 0 must satisfy the inequality. Note that the quadratic can only have

at most one root within [0,1]; if it had two roots, then either 𝑠(2)
𝑖

:= 0 and 𝑠(2) do not satisfy the

inequality, implying that U is unphysical, or that both satisfy the inequality and that some interior

𝑠
(2)
𝑖

∈ [0, 1] do not satisfy the inequality, implying that the space of physical conserved states is

not convex, both of which are contradictions. If there are no roots within [0, 1], since 𝑠(2)
𝑖

:= 0

satisfies the inequality, 𝑠(2)
𝑖

:= 1 must as well, so 1 would be the largest acceptable second stage

smoothing factor.

In the case that there is just one root, then since 𝑠(2)
𝑖

:= 0 satisfies the inequality, the coefficient

𝑎 must be negative or 0 (which is the simple linear case), and only the root

𝑠
(2)
𝑖

=
−𝑏 −

√
𝑏2 − 4𝑎𝑐
2𝑎

(5.37)

can fall within [0, 1], and so we only need to compute this root to find the largest smoothing factor

for this nodal point. The final smoothing factor for this nodal point is 𝑠𝑖 = 𝑠
(1)
𝑖
𝑠
(2)
𝑖

, which ensures

that any 𝑠 ≤ 𝑠𝑖 chosen will satisfy Eq. 5.27. After computing 𝑠𝑖 for each nodal point in the cell, we

compute the final smoothing factor for the cell using 𝑠 = min 𝑠𝑖, which we use to compute ũ using

Eq. 5.26.

The procedure for our physicality-enforcing operator goes as follows

1. We flag cells with nodal points with conserved states that violate Eq. 5.25 as cells with

non-physical nodal points.

2. We check that the volume average within a flagged cell satisfies equation 5.25, which guar-

antees that the smoothing procedure will enforce physicality within the cell.
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3. For each point in a flagged cell, we compute the largest smoothing factor 𝑠𝑖 that will guarantee

that the new smoothed state will satisfy Eq. 5.27. For each nodal point, the procedure goes

as:

a) We compute the first stage smoothing factor 𝑠(1)
𝑖,𝐷

and 𝑠(1)
𝑖,𝐸

to ensure positivity of 𝐷 and

𝐸 by solving for them in Eq. 5.28.

b) We compute the first stage smoothing factor 𝑠(1)
𝑖

= min 𝑠(1)
𝑖,𝐷
, 𝑠

(1)
𝑖,𝐸

and use this to compute

the intermediate smoothed state Ũ(1) using Eq. 5.30.

c) We then check whether Ũ(1) satisfies equation 5.25, in which case we use 𝑠𝑖 = 𝑠
(1)
𝑖

.

d) If not, we compute 𝑠(2)
𝑖

by solving the quadratic described in Eq. 5.32 and Eq. 5.34

using the root for 𝑠(2)
𝐼

in Eq. 5.37. The smoothing factor for this nodal point is then

𝑠𝑖 = 𝑠
(1)
𝑖
𝑠
(2)
𝑖

.

4. We compute a final smoothing factor for each cell using 𝑠 = min 𝑠𝑖, which allows us to

compute the smoothed state U𝑖 at each nodal point using Eq. 5.26.

As long as the volume average conserved state U is physical, this procedure will produce the

physical conserved state Ũ𝑖.

5.3 Recovery of Primitive Variables

Although the conservation laws in relativistic hydrodynamics are similar to those in Newtonian

hydrodynamics, the inclusion of the Lorentz factor in conservation of mass, momentum, and energy

adds complexity to the equation set in several ways that complicate recovery of primitive variables

from conserved variables. Primarily, the Lorentz factor couples every conserved variable with

the velocity in all directions. While adding a transverse velocity to a non-relativistic flow will

not affect longitudinal evolution, in demonstration of Galilean invariance, a transverse velocity

in a relativistic flow contributes to the apparent density, momentum, and energy, fundamentally

modifying the dynamics. Additionally, the inclusion of the Lorentz factor leads to a non-linear

relationship between the primitive and conserved variables. For even simple choices of equation of
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state, recovering the primitive state from the conserved state (i.e. inverting Eq. 5.4) requires finding

the roots of cubic or higher order polynomials. Last, the relativistic hydrodynamics equations

(and causality) require the three-velocity to be bounded by the speed of light, with superluminal

velocities leading to complex Lorentz factors. For highly relativistic flows close to the speed of light,

we are often limited by machine precision when representing small changes in the three-velocity

that equate to large changes in the Lorentz factor. For these reasons, the stability and fidelity

of any scheme for relativistic hydrodynamics is fundamentally tied to that of the scheme used to

compute primitive variables from conserved quantities. As a result, a wide variety of schemes,

including but not limited to those presented in Schneider et al. (1993); Ryu et al. (2006); Riccardi

& Durante (2008), have been described in the literature. Each of these options has its advantages

and disadvantages from a physical fidelity, stability, and robustness standpoint; however, as far as

we are aware, the performance of these different formulations has not previously been examined

from a performance portability perspective, as we do here.

We consider two different approaches to recovering the primitive variables from conserved

quantities: an analytical approach and an iterative approach. We then develop both of these

methods for the ideal gas and Taub-Matthews equations of state to give four algorithms in all. In

formulating these, we use the dimensionless variables

𝜉 =
𝑀

𝐷𝑐
and 𝜂 =

𝐸

𝐷𝑐2 . (5.38)

This rescaling aids with reducing issues due to large differences in numbers, although this does not

eliminate issues of near-speed-of-light velocities.

5.3.1 Ideal Gas Equation of State

In the case of the ideal gas equations of state, the primitive variables can be recovered from the

conserved quantities by solving the roots of a quartic equation. One approach demonstrated by Ryu

et al. (2006) computes the analytic solution to a quartic polynominal in 𝛽 = 𝑣/𝑐. For completeness,

we restate this method here in terms of the dimensionless parameters 𝜉 and 𝜂, which allows us to

keep 𝑐 throughout the set of equations.
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As shown in Schneider et al. (1993), the solution for the special relativistic velocity 𝛽 can be

found from the roots of the quartic polynomial

𝑎3𝛽
4 + 𝑎2𝛽

2 + 𝑎1𝛽 + 𝑎0 = 0 (5.39)

where the coefficients are given by

𝑎3 =
−2Γ(Γ − 1)𝜉𝜂
(Γ − 1)2(𝜉2 + 1)

(5.40)

𝑎2 =
Γ2𝜂2 + 2(Γ − 1)𝜉2 − (Γ − 1)2

(Γ − 1)2(𝜉2 + 1)
(5.41)

𝑎1 =
−2Γ𝜉𝜂

(Γ − 1)2(𝜉2 + 1)
(5.42)

𝑎0 =
𝜉2

(Γ − 1)2(𝜉2 + 1)
. (5.43)

Only one root of the polynomial provides a physical 𝛽 ∈ [0, 1). The root can be found using a

root-finding method or analytically (Ryu et al., 2006) through:

𝛽 =
−𝐵 +

√
𝐵2 − 4𝐶
2

(5.44)

where

𝐵 =
1
2

(
𝑎3 +

√︃
𝑎2

3 − 4𝑎2 + 4𝑥
)

(5.45)

𝐶 =
1
2

(
𝑥 −

√︃
𝑥2 − 4𝑎0

)
(5.46)

We then have that:

𝑥 =


2
(
𝑅2 + 𝑇

)2/3
cos

[
1
3 tan−1

(√
−𝑇
𝑅

)]
− 𝑖1/3 if 𝑇 < 0(

𝑅 +
√
𝑇

)1/3
+

(
𝑅 −

√
𝑇

)1/3
− 𝑖1/3 otherwise

(5.47)

where 𝑅, 𝑆, and 𝑇 are found from

𝑅 =
1
54

(
9𝑖2𝑖2 − 27𝑖3 − 2𝑖31

)
(5.48)

𝑆 =
1
9

(
3𝑖2 − 𝑎2

2

)
(5.49)

𝑇 = 𝑅2 + 𝑆3 (5.50)
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where

𝑖1 = −𝑎2 (5.51)

𝑖2 = 𝑎3𝑎1 − 4𝑎0 (5.52)

𝑖3 = 4𝑎2𝑎0 − 𝑎2
1 − 𝑎

2
3𝑎0. (5.53)

(5.54)

With a solution for 𝛽, the rest of the primitive variables can be recovered using

𝜌 = 𝐷

√︃
1 − 𝛽2 (5.55)

v =
𝛽

𝜉𝐷
M (5.56)

𝑃 = (Γ − 1)
(
𝐸 − M · v − 𝜌𝑐2

)
. (5.57)

An alternative strategy for recovering the primitive variables from conserved quantities is to

utilize an iterative solver to find the roots. Exploring the iterative approach, we used an iterative

solver following the recovery method presented in Riccardi & Durante (2008). This solver has

two main advantages. First it uses a proxy for the velocity that scales more evenly from weakly to

highly relativistic flows. Second, the resulting quartic polynomial can be solved using the Newton-

Raphson method, which it typically more robust, accurate, and faster even using several iterations

due to avoiding the slow and imprecise square roots and inverse tangents in the analytic solver.

Instead of recovering the primitives by solving for velocity, Lorentz factor, or pressure, we

instead solve for a proxy of the velocity, 𝑤, where

𝑢 =
2𝑤

1 + 𝑤2 . (5.58)

We solve for 𝑤 ∈ (0, 1) by finding the root within (0, 1) of the quartic polynomial

𝑃(𝑤) = (𝛼 − 1) 𝜉𝑤4 − 2 (𝛼𝜂 + 1) 𝑤3 + 2 (𝛼 + 1) 𝜉𝑤2 − 2 (𝛼𝜂 − 1) 𝑤 + (𝛼 − 1) 𝜉, (5.59)

where 𝛼 = Γ/(Γ − 1). Within the range 𝑤 ∈ (0, 1), the equation 𝑃(𝑤) = 0 has only one root.

While 𝑃(𝑤) = 0 could be solved analytically using the same method for our analytical solver,
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the Newton-Raphson method is simpler and often quicker, since it only requires addition and

multiplication and coefficients of the polynomial can be reused across iterations. We also find that

the Newton-Raphson method always converges to the root in (0, 1) as long as the initial guess is in

(0, 1), which is consistent with Riccardi & Durante (2008). This obviates the need for a bounded

root solver. For reasonably relativistic flows with 𝛾 < 10, this may only take 5 iterations to recover

𝑤 to within double floating point machine precision (Δ𝑤 ∼ 10−16).

When 𝜉 is very small, a cubic approximation for a solution for 𝑤 can be used

𝑤 =
𝛼 − 1

2 (𝛼𝜂 − 1) 𝜉 +
(𝛼 − 1)2

8 (𝛼𝜂 − 1)4
[(𝛼 + 3) (𝛼𝜂 + 1) − 4 (𝛼 + 1)] 𝜉3 +𝑂 (𝜉5). (5.60)

Generally, the iterative solver for the ideal equation of state is more accurate than the analytical

solver. Often, the iterative solver is also faster. Comparison between the solvers for the ideal

equation of state and the solvers for the Taub-Matthews equation of state are explored in section

5.3.3.

5.3.2 Taub-Matthews Equation of State

For the Taub-Matthews equation of state, the primitive state can be recovered from the conserved

state by solving a cubic equation for𝑊 = 𝛾2 − 1. Following Ryu et al. (2006), we solve for𝑊 from

𝑊3 + 𝑐1𝑊
2 + 𝑐2𝑊 + 𝑐3 = 0 (5.61)

where

𝑐1 =

(
𝜂2 + 𝜉2

) [
4
(
𝜂2 + 𝜉2

)
−

(
𝜉2 + 1

)]
− 14𝜉2𝜂2

2
(
𝜂2 − 𝜉2)2 (5.62)

𝑐2 =

[
4
(
𝜂2 + 𝜉2

)
−

(
𝜉2 + 1

)]2
− 57𝜉2𝜂2

16
(
𝜂2 − 𝜉2)2 (5.63)

𝑐3 = − 9𝜉2𝜂2

16
(
𝜂2 − 𝜉2)2 . (5.64)

Eq. 5.61 can be solved analytically and iteratively. Analytically solving the cubic polynomial is

straightforward compared to solving the quartic polynomial for the ideal equation of state. The
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solution for𝑊 depends on the discriminant of the cubic equation

𝑑 = 𝑄3 + 𝑅2 (5.65)

with

𝑄 =
1
9

(
3𝑐2 − 𝑐2

1

)
(5.66)

𝑅 =
1
54

(
9𝑐1𝑐2 − 27𝑐3 − 2𝑐3

1

)
. (5.67)

(5.68)

If 𝑑 < 0, then Eq. 5.61 has the solution

𝑊 = 2
√︁
−𝑄 cos

( 𝜄
3

)
− 𝑐1

3
(5.69)

with

𝜄 = cos−1
(

𝑅√︁
−𝑄3

)
. (5.70)

Otherwise if 𝑑 ≥ 0, then Eq. 5.61 has the solution

𝑊 = −𝑐1
3

+ 𝑆 + 𝑇 (5.71)

with

𝑆 =

(
𝑅 +

√
𝑑

)1/3
(5.72)

𝑇 =

(
𝑅 −

√
𝑑

)1/3
. (5.73)

A root-finding method can also be used to recover𝑊 from Eq. 5.61. As an alternative option to

the analytic solution, we use the bracketed root solver Brent’s method (Brent, 1973) to recover𝑊 .

For the Taub-Matthews equation of state, we use Brent’s method instead of the Newton-Raphson

since Brent’s method allows us to bracket the one non-negative root. Unlike for the quartic

polynomial solved for the ideal equation of state, the Newton-Raphson method is not guaranteed

to converge to the positive root when using a positive initial guess, which leads to an incorrect

and unphysical recovered velocity. We first bracket the root 𝑊 with the region corresponding to
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𝛾 ∈ [1, 200], then iteratively expand the upper range if the root is not found. For the tests explored

here 𝛾 = 200 is a sufficiently high upper bound that this rebracketing is not needed.

With𝑊 recovered, the Lorentz factor and relativistic velocity can be recovered via

𝛾 =
√
𝑊 + 1 𝛽 =

√︂
𝑊

𝑊 + 1
. (5.74)

The lab frame density 𝜌 and velocity v can be recovered via the same method as the ideal equation

of state. The pressure with the Taub-Matthews equation of state is recovered via

𝑃 =
(𝐸 − M · v)2 − 𝜌2

3 (𝐸 − M · v) . (5.75)

5.3.3 Conserved to Primitive Solver Comparisons

Fig. 5.2 shows the relative error in the recovered velocity in the ideal gas equation of state and

Taub-Matthews equations of state using the analytical method and iterative methods using varying

number of iterations. The plots are created by applying the methods on a grid of 252 primitive

states with 𝐷 = 1 kg m−3 and 25 logarithmically spaced pressures from 105 to 1010 N m−2 and

25 logarithmically spaced Lorentz factors from 1 to 100, using 𝑐 = 3 × 108m s−1. Each pair of

pressure and Lorentz factor is converted to a conserved state using Eq. 5.4 that is converted back

to a primitive state using the specified recovery method. We then compute the relative error of the

velocity in the recovered primitive state to the original velocity determined by the Lorentz factor.

For the ideal gas using 64 bits of floating precision, the analytical solver recovers the velocity to

10−15 for Lorentz factors below 3 and in some cases recovering it exactly due to machine precision

(10−16 in this regime). The accuracy of the analytical method decreases roughly as a power law

with increasing Lorentz factor, reaching about 10−10 at 𝛾 = 100. At this high Lorentz factor, the

relative error in recovered Lorentz factor is 10−6, which propogates into other recovered primitives,

highlighting the need to accurate recovery of velocity for ultrarelativistic flows. In contrast, the

iterative method for the ideal gas recovers the velocity exactly or near machine precision for Lorentz

factors below 10 in only 6 iterations, past which the error increases rapidly with Lorentz factor.

Owing to the flexibility of the accuracy of the iterative method, increasing the iteration count to
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Figure 5.2: Map of the error of the conserved-to-primitive solvers with the error using the analytical
method in the left column and using varying numbers of iterations in the middle two columns and
error of these configurations versus Lorentz factor in the right column. The top row shows results for
the ideal gas, testing the iterative solver with 6 and 12 iterations, and the bottom row shows results
for the Taub-Matthews equation of state, testing the iterative solver using 25 and 50 iterations.
In all panels, 25 × 25 primitive states are tested with Lorentz factors varying from 1 to 100 on
the 𝑥-axis and pressures varying from 105 to 1010 N m−2, using 𝑐 = 3 × 108 m s−1 and fixing
𝐷 = 1 kg m−3, these primitive states are first converted to conserved states and then converted back
to a primitive state using the specified analytical or iterative solver. In the left three columns, the
relative error is shown in color with the 𝑦-axis showing the pressure. In the rightmost column, the
median (solid line) and first to third quartile (shared region) of the error sampled using different
pressures given a specific Lorentz factor. All results in this figure are using the Intel compiler on
CPUs. The iterative solver for the ideal equation of state is more accurate than the analytic solver
using just 12 iterations for high Lorentz factors and just 6 iterations for low Lorentz factors. For the
Taub-Matthews equation of state, the analytical solver is almost always at least or more accurate
than the iterative solver.

12 leads to recovering the velocity near machine precision for all Lorentz factors tested. At higher

Lorentz factors, the iterative solver has relatively more difficulty in recovering the velocity due to
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the method recovering the velocity from a proxy of the velocity and the slow variation of velocity

at high Lorentz factors. Small errors in the recovered velocity at high Lorentz factors amplify to

large errors in other recovered primitives. We also note that for very high pressures at and above

1020𝜌𝑐2, analytical method for the ideal gas encounters imaginary numbers and fails to recover the

velocity at all, whereas the iterative solver does not fail with very high pressures.

In comparison, the cubic analytic solver for the Taub-Matthews equation of state performs

closer to machine precision across the domain of primitive states tested. The iterative solver for

the Taub-Matthews equation of state requires many more iterations than for the ideal gas equation

of state. We attribute this to the construction of the polynomial for the iterative solver for the ideal

equation of state, which is designed to converge in a few iterations. The Taub-Matthews equation

of state iterative solver performs worse at lower Lorentz factors since it recovers the velocity from

a proxy of the Lorentz factor, and the Lorentz factor varies slowly at low velocities. Small errors in

the recovered Lorentz factor at sub-relativistic velocities amplify to large errors in other recovered

primitives. Generally, the iterative solver for the Taub-Matthews equation of state is less accurate

than the analytical solver, and the high iteration counts required lead to slower performance.

We next investigate the number of iterations required for the iterative solver to reach accuracy

parity with the analytic solver in Fig. 5.3. In this figure, we test the same grid of primitive states

used in Fig. 5.2, running the iterative solver with increasing number of iterations until it achieves

greater accuracy than the analytic solver. For some cases with the ideal gas, the analytic solver

recovers the velocity exactly, which we mark with yellow.

The number of iterations required for the iterative solvers to reach accuracy parity depends

mostly on the Lorentz factor with some variation in pressure. The iterative solver for the ideal

gas requires more iterations at higher Lorentz factors. We attribute this to the iterative solver

recovering the primitive state by first recovering a proxy for the velocity instead of Lorentz factor,

which requires less precision to recover at low Lorentz factors. For the primitives states tested here

that the analytical solver does not recover exactly, the ideal iterative solver requires fewer than 10

iterations to achieve parity. We attribute the low iteration count to the one physical root of the
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Figure 5.3: Required iterations for the iterative solver to reach the same accuracy as the analytical
solver using the same primitive states as Fig. 5.2, with results for the ideal gas in the top row and the
Taub-Matthews equation of state in the bottom row. The left column shows the required iterations
when compiling with the Intel compiler in color with Lorentz factor on the 𝑥 axis and pressure on
the 𝑦 axis. For two primitive states the ideal analytic solver recovers the velocity exactly, leading
the iterative solver being unable to reach the same accuracy, which we show in yellow. The right
column shows the median (solid line) and first to third quartile (shared region) of the error sampled
using different pressures given a specific Lorentz factor, Results with the GNU compiler on CPUs
are shown in orange, with the Intel compiler on CPUs with the Kokkos OpenMP backend in blue,
and with the Kokkos CUDA backend on GPUs in green.

quartic always being the same root.

The iterative solver required comparatively more iterations, almost always more than 5 and

upwards of 15 for low Lorentz factors. Generally more iterations are required for lower Lorentz

factors, possibly due to the solver recovering a proxy of the Lorentz factor first, from which

recovering the velocity is sensitive to precision. The required iterations form a sawtooth with

Lorentz factors due to the physical root switching positions.

Depending on the architecture and compiler, the iterative solver for the ideal gas is usually faster

than the analytic solver, while for the Taub-Matthews equation of state the iterative solver is almost

always slower. We investigate the performance of the recovery methods in Fig. 5.4. Using the same
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Figure 5.4: Timing comparisons for the iterative solver to reach the same accuracy as the analytic
solver, with comparisons as a color map in the left three panels and versus Lorentz factor in the
rightmost panel, using the same primitive states as Fig. 5.2 with results for the ideal gas in the top
row and the Taub-Matthews equation of state in the bottom row. In all panels we compare results
using the metric Analytical Time/Iterative Time−1, where a positive value shows how much slower
the analytical solver is as a fraction of the time the iterative solver takes and a negative value shows
the fraction by which the analytical solver is faster. The left three columns show the timing metric
in color (blue shows where the iterative method is faster) with the Lorentz factor on the 𝑥 and the
pressure on the 𝑦 axis, showing comparisons for the GNU and Intel compilers on CPUs with the
Kokkos OpenMP backend and on GPUs with the Kokkos CUDA backend across the three columns.
The rightmost column shows the median (solid line) and first to third quartile (shared region) of
the error sampled using different pressures given a specific Lorentz factor, showing results for all
compilers tested (note that this does not compare timings between compilers, only the analytic
against the iterative solver for each compiler). For the ideal equation of state, the iterative solver
is faster than the analytic solver under a certain threshold of Lorentz factor that is compiler and
architecture dependent. The iterative solver for the Taub-Matthews equation of state is almost
always slower than the analytic method.

grid of primitive states that we used in Fig. 5.2, we compare the run times of the analytical solvers

and iterative solvers with the number of iterations required to achieve accuracy parity, running each
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of the primitive states from Fig. 5.2 on 103 cells with 27 points per cell, taking an average runtime

over 100 runs each. We compare timings using the metric Analytical Time/Iterative Time − 1,

where the iterative time is with the number of iterations required to match the analytical accuracy,

in order to highlight where the iterative solver is faster. Negative values show the fraction by which

the analytical method is faster than the iterative method while positive values show the fraction by

which the analytical solver is slower.

For the ideal gas on CPUs using the Intel compiler, the iterative solver is about 10% faster than

the analytical solver at Lorentz factors below 10 and about 10% slower at Lorentz factors above

10. For higher iteration counts reaching to 10 iterations, the analytical solver begins to be faster

than the iterative solver by several percent. However, it should be noted from Fig. 5.2 that in this

regime the analytical method introduces more inaccuracy to the primitive state, while the iterative

solver can recover the primitive state with much better accuracy at the cost of performance. A

red line on the right hand side shows that the analytical solver more quickly identifies the zero

velocity case, whereas the iterative solver takes longer due the layout of the code and using the

cubic approximation from Eq. 5.60 for near-zero momenta.

Using the GNU compiler on CPUs, the iterative solver is always faster than the analytical solver

except for trivial cases. We attribute this slowdown with GNU to the slower math functions required

in the analytic solver.

For GPUs, the iterative solver for the ideal gas is faster than the analytical solver by several

percent for all but the trivial case and Lorentz factors above 60. This is despite the potential for the

kernel to branch at every point if different points require different numbers of iterations, although

these timing tests do not exercise this possibility. The timing disparity may be due to the ‘sqrt‘

operation in the analytical solver, which is more optimized on CPUs compared to GPUs.

Considering the Taub-Matthews equation of state, the iterative solver is almost always slower

than the analytical solver. This is expected from the larger number of iterations needed for the

iterative solver to reach parity with the analytical solver. The performance difference is largest on

the Intel compiler, where the optimized math functions allow good performance for the analytical
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Figure 5.5: Aggregate performance of all methods and compilers tested shown as box and whiskers
of the primitive recoveries per second (higher is better) across the grid of primitive states used in
Fig. 5.2. Red lines show medians, boxes show the interquartile range, and whiskers show the
maximum and minimum values inside of 1.5 times the length of the interquartile range above the
3rd quartile and below the 1st quartile, described by Tukey (1977). We exclude outlier timings from
the figure, which range from 1011 to 1.2 × 1012 primitive recoveries per second for all methods
and compilers. We show results for GNU on CPUs in orange, Intel on CPUs in blue, and CUDA
on GPUs in green, for the ideal gas on the left and the Taub-Matthews equation of state on the
right. Generally, on CPUs using the Intel compiler allows more primitive recoveries per second
than the GNU compiler. The performance for recovery with the Taub-Matthews gas has a much
larger spread than recovery with the ideal equation of state. Between the two equations of state, the
solvers achieve roughly the same number of recoveries per second on each architecture, indicating
that equation of state can have a mitigated impact on the full code’s performance.

In Fig. 5.5 we show performance of all methods on all architectures and compilers tested as a

box and whisker plot of the attained primitive recoveries per second. Runs on CPUs with GNU

and Intel and the Kokkos OpenMP backend were performed on 2-socket node with Intel Xeon

Platinum 8268 CPUs on a total of 48 OpenMP threads compiled with AVX512 vectorization.

Runs with the Kokos CUDA backend were performed on an NVidia V100 SXM2 Tesla GPU. For
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the ideal gas, the analytic method is slower than the iterative method on GNU, slightly faster on

Intel, and nearly the same performance on GPUs. For the Taub-Matthews approximation to the

Taub-Matthews equation of state, the analytical method is generally faster on all architectures,

with the performance difference being the greatest on Intel and the smallest on GNU. Between

the two equations of states, the analytical solver for both gases performs at about the same speed

for each architecture. This suggests that just considering conserved-to-primitive updates, using a

Taub-Matthews equation of state is about as fast as using an ideal equation of state, although the

more complex computation of wavespeeds and enthalpies in the Taub-Matthews equation of state

will lead to slowdowns elsewhere.

Overall, these results demonstrate that, for the ideal gas equation of state, the iterative method

to recover the primitive variables from the conserved variables is more flexible, robust, accurate,

and in some cases faster than the analytical method. By contrast, for the Taub-Matthews equation

of state, the characteristics of the analytic and iterative solver are nearly the opposite, with the

iterative solver performing generally worse. Nevertheless, the comparable speed and robustness of

the analytical solver for the Taub-Matthews equation of state suggest that the higher fidelity of the

Taub-Matthews equation of state comes at little cost to execution time and stability.

5.4 Tests of the Relativistic Hydrodynamics Scheme

To verify the accuracy of the relativistic hydrodynamics scheme, we investigate several standard

test problems in 1D and 2D with and without shocks. First, in §5.4.1, we demonstrate convergence

of a set of relativistic linear waves in three-dimensions. We then demonstrate the accuracy of the

method for discontinuous solutions in §5.4.2 by demonstrating convergence for five different 1D

Riemann problems to high resolution reference solutions generated from a publicly available finite

volume code Athena++ (Stone et al., 2020a). Next, we demonstrate the scheme’s ability to handle

multi-dimensional shocks through a series of 2D Riemann problems previously established in the

literature. Then, we measure the growth rate of the relativistic Kelvin-Helmholtz instability in 2D

in §5.4.5, comparing to results using the finite volume code PLUTO(Mignone et al., 2011). Last,

in §5.4.6, we show timing tests of the code evolving the Kelvin-Helmholtz instability.
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5.4.1 Linear Waves

Prior work in the literature (see, e.g. Stone et al., 2008a) has demonstrated that the convergence

of linear waves in multi-dimensions is a sensitive test of algorithmic fidelity. As far as we are

aware, however, linear wave convergence has not been utilized as a test of algorithms for relativistic

hydrodynamics. Here, we elucidate how such a test can be established and demonstrate the

performance of the algorithm presented here for such a test problem. To generate the linear waves,

a perturbation is made to the initial primitive state, W0 = [𝜌0, v0, 𝑃0]𝑇 (using rest mass density,

three-velocity, and pressure), in the form of

W[𝑖] = W0 [𝑖] + 𝐴r 𝑗 [𝑖] sin(𝑘𝑥 − 𝜔𝑡) (5.76)

where W is the perturbed primitive state, 𝐴 is the perturbation amplitude (typically 10−6 − 10−4),

r 𝑗 [𝑖] is the j𝑡ℎ right eigenvector, the wavelength is equal to 1, 𝑘 = 2𝜋 and 𝜔 = 𝑘𝜆 𝑗 . Here, we have

defined 𝜆 is the wavelength and 𝜆 𝑗 is the eigenvalue corresponding to the j𝑡ℎ right eigenvector of

the Jacobian, 𝐴(V), given in Mignone et al. (2005). Each eigenvalue/vector pair corresponds to a

different set of physics for linear wave testing, giving a total of 5 physically different linear wave

tests, which we denote with 𝑗 ∈ {−, 0(1,2,3) , +}. Once we have the perturbed primitives, we need

to translate these to a perturbed conserved quantities state, U. This is done using the Jacobian

𝜕U/𝜕W in the following equation:

U(𝑡 = 0) = 𝜕U
𝜕W

����
W

W(𝑡 = 0) (5.77)

The Jacobian, 𝜕U/𝜕W must be constructed around a state, W such that the solution to the non-

linear relationship W[𝑖]] (U) = W0 [𝑖] + 𝐴r 𝑗 [𝑖] sin(𝑘𝑥 − 𝜔𝑡) at 𝑡 = 0. If this condition is not

fulfilled, then a different problem is initialized and the evolution of the system will depart from

the linear dispersion relation. To fulfill this criteria, we have found that it is necessary to compute

the Jacobian using the unperturbed state, W0, but including the perturbation to the velocity in the

Lorentz factor, in order to ensure that coupling between different components of the velocity is

accurately captured. While we emphasize that this is done only to establish the initial condition
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in the conserved quantities, this reinforces a fundamental difference between relativistic and non-

relativistic hydrodynamics; in the relativistic case the primitive variables are always a non-linear

function of the conserved quantities due to the presence of the Lorentz factor.

Now that the 1D perturbed states U and W have been determined, we can rotate these for 2D

and 3D non-grid-aligned cases. To do this, we first start with a desired number of wavelengths, 𝑁 ,

and find the 𝑛𝑡ℎ acceptable angle, 𝜃, by Eq. 5.78, where 𝑛 < 𝑁 . The values for 𝑁 and 𝑛 for the

linear waves tests are shown in Tab. 5.1.

𝜃 = tan−1
(√︂

𝑁

𝑁 − 𝑛 − 1

)
(5.78)

Table 5.1: Values of 𝑁 (no. of wavelengths) and 𝑛 (𝑛𝑡ℎ acceptable wavelength) for linear waves
tests (see Eq. 5.78)

Test Type 𝑁 𝑛

1D 1 0
2D Grid-Aligned 1 0
2D Non-Grid-Aligned 2 1
3D Grid-Aligned 1 0
3D Non-Grid-Aligned 3 2

From here, the base equations in the 1D form of Eq. 5.76 are rotated by the angle 𝜃. Which

is done either about the 𝑦 axis, 𝑎 = (0, 1, 0), for 2D or about the 𝑎 = (0,−1, 1) axis for 3D. The

rotation matrix, R, is generated via

r1 =


1 0 0

0 1 0

0 0 1


, r2 =


𝑎𝑥𝑎𝑥 𝑎𝑥𝑎𝑦 𝑎𝑥𝑎𝑧

𝑎𝑦𝑎𝑥 𝑎𝑦𝑎𝑦 𝑎𝑦𝑎𝑧

𝑎𝑧𝑎𝑥 𝑎𝑧𝑎𝑦 𝑎𝑧𝑎𝑧


, r3 =


0 −𝑎𝑧 𝑎𝑦

𝑎𝑧 0 −𝑎𝑥

−𝑎𝑦 𝑎𝑥 0


(5.79)

R = cos(𝜃)r1 + (1 − cos(𝜃))r2 + sin(𝜃)r3. (5.80)

R is then used to rotate the three-velocity vector, v, and the momentum vector, M, by left multiplying

them by R. Next, the (𝑥, 𝑦, 𝑧) coordinates in each equation are substituted with rotated coordinates
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(𝑥′, 𝑦′, 𝑧′), where

𝑥′ = R


1

0

0


, 𝑦′ = R


0

1

0


, 𝑧′ = R


0

0

1


. (5.81)

Once these values have been substituted, the final, non-grid-aligned equations for U and W have

been obtained.

For all eigenvalue/eigenvector cases, 𝑗 = {−, 0(1,2,3) , +}, tests are run for the rotation configu-

rations in Table 5.1 with basis order and time integrator combinations of (0, RK1), (1, SSPRK2),

and (2, SSPRK3). The domain, L, and number of elements in each direction, N, is calculated based

on the rotation matrix, R:

L = 𝑁R
(

e
|e|

)
(5.82)

N = 𝑁𝑛elem𝑥
𝑟
𝜎R

(
e
|e|

)
(5.83)

where 𝑁 is the number of wavelengths, e is the direction vector for the default orientation of the

wave
( [

1 0 0
]𝑇 )

, 𝑥𝜎 is the refinement multiplier per refinement increment (default 𝑥𝜎 = 2), 𝑟 is

the refinement level, and 𝑛elem is the base number of elements, which varies for 1D, 2D, and 3D.

For these tests, the velocity was either set to v = 0 or v =

[
0.5𝑣max −0.3𝑣max 0.4𝑣max

]𝑇
,

where 𝑣max = 0.05𝑐𝑠. The base time step is determined by running the test with adaptive time

stepping, which adjusts the time step to maintain a certain CFL during the test (0.2 in this case).

The test is then run again 3 times, each time increasing the refinement in both space and time by a

factor of 2 to maintain a constant CFL. The L1Error and L2Error are gathered for each test and are

fitted against the results using the following equation:

L1Error(𝑑𝑥) = 𝑝0 + 𝑝1(𝑑𝑥)𝑝2 (5.84)

where 𝑝0, 𝑝1, and 𝑝2 are fitting constants. The exponent 𝑝2 is the convergence order, which is

expected to be 1, 2, and 3 for the time integrators RK1, SSPRK2, and SSPRK3 respectively. Results

for the 3D, non-grid-aligned, zero velocity, basis order 2, SSPRK3, test case are shown in Tab. 5.2,

while the L1Error is plotted against the expected values for the conserved quantity 𝐷 in Fig. 5.6.
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Table 5.2: Order of convergence for both primitive and conserved variables along the rows for
each of the 5 eigenvalue/eigenvector pairs 𝑗 ∈ {−, 0(1,2,3) , +} along the columns, all tested in 3D
with non-grid-aligned waves, using a 2nd order basis with the SSPRK3 integrator. For all cases we
expect a 3.0 rate of convergence. Entries with ’-’ denote variables where the eignvector used for
that test does not affect that variable.

Quantity Eigenvalue/eigenvector Test Case
- 0(1) 0(2) 0(3) +

𝐷 3.099989 3.036570 2.561624 2.561624 3.099989
𝑀𝑥 3.079648 - 2.838988 2.838988 3.079648
𝑀𝑦 3.079648 - 2.879077 2.824568 3.079648
𝑀𝑧 3.079648 - 2.824568 2.879077 3.079648
𝐸 3.099989 3.036570 2.561652 2.561652 3.099989
𝜌 3.099989 3.036570 - - 3.099989
𝑢𝑥 3.079655 - 2.838988 2.838988 3.079655
𝑢𝑦 3.079655 - 2.879077 2.824568 3.079655
𝑢𝑧 3.079655 - 2.824568 2.879077 3.079655
𝑃 3.099989 - - - 3.099989

(a) Case: - (b) Case: 0(1) (c) Case: 0(2)

(d) Case: 0(3) (e) Case: +

Figure 5.6: Order of convergence for the relativistic mass density (in solid blue) for three resolutions
along the 𝑥-axis the 5 eigenvalue/eigenvector pairs 𝑗 ∈ {−, 0(1,2,3) , +} in different panel. For all
tests here we test in 3D with non-grid-aligned waves, using a 2nd order basis with the SSPRK3
integrator. For all cases we expect a 3.0 rate of convergence, which we denote with a dashed black
line.
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5.4.2 1D Riemann Problems

We now investigate the accuracy of the relativistic hydrodynamics method through considering

the evolution of a set of standard 1D Riemann problems in order to characterize how well the code

handles shocks. For initial conditions, we use three standard blast waves and a reflecting wall test

from Martí & Müller (2003, 2015) and one Sod shock tube, and a reflecting wall test for a total of

five different 1D Riemann problems.

For the first four 1D Riemann problems, we use a [0, 1] grid with Dirichlet boundary conditions.

These four tests begin divided into a primitive state on the left W𝐿 = (𝜌, 𝑣𝑥 , 𝑣𝑦, 𝑝)𝐿 for 𝑥 ∈ [0, 0.5)

and right W𝑅 = (𝜌, 𝑣𝑥 , 𝑣𝑦, 𝑝)𝑅 for 𝑥 ∈ [0.5, 1]. In the fifth test, we replace the boundary condition

at 𝑥 = 1 with a reflecting boundary and use a uniform initial primitive state through the domain. In

all cases, we set 𝑣𝑧 = 0 and use the ideal equation of state with 𝛾 = 5/3 for the first four tests and

𝛾 = 4/3 for the fifth test.

For each of the five 1D Riemann problems, we use a [0, 1] grid with Dirichlet boundary

conditions except for test 5, which uses a reflecting boundary condition on the right wall. The

tests begin divided into a primitive state on the left W𝐿 = (𝜌, 𝑣𝑥 , 𝑣𝑦, 𝑝)𝐿 for 𝑥 ∈ [0, 0.5) and right

W𝑅 = (𝜌, 𝑣𝑥 , 𝑣𝑦, 𝑝)𝑅 for 𝑥 ∈ [0.5, 1] except for test 5, which begins with a constant primitive state

throughout the volume. In all cases, 𝑣𝑧 = 0.

For reference data, we compute a 𝑛𝑥 = 214 cell solution using a HLLC Riemann solver, a second

order Van-Leer integrator due to Stone et al. (2020a) for each of the tested Riemann problems.

We run the each 1D Riemann problem with five resolutions in powers of two from 𝑛𝑥 = 256 to

𝑛𝑥 = 4096 cells with polynomial basis orders 0, 1, and 2 using the HLLC Riemann solver and

the iterative primitives recovery method for the ideal gas. For basis orders 1 and 2, we use the

limiter from Moe et al. (2015) in addition to the physicality-enforcing operator from § 5.2.5. The

physicality-enforcing operator was necessary for all tests with basis orders over 0. Fig. 5.7 shows

the density, longitudinal velocity, pressure, and Lorentz factor from the five 1D Riemann problems

using 𝑛𝑥 = 128 with the three polynomial basis orders and the reference solution. Fig. 5.8 shows a

log-log plot of the L1 error of the relativistic density, longitudinal relativistic momentum density,
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and total energy density compared to the reference solution along with power fits to the convergence

rate and the expected rate of convergence.

1D Riemann problem 1 is a mildy relativistic blast wave with initial conditions

W𝐿 =

(
10, 0, 0, (40/3)𝑐2

)
𝐿

W𝑅 =

(
1, 0, 0, (2/3 × 10−6)𝑐2

)
𝑅

(5.85)

where we have followed Núñez-de la Rosa & Munz (2018) and used a pressure close to zero for the

right side primitive state for numerical reasons. For this test, we use an adiabatic index Γ = 5/3.

We evolve the shock until 𝑡 = 0.4/𝑐. For this first test we achieved the expected convergence rate in

all variables except for the density for basis order 0, which suffers from slow converging dissipation

around the blast wave. We also see a small cusp in velocity and oscillations in basis order 2 at the

trailing edge of the blast wave which are more apparent in the Lorentz factor. L1 error of basis

orders 1 and 2 are comparable, highlighting the difficultly in achieving high-order convergence

with higher order methods when the problem contains shocks. However, since the basis order 2

test has more degrees of freedom than the basis order 1 test, the L1 error per degree of freedom is

still lower for basis order 2, indicating that higher order bases can still be more efficient.

1D Riemann problem 2 is a highly relativistic blast wave with initial conditions

W𝐿 =

(
1, 0, 0, (103)𝑐2

)
𝐿

W𝑅 =

(
1, 0, 0, (10−2)𝑐2

)
𝑅
, (5.86)

using an adiabatic index Γ = 5/3 and evolved until 𝑡 = 0.4/𝑐. In this test, we see that the sharpness

of the resolved density of the blast wave changes with resolution. We see it the sharpest with basis

order 1, second with basis order 0, and most diffuse with basis order 2, although for each basis the

sharpness improves with resolution. We see a slight cusp in the Lorentz factor for all basis orders

just behind the blastwave where the velocity approaches 𝑐 but in the high resolution finite volume

method the region has a flat Lorentz factor. The sharp blast wave in density causes problems for

convergence at basis order 0 while higher order bases achieve the expected convergence.

1D Riemann problem 3 is also a highly relativistic blast wave but with a transverse velocity

with initial conditions

W𝐿 =

(
1, 0, 0, (103)𝑐2

)
𝐿

W𝑅 =

(
1, 0, 0.99, (10−2)𝑐2

)
𝑅
, (5.87)
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with an adiabatic index Γ = 5/3 and evolved until 𝑡 = 0.4/𝑐. With the addition of a relativistic

transverse velocity, the blast wave widens into a square plateau in density, somewhat similar to

problem 1. Like in problem 2, we find that basis order 1 best captures the blast wave, although

resolution improves accuracy for all basis orders. In the Lorentz factor we see a small cusp at the

rightmost edge of the rarefaction and some smearing across the blastwave. The wider blast wave

allows basis order 0 to achieve the expected convergence rate. L1 error for basis order 2 is greater

than the L1 error for basis order 1, although this is mostly due to more degrees of freedom in the

summation of the L1 error for basis order 1.

1D Riemann problem 4 is a Sod shock with initial conditions

W𝐿 =

(
1, 0.01𝑐, 0, 1.0𝑐2

)
𝐿

W𝑅 =

(
0.125, 0.01𝑐, 0, 0.1𝑐2

)
𝑅
, (5.88)

using an adiabatic index Γ = 4/3 and evolving until 𝑡 = 0.4/𝑐. We see some diffusivity across the

contact discontinuity and at the leftmost edge of the rarefaction.

For the fifth 1D Riemann problem we study a highly relativistic flow moving to the right and

reflecting against the right wall. We use the initial conditions

W =

(
1, 0.99999𝑐, 0, 0.01𝑐2

)
, (5.89)

with an adiabatic index Γ = 4/3 and evolved until 𝑡 = 1.5/𝑐. We see a small cusp in the Lorentz

factor at the left edge of the piled up stationary mass. For higher order bases, we see wall heating

causing spurious oscillations in the reflected fluid. These leads to slow rates of convergence for

basis order 2.

5.4.3 1D Taub-Matthews Equation of State Test

We test the Taub-Matthews approximation to the Synge equation of state against the ideal

equation of state using the fifth blast wave problem from Ryu et al. (2006), which highlights the

differences between the Synge gas and ideal gas. The initial conditions for the test, using the same

notation and domain as §5.4.2, are

W𝐿 =

(
1, 0, 0.9𝑐, (103)𝑐2

)
𝐿

W𝑅 =

(
1, 0, 0.99𝑐, (10−2)𝑐2

)
𝑅
, (5.90)
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Figure 5.7: Plots of the five 1D Riemann problems tested using the ideal equation of state. Each
row shows end state of a different Riemann problem. From top to bottom, the first row shows
a mildly relativistic blast wave, the second a highly relativistic blast wave, the third a blast wave
with transverse velocity, the fourth a Sod shock tube, and the fifth a planar shock reflection. The
columns show from left to right the rest-mass density, the pressure, the velocity, and the Lorentz
factor. In each panel we show the reference solution computed with a finite volume scheme (Stone
et al., 2020a) with a solid line and the basis 0, 1, and 2 solutions with our method with a red dashed,
green dot-dashed, and yellow finely dash line respectively. Although the method can evolve these
shocks with the help of the physicality-enforcing operator, small oscillations appear around shocks
for higher order bases. These oscillations can be damped out by widening the limiting thresholds
for the Moe limiter or by changing the minmod limiter but this results in more diffusion and lower
order convergence for basis order 2.
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Figure 5.8: Convergence of the L1 error of the method presented here to a high resolution reference
solution of the same Riemann problems from Fig. 5.7 computed with a finite volume scheme (Stone
et al., 2020a). From top to bottom, the first row shows a mildly relativistic blast wave, the second
a highly relativistic blast wave, the third a blast wave with transverse velocity, the fourth a planar
shock reflection, and the fifth a Sod shock tube. The columns show from left to right the rest-mass
density, the pressure, the velocity, and the Lorentz factor. In each panel we show the L1 error of
our method with dots, a fitted convergence rate using logarithmically weighted least squares with a
solid line, and a 2/3 convergence rate for basis order 0 and a first order convergence rate for bases
1 and 2 with dashed lines. We use different colors to denote different basis orders, using blue for
basis order 0, orange for basis order 1, and green for basis order 2. Due to the presence of shocks,
we expect the L1 error of higher order bases to converge to first order at best, although sharp blasts
prove difficult for convergence.

which evolves into a blast wave. In the initial state, the temperature stand-in Θ = 𝑃/𝜌 on the

left-hand side is relativistic while Θ on the right-hand side is non-relativistic. As such, for an ideal
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equation of state, an adiabatic index of Γ = 4/3 is appropriate for the left-hand side while Γ = 5/3

is appropriate for the right-hand side. The Taub-Matthew equation of state approximation allows

accurate modeling of both sides with a single equation of state.

We show results for the blast wave with the three different equation of state in Fig. 5.9. The

Synge gas as approximated by the Taub-Matthews equation of state behaves like the relativistic

Γ = 4/3 ideal gas on the left side of the blast wave (which is contained within [0.3, 0.4] at 𝑡 = 0.7 as

shown) and like the non-relativistic Γ = 5/3 ideal gas on the right side. This is most evident in the

velocity profiles and pressure profiles in the relativistic region that occupies most of the domain at

this time. The equivalent adiabatic index Γeq of the Taub-Matthews equation of state is expectedly

4/3 in the relativistic region and 5/3 in the non-relativistic region, and varies between these values

across the blast wave. In this region within the blast wave, the peak density with the Taub-Matthews

equation of state falls between the extremes of the two ideal gases. Notably, the blast wave with

the Taub-Matthew equation of state travels slightly faster than either ideal gases, and the minimum

transverse velocity is also lower. These results are consistent with the blast waves evolved with the

Taub-Matthews equation of state in Ryu et al. (2006).

5.4.4 2D Riemann Problems

Next, we test the robustness of the method evolving intersecting shocks in 2D using the three

2D Riemann problems used in Zanna & Bucciantini (2002); Núñez-de la Rosa & Munz (2018). In

each of the three problems, the problem is defined with a [−1, 1] × [−1, 1] domain divided into

four quadrants with different initial states. Following Núñez-de la Rosa & Munz (2018), we denote

these states using

Q1 := [0, 1] × [0, 1] (5.91)

Q2 := [−1, 0] × [0, 1] (5.92)

Q3 := [−1, 0] × [−1, 0] (5.93)

Q4 := [0, 1] × [−1, 0] (5.94)

178



0

5

10

15 Synge TM
Ideal = 4/3
Ideal = 5/3

0.0

0.1

0.2

0.3

0.4

u x

0.75

0.80

0.85

0.90

0.95

1.00

u y

0

200

400

600

800

1000

P

0.4 0.2 0.0 0.2 0.4

1.4

1.5

1.6

eq

Figure 5.9: Blast wave with relativistic temperatures on the left and non-relativistic temperature on
the right, evolved to 𝑡 = 0.7 using the Taub-Matthews equation of state (solid blue), ideal equation
of state with adiabatic index Γ = 4/3 (dashed orange), and ideal equation of state with Γ = 5/3
(finely dashed green). In order of rows, we show the density 𝜌, longitudinal velocity 𝑢𝑥 , transverse
velocity 𝑢𝑦, pressure 𝑃, and equivalent adiabatic index Γeq =

(
ℎ − 𝑐2

)
/
(
ℎ − 𝑐4 − 𝑃/𝜌

)
. The

Taub-Matthews equation of state, as an approximation to the Synge gas, behaves apart from both
the Γ = 5/3 and Γ = 4/3 ideal gases depending on the effective adiabatic index.
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and denote the initial primitive states in each of these quadrants by W1, W2, W3, and W4

respectively. For all of these Riemann problems, we use an adiabatic index of Γ = 5/3, use 𝑣𝑧 = 0

everywhere, and use transmissive boundary conditions on all sides. We evolve each Riemann

problem to 𝑡 = 0.8/𝑐. For all 2D shock tests we use the Moe limiter (Moe et al., 2015) and HLLC

Riemann solver.

5.4.4.1 2D Riemann Problems: Test 1

In this test, the domain begins with a low density and pressure region in the upper right, a high

density and pressure region in the lower left, and intermediate density and high pressure regions

in the upper left and lower right with initial velocities moving into the lower density region with

𝛽 = 0.7.

W1 := (0.035145216124503, 0.0, 0.0, 0.162931056509027𝑐2) (5.95)

W2 := (0.1, 0.7𝑐, 0.0, 1.0𝑐2) (5.96)

W3 := (0.5, 0.0, 0.0, 1.0𝑐2) (5.97)

W4 := (0.1, 0.0, 0.7𝑐, 1.0𝑐2) (5.98)

Results from the first 2D Riemannn problem is shown in Fig. 5.10 with the 1st and 2nd order

bases, the system evolves with stationary contact discontinuities between the high density and

moving intermediate density regions, planar shocks moving from the intermediate density regions

into the low density regions, and curved shocks bowing into the intermediate density regions from

the diagonal. A jet-like, low density structure forms into the high density region with gentle density

and pressure gradients forming ahead and behind it. Our method evolves the curved shocks with

symmetric shock fronts using both low order and high-order bases. When using bases over 0th

order, the physicality-enforcing operator described in §5.2.5 is necessary to avoid negative densities,

pressures, and otherwise unphysical states. With the 2nd order basis, we see subtle boundary effects

where the shocks traveling transverse to the boundary into the first quadrant intersect with the
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Figure 5.10: Plots of the 2D Riemann problem test 1 with two colliding shocks using the initial
conditions in eq. 5.95, using a 1st order basis in the top row and a 2nd order basis in the bottom
row. We show the rest-mass density in the left column and the pressure in the right column at
𝑡 = 0.8/𝑐 on a grid with 1024 elements. Note the boundary effects where shocks traveling into the
first quadrant intersect with the outflow boundaries when using the 2nd order basis.
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outflow boundary conditions. Boundary effects with the 2nd order basis are seen again in § 5.4.4.2

and § 5.4.5.2.

5.4.4.2 2D Riemann Problems: Test 2

In this test, all four quadrants begin with different densities, equal pressures, and each move

diagonally clockwise around the origin.

W1 := (0.5, 0.5𝑐,−0.5𝑐, 5.0𝑐2) (5.99)

W2 := (1.0, 0.5𝑐, 0.5𝑐, 5.0𝑐2) (5.100)

W3 := (3.0,−0.5𝑐, 0.5𝑐, 5.0𝑐2) (5.101)

W4 := (1.5,−0.5𝑐,−0.5𝑐, 5.0𝑐2) (5.102)
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Figure 5.11: Plots of the 2D Riemann problem test 2 with four vortex sheets using the initial
conditions in eq. 5.99, using 1st order basis in the top row and a 2nd order basis in the bottom row.
We show the rest-mass density in the left column and the pressure in the right column at 𝑡 = 0.8/𝑐
using a grid with 1024 elements. Note the boundary effects where the vortex sheets intersect with
the outflow boundaries which are subtle using the 1st order basis and more apparent when using the
2nd order basis, especially along the top boundary. Like the 1D test of a shock reflecting against a
wall, this test highlights unresolved difficulties of higher order bases leading to boundary effects.
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Results from the second 2D Riemannn problem are shown in Fig. 5.11 with the 1st and 2nd

order bases, the system develops into four vortex sheets that expand from the origin. A low

rest mass region forms at the center of the vortex sheets at the origin. The physicality-enforcing

operator ensures positive densities and pressures in this region. With the 2nd order basis, we see

subtle boundary effects where the shocks traveling transverse to the boundary into the first quadrant

intersect with the outflow boundary conditions. These boundary effects are not apparent with the

1st order basis.

5.4.4.3 2D Riemann Problems: Test 3

This tests begins with overdense first and third quadrants following

W1 := (1.0, 0.0, 0.0, 1.0𝑐2) (5.103)

W2 := (0.5771,−0.3529𝑐, 0.0, 0.4𝑐2) (5.104)

W3 := (1.0,−0.3529𝑐,−0.3529𝑐, 1.0𝑐2) (5.105)

W4 := (0.5771, 0.0,−0.3529𝑐, 0.4𝑐2). (5.106)

Rarefactions move from the second and fourth quadrants into the first and third quadrants, producing

curved shocks where the rarefactions intersect.

Results from the third 2D Riemann problem are shown in Fig. 5.12 with the 2nd order basis.

The method evolves the curved shocks and rarefactions without issue. No boundary effects are

apparent in this test.

5.4.5 Kelvin-Helmholtz Instability

The relativistic Kelvin-Helmholtz instability provides a useful benchmark with which to explore

the performance of the scheme presented here for shear-flow type problems. Previous work,

e.g. Mignone et al. (2009); Beckwith & Stone (2011) has revealed significant differences in the

performance of different numerical schemes for this classic fluid flow problem and subsequent work

Lecoanet et al. (2016) has further elucidated the issues raised in prior works through the comparison
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Figure 5.12: Plots of the 2D Riemann problem test 3 with intersecting rarefactions using the initial
conditions in eq. 5.103. We show the rest-mass density left column and the pressure right column
at 𝑡 = 0.8/𝑐 using a 2nd order basis on a grid with 1024 elements.

of finite volume and spectral methods. Here, we compare the discontinuous-Galerkin scheme

presented here with a finite volume method previously presented in the literature Mignone et al.

(2011), explore both the linear and non-linear regime of the instability and examine performance

metrics for the scheme.

We simulate the Kelvin-Helmholtz instability on a [−0.5, 0.5] × [−1.0, 1.0] domain with a

single interface along 𝑦 = 0, specified with a smoothly varying profile using a mesh of square

cells with twice as many cells in 𝑦 than 𝑥, testing mesh sizes in powers of 2 from 256 × 512 to

4096 × 8192 for a total of 6 different mesh sizes. We tested using basis orders 0, 1, and 2, however

due to memory constraints and increasing execution time, we forgo the highest resolution mesh

using basis order 1 and the two highest resolutions using basis order 2. We conduct separate tests

using the HLLC and HLL Riemann solvers and using a shear velocity 𝑣𝑥,0 = 0.25𝑐. We run a
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total of 60 simulations exploring growth rates of the Kelvin-Helmholtz instability. In all these

calculations, we use an ideal equation of state with adiabatic index 𝛾 = 4/3 using the iterative

conserved-to-primitive solver, an initial density 𝜌0 = 1, an initial pressure 𝑃0 = 𝑐2, a perturbation

amplitude 𝐴 = 0.05, and a shearing layer thickness 𝑎 = 0.01. We use 𝑘 = 2𝜋 so that the wavelength

of the perturbations in 𝑥 is 1 and for each test run until 𝑡 = 5 to verify from the growth rate that the

transverse velocity perturbations have saturated past the linear growth phase.

5.4.5.1 Linear Growth Phase

We explore the growth of the instability by examining the spatial average

⟨𝑣2𝑦⟩ =
1
|Ω|

∫
Ω
𝑣2𝑦 𝑑𝑉 (5.107)

where Ω is the domain and |Ω| is the volume of the domain. Fig. 5.13 shows ⟨𝑣2𝑦⟩ as a function

of time in the left column for the Kelvin-Helmholtz instability simulations explored in this work,

where Riemann solvers are grouped by column and basis order and reconstruction method grouped

by rows. Except for the lowest resolution simulations, all simulations with the HLLC solver enter a

linear growth phase by 𝑡 = 2.0 and display non-linear features by 𝑡 = 4.0. By contrast, simulations

that utilize the HLL Riemann solver, especially with the 0th order basis, exhibit large levels of

numerical diffusion and substantially reduced growth rates for all but the largest number of degrees

of freedom. However, for basis order greater than zero, the HLL Riemann solver exhibits rapid

convergence to a well-defined growth rate, while the reference finite volume schemes that utilize

this same Riemann solver exhibit changing growth rates over this same range of degrees of freedom.

We quantify this result by measuring the growth rate, 𝑟 of ⟨𝑣2𝑦⟩ by fitting log⟨𝑣2𝑦⟩(𝑡) = 𝐴 + 𝑟𝑡 to

the measured ⟨𝑣2𝑦⟩ using a least squares curve fit in log space over 𝑡 = 1.5 to 𝑡 = 3.0. We measure

the growth rate early in the linear growth phase from 𝑡 = 1.5 to 𝑡 = 3.0 before non-linear modes

dominate. We perform the fit in log space so as to not favor the larger changes in ⟨𝑣2𝑦⟩ at later

times. The growth rate of ⟨𝑣2𝑦⟩ for all simulations and methods versus the degrees of freedom is

shown in Fig. 5.14. Here, the degrees of freedom for a given resolution 𝑛𝑥 × 𝑛𝑦 and basis order

𝑝 is DOF = 𝑛𝑥 × 𝑛𝑦 × (𝑝 + 1)2. Except for the discontinuous-Galerkin methods using the 0th
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order basis, the growth rates using different methods converge to approximately the same value

with higher resolutions. Generally, using higher order bases, using the HLL Riemann solver over

the HLLC Riemann solver, and using the discontinuous-Galerkin method over the finite volume

method lead to faster convergence of growth rate. Notably, the overall second order accurate

discontinuous-Galerkin scheme (first order basis, second order time integration scheme) achieves a

converged growth rate at lower numbers of degrees of freedom than a overall second order accurate

finite volume scheme, using either the HLLC or HLL Riemann solver.

This result is explored in more detail in Fig. 5.15. The data of this figure shows the difference in

growth rate between the highest resolution simulation with a certain method and the lower resolution

simulations with the same methods versus the degrees of freedom. The discontinuous-Galerkin

simulations with a 1st order basis show the most effective convergence of the simulations explored

here, with HLLC converging slightly faster at the highest resolutions and HLL converging faster

at lower resolutions. By contrast, the overall second order accurate finite volume schemes exhibit

slower convergence than this scheme, despite the equivalent order of accuracy, while the first order

accurate discontinuous-Galerkin scheme exhibits similar convergence rates as the finite volume

schemes when combined with the HLLC Riemann solver, but low convergence rates with the HLL

solver. We also note that the discontinuous-Galerkin simulations with a 2nd order basis do not

converge below a 10−1 difference even with high resolutions, which we attribute to interaction of

the flow with outflow boundary conditions used here, highlighting the need for improved fidelity

boundary conditions in order to realize the promise of higher order discontinuous-Galerkin methods.

5.4.5.2 Non-linear Evolution

Fig. 5.16, 5.17, and 5.18 show the state of the Kelvin Helmholtz instability at 𝑡 = 3.0 using

the method presented in this work and the reference finite volume scheme Mignone et al. (2011)

with the 4 highest resolutions explored in this study. The different figures show results using 0th,

1st, and 2nd order bases or 1st, 2nd, and 3rd order methods respectively, where a 1st method is only

available for our code. In Fig. 5.16 using our method with a 0th order basis or a 1st order method,
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Figure 5.13: Mean square of the transverse velocity 𝑣𝑦 over time of the relativistic 2D Kelvin
Helmholtz instability using our DG method using a 0th, 1st, and 2nd order bases respectively in
the top three rows and using the finite volume code PLUTO with PLM and PPM reconstruction
respectively in the bottom two rows. In the left column we show results including the contact
discontinuity in the Riemann solver (using HLLC with our method and HLLD with PLUTO) and
without the contact discontinuity using the HLL Riemann solver in the right column. The gray
band from 𝑡 = 1.5 to 𝑡 = 3.0 shows the region over which we measure the growth rate shown in
other plots. Higher resolutions generally lead to faster growth rates while the more diffusive HLL
Riemann solver leads to steadier growth rates due to diminished secondary instabilities.
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Figure 5.14: Growth rates of ⟨𝑣2𝑦⟩ versus degrees of freedom from 𝑡 = 1.5 to 𝑡 = 3.0 of the
relativistic 2D Kelvin Helmholtz instability using our DG method using the finite volume code
PLUTO. In the left column we show results including the contact discontinuity in the Riemann
solver (using HLLC with our method and HLLD with PLUTO) and without the contact discontinuity
using the HLL Riemann solver in the right column. Growth rates are measured by computing least
squares fit of a ⟨𝑣2𝑦⟩ ∝ 𝑡𝜔 model to the data shown in Fig. 5.13, with error bars showing the standard
deviation of the least squares fit.

we see significant differences between the HLL and HLLC solutions; the HLL Riemann solver

struggles to grow the instability, although the structure of the perturbation resembles results with

simple structures when using higher orders. Secondary instabilities appear to be nonexistent. By

contrast, the HLLC Riemann solver generates secondary vortices that increasing in amplitude with

higher resolutions. Looking at Fig. 5.17 and 5.18, the 2nd and 3rd order methods from this work

quickly converge to simple structures. The finite volume method also converges to a similar simple

structure, although it requires more resolution compared to the discontinuous-Galerkin method

presented here.

Figs. 5.19, 5.20, and 5.21 show the state of the Kelvin Helmholtz instability at 𝑡 = 5.0, which

is well into the non-linear phase, using the method presented in this work and with the reference

finite volume scheme with the 4 highest resolutions explored in this study. The different figures

show results using 1st, 2nd, and 3rd order methods respectively, where a 1st is only available for

our code. In Fig. 5.19 using our method with a 0th order basis or a 1st order method, we again
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Figure 5.15: The absolute difference in growth rate between the highest resolution simulation
for each method and each of the lower resolution simulations which serves as rough measure of
the error of the growth rate, plotted versus the degrees of freedom. The discontinuous-Galerkin
simulations with a 1st order basis show the most effective convergence of the simulations explored
here, with HLLC converging slightly faster at the highest resolutions and HLL converging faster at
lower resolutions. The discontinuous-Galerkin simulations with a 2nd order basis do not converge
below a 10−1 difference even with high resolutions, which we attribute to the boundary effects that
worsen with higher resolution. Otherwise, the other methods converge at varying rates, the 0th

order basis discontinuous-Galerkin methods converging the slowest.

see significant differences between the HLL and HLLC solutions. The HLLC solution grows faster

than the HLL solution but neither resemble the structures seen with higher order bases. Using

the HLLC Riemann solver, secondary vortices are apparent during the non-linear phase, which

become more defined with higher resolution. Examining Figs. 5.20 and 5.21, the 2nd and 3rd order

methods from this work quickly converge with higher resolution to simple structures during the

non-linear phase. Results with HLL over HLLC and with a 2nd order basis over a 1st order basis

are generally smoother with fewer secondary vortices. The solution generated by the reference

finite volume scheme also converges to roughly the same structures as the discontinuous-Galerkin

method, although secondary instabilities are obvious along the interface between the primary

vortices. Note that the mode of these secondary instabilities increased with resolution, with smaller

but more numerous instabilities at higher resolutions.
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Our interpretation of these results is that the secondary structures found in the finite volume

method at the end of the linear growth phase serve to seed non-linear structures that are observed

at late times; a result somewhat consistent with that reported by Lecoanet et al. (2016). What is

notable is that these structures vanish in the second order accurate (first order basis) discontinuous-

Galerkin scheme presented here at lower resolution than in the finite volume scheme for the HLLC

Riemann solver and are absent in the HLL Riemann solver based scheme, indicating a role played

by the dissipation of the HLLC Riemann solver in the formation of these structures. In addition,

the presence of these structures in the finite volume scheme utilizing the HLL solver and the clear

dependency of the properties of these structures on the reconstruction method (PLM vs. PPM)

is another point of contrast between discontinuous-Galerkin methods and finite volume schemes.

This is strongly reminiscent of the results presented by Lecoanet et al. (2016), where finite volume

schemes were demonstrated to exhibit similar secondary vortices at moderate resolutions (similar

to these presented here), which then disappeared at higher resolutions; the higher resolution

simulations being comparable to spectral methods. The absence of such secondary vortices for

combinations of the discontinuous-Galerkin algorithms presented here suggest that these methods

may be less susceptible to such considerations. However, we stress that this is a single application

on both methods and that the performance of either method may depend on details of the set up of

the instability. Over the development of the method, we also explored the analytic growth rate of

perturbations given the initial conditions from Bodo et al. (2004), where we found that the growth

rate of the instability generally did not match the analytically predicted growth rate, and that an

initial transient outgoing wave from the initial perturbation caused significant boundary effects

with the 2nd order basis. Although our discontinuous-Galerkin method provides apparently better

results in this case, more development especially around boundary conditions is required.

5.4.6 Performance

To test the performance of the method on multiple architectures, we timed simulations of the

Kelvin Helmholtz instability on CPUs and GPUs, using the perturbations described in §5.4.5. For
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Figure 5.16: Snapshots of the transverse velocity at 𝑡 = 3.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 0th order basis. We
show results using the HLL Riemann solver in the top row and with HLLC in the bottow row.
We show the four highest resolution simulations across the columns, ranging from 512 × 1024 to
4096 × 8192 cells from left to right. With basis order zero, at this stage, using the HLL Riemann
solver the method has difficulty growing the Kelvin Helmholtz instability, although the structure
of the perturbation resembles results with simple structures when using higher orders. The HLLC
Riemann solver generates secondary vortices that get worse with high resolutions, which leads to
a climbing growth rate.

both architectures, we time the performance of the code with 𝑣𝑥,0 = 0.25𝑐 using basis orders

0, 1, and 2 and resolutions of 256 × 512, 512 × 1024, and 1024 × 2048 with each basis order

testing both HLLC and HLL for a total of 18 simulations for both architectures. We conduct

CPU testing on 1024 cores spread across 22 dual socket nodes with Intel Xeon Platinum 8268

CPUs, comprising approximately ∼ 88TFLOPS in total. For GPU runs we use 32 NVidia Tesla

V100-SXM2 GPUs spread across 8 nodes, comprising approximately ∼ 250TFLOPS in total.

These computational resources were chosen to accommodate the memory needed for the largest

simulation in the performance profiling suite.

We show profiling results with the HLLC and HLL Riemann solvers and with the 0th, 1st, and

2nd order bases in Fig. 5.22. The degree of freedom updates per second is computed with

DOF per second =
DOF × steps × stages per step

time to solution in seconds
, (5.108)
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Figure 5.17: Snapshots of the transverse velocity at 𝑡 = 3.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 1st order basis in the
first and third row and with the PLUTO finite volume MHD code with a first order method. We
show results using the HLL Riemann solver in the top two rows and with HLLC for our code and
with HLLD for PLUTO in the bottow two rows. We show the four highest resolution simulations
across the columns, ranging from 512 × 1024 to 4096 × 8192 cells from left to right. Note that
DG method has 4 times as many degrees of freedom with the 1st order basis, meaning that our
512 × 1024 simulation is comparable in degrees of freedom to the 1024 × 2048 simulation using
PLUTO. At this times and these resolutions, the results with our DG method have converged to a
similar solution with a simple structure. Results with PLUTO converge towards the DG method
results, with secondary vortices present at lower resolutions that are more pronounced with HLLC.
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Figure 5.18: Snapshots of the transverse velocity at 𝑡 = 3.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 2nd order basis in the
first and third row and with the PLUTO finite volume MHD code with a second order method. We
show results using the HLL Riemann solver in the top two rows and with HLLC for our code and
with HLLD for PLUTO in the bottom two rows. We show the four highest resolution simulations
across the columns, ranging from 512 × 1024 to 4096 × 8192 cells from left to right. Note that
DG method has 4 times as many degrees of freedom with the 1st order basis, meaning that our
512×1024 simulation has degrees of freedom between the 1024×2048 simulation and 2048×4096
simulation using PLUTO. With this higher order basis at 𝑡 = 3.0, we also see the results with our
DG method converge quickly to simple structures while the results with PLUTO require more
resolution to suppress secondary vortices. However, in our results using 4096 × 8912 cells with
basis order 2, we see anomalously high transverse velocities away from the interface, which is
caused by boundary effects at high resolutions that will be addressed in future improvements to the
method.

194



Figure 5.19: Snapshots of the transverse velocity at 𝑡 = 5.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 0th order basis. We
show results using the HLL Riemann solver in the top row and with HLLC in the bottom row.
We show the four highest resolution simulations across the columns, ranging from 512 × 1024 to
4096 × 8192 cells from left to right. At late times into what should be the linear growth phase, our
DG method with the HLL solver struggles to growth the instability at low resolutions. The HLLC
method has developed some structures but they do not resemble results at higher orders.

which serves as a measure of computational efficiency. With the RK1, SSPRK2, and SSPRK3

integrators used for basis orders 0, 1, and 2 we use 1, 2, and 3 stages per step for the respective

basis orders.

We show profiling results with the HLLC and HLL Riemann solvers and with the 0th, 1st, and

2nd order bases, between which we see little difference in performance. Comparing between the

CPU and GPU runs, we see that the CPU performance becomes saturated at around 106DOF while

the GPUs have not saturated the performance, even with simulations using more than 10 times the

degrees of freedom. Simulations with more degrees of freedom would not fit within GPU memory

here, indicating that our present implementation is unable to fully saturate GPU performance.

Note that the theoretical peak throughput of the GPU resources using here is approximately three

times the throughput for the CPU resources. Memory bandwidth resources between RAM and the

registers on CPUs and HBM memory and the registers on GPUs is similarly greater on GPUs Since

the CPUs and GPUs achieve roughly the same updates per second, this indicates underutilization
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Figure 5.20: Snapshots of the transverse velocity at 𝑡 = 5.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 1st order basis in the
first and third row and with the PLUTO finite volume MHD code with PLM reconstruction. We
show results using the HLL Riemann solver in the top two rows and with HLLC for our code and
with HLLD for PLUTO in the bottom two rows. We show the four highest resolution simulations
across the columns, ranging from 512 × 1024 to 4096 × 8192 cells from left to right. Note that
DG method has 4 times as many degrees of freedom with the 1st order basis, meaning that our
512 × 1024 simulation is comparable in degrees of freedom to the 1024 × 2048 simulation using
PLUTO. At this later time once the instability has entered into the nonlinear growth phase, the
DG method shows clear roll ups at all resolutions. Secondary vortices are suppress with higher
resolutions and by the more diffusive HLL solver. In contrast, the PLUTO results show secondary
instabilities through out the perturbation, although these diminish with resolution. Notably, the
structure of the instabilities with the DG method versus the finite method are very different.
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Figure 5.21: Snapshots of the transverse velocity at 𝑡 = 5.0 from simulations of the relativistic
Kelvin-Helmholtz instability using the method presented in this work using a 2nd order basis in
the first and third row and with the PLUTO finite volume MHD code with PPM reconstruction.
We show results using the HLL Riemann solver in the top two rows and with HLLC for our
code and with HLLD for PLUTO in the bottom two rows. We show the four highest resolution
simulations across the columns, ranging from 512 × 1024 to 2048 × 4096 cells from left to right.
Note that DG method has 4 times as many degrees of freedom with the 1st order basis, meaning
that our 512 × 1024 simulation has degrees of freedom between the 1024 × 2048 simulation and
2048×4096 simulation using PLUTO. The suppression of secondary vortices with our DG method
is enhanced with basis order 2 compared to basis order 1, requiring fewer cells and degrees of
freedom. Secondary instabilities still appear with the finite volume method, largely unaffected by
the increase in method order.
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Figure 5.22: Performance of the code modeling the Kelvin Helmholtz instability from section
§5.4.5, plotting updates to degrees of freedom per second versus degrees of freedom, using 1024
cores spread across 22 dual socket nodes with Intel Xeon Platinum 8268 CPUs (comprising
approximately ∼ 88TFLOPS in total) in the left column and using 32 NVidia Tesla V100-SXM2
GPUs (comprising approximately ∼ 250TFLOPS in total) spread across 8 nodes on the right, where
the peak computational throughput of the GPUs used are roughly three times the peak computational
throughput of the CPUs. The computational resources for both tests was chosen to accommodate
the memory needed for the largest simulation in the suite. We show profiling results with the HLLC
and HLL Riemann solvers and with the 0th, 1st, and 2nd order bases, between which we see little
difference in performance. Comparing between the CPU and GPU runs, however, we see that the
CPU performance becomes saturated at around 106 DOFs while the GPUs have not saturated the
performance, even with simulations using more than 10 times the degrees of freedom.

of GPU FLOPS. i.e. our implementation is failing to meet computation or memory bounds,

where the arithmetic-intensity of discontinuous-Galerkin methods lead to typically memory bound

algorithms.

These performance characteristics are consistent with insufficient work within individual kernels

to offset kernel launch overhead, as was the case in the K-Athena magnetohydrodynamics code

presented in Grete et al. (2021a) and was resolved in the Parthenon adaptive-mesh refinement

framework and AthenaPK magnetohydrodynamics code presented in Grete et al. (2022). We

performed an informal profiling of our method evolving the Kelvin-Helmholtz instability on a

single V100 GPU using nvprof. With a timeline trace, we verified for problem sizes that occupied

the entirety of the HBM memory of a single GPU that a large percentage of compute time on the
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GPU, > 70%, was dominated by short duration 4μs kernel calls. These kernel durations would be

consumed by kernel launch overhead from within the CUDA API.

With the launch of each kernel, between the APIs, drivers, and hardware a few microseconds

are spent launching the kernel on the GPU. Unless sufficient work is done within each kernel, this

launch overhead will dominate runtime. For our implementation, the work done within individual

kernels can be increased with more degrees of freedom. However, the GPU has insufficient memory

to allow enough work to hide kernel launch overhead, hence the underutilization of the GPU. In

Parthenon and AthenaPK, this kernel launch overhead was hidden by fusing together the work

from multiple kernels into fewer, larger kernelsGrete et al. (2021a). Similar improvements would

be needed for our implementation in order to saturate GPU performance.

5.5 Summary

We have presented a scheme to evolve the relativistic hydrodynamics equations using a

discontinuous-Galerkin method. Within our scheme, we have developed a robust method for

enforcing physicality of the conserved state via a operator. Our presentation of the method in-

cludes relativistic HLL and HLLC Riemann solvers, multiple methods for recovering the primitive

variables from conserved variables with the ideal equation of state, and the Taub-Matthews approx-

imation to the Synge equation of state, using physical units that keep factors of 𝑐. We implement

the method using the Kokkos performance portability library, which allows us to run CPUs and

GPUs supported by Kokkos.

The novel physicality-enforcing operator in the work allows evolution of shocks with high-

order basis methods. The operator strictly enforces positive density and pressure and subluminal

velocities on all basis points within a cell by smoothing nonphysical points towards the physical

volume average. Additionally, the method conserves volume averages of conserved variables.

In our exploration of methods to recover primitive variables from conserved variables when

using an ideal equation of state, we found that the iterative method from Riccardi & Durante (2008)

was faster, more robust, and more accurate than the analytical method from Ryu et al. (2006),

consistent with findings from Riccardi & Durante (2008). The iterative method for ideal gases
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presented here recovers the primitive variables by solving a quartic as described in Eq. 5.58, which

provides more digits of precision in simultaneously in sub-relativistic and ultra-relativistic regimes

compared to solving in terms of the velocity or Lorentz factor. Additionally, the Newton-Raphson

method as applied to Eq. 5.59 gives comparable accuracy to the analytic method in under 10

iterations, as is explored in Fig. 5.2. More iterations allow a more accurate recovery with the

iterative method compared to the analytic method. In the case of our implementation, the iterative

method is faster to compute for 𝛾 < 10 on CPUs and always faster on GPUs except in trivial cases.

Conversely, in our exploration of methods to recover primitives variables from conserved

variables with the Taub-Mathews equation of state, the analytical method detailed in Ryu et al.

(2006) was faster than the iterative method implemented in this work. With the Taub-Mathews

equation of state, recovering the primitives requires solving a cubic equation, which has a much

simpler analytical solution compared to the quartic equation for the ideal gas. Solving this cubic

equation iteratively requires a bounded root solver, where we use Brent’s method in this work.

The iterative method we implemented for the Taub-Matthews equation of state requires many more

iterations to achieve acceptable accuracy than the iterative solver for the ideal gas. As such, we

found the analytic method for the Taub-Matthews equation of state to outperform the iterative

method in terms of time to solution and accuracy on both CPUs and GPUs.

With this method, we ran several standard test problems, including linear waves, 1D and

2D Riemann problems, and the relativistic Kelvin-Helmholtz problem. The iterative conserved-

to-primitive solver facilitated more relativistic problems and the physicality-enforcing operator

allowed stable evolution with higher order bases for problems with shocks. In some test problems

with a shock moving transverse to an outflow boundary conditions, we saw some non-physical

boundary effects when using a 2nd order basis.

In our tests of the Kelvin-Helmholtz instability, comparing to results using a finite volume

reference scheme (Mignone et al., 2011), the discontinuous-Galerkin method presented in this work

can better suppress secondary vortices and instabilities compared to the finite volume method. Our

method works best with a 1st order basis, which is a 2nd order method in space and time, since the
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0th order basis is slow to grow the instability with low resolution while with the 2nd order basis

boundary effects enter in at the outflow boundaries with high resolution.

In the tests of the Kelvin-Helmholtz instability and some of the 2D Riemann problems, we saw

numerical boundary effects enter at the outflow boundary conditions, which increased with higher

resolutions. Further development of the outflow boundaries with higher order bases is required.

Finally, in the exploration of the performance of our implementation evolving the Kelvin-

Helmholtz instability, we found that our implementation is unable to saturate performance on

GPUs before the problem size grows too large for the GPU memory. From these performance

results and profiling using nvprof, we suspect that insufficient work inside individual kernels,

leading to kernel launch overhead dominating runtime, is responsible for the lack of performance

on GPUs. Combining the work from multiple kernels – as was done in the Parthenon framework

presented in Grete et al. (2021a) – would be needed for our implementation in order to saturate

GPU performance.
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CHAPTER 6

SIMULATIONS OF GALAXY CLUSTERS WITH MAGNETIC AGN JET FEEDBACK

6.1 Motivation

The hot, diffuse plasmas called the intracluster medium (ICM) comprising the majority of

baryonic mass in galaxy clusters is known to maintain significant magnetic fields (Carilli & Taylor,

2002; Govoni & Feretti, 2004; Donnert et al., 2018). These magnetic fields have been observed

via a number of techniques which include: inference from synchrotron emitting radio relics; the

magnetic Sunyaev-Zeldovich (SZ) effect, where magnetic fields lead to modified electron energy

distributions which leads to steeper radial variance the X-rays from inverse Compton scattering of

photons from the cosmic microwave background (CMB) off electrons in the ICM (Hu & Lou, 2004);

Faraday rotation, where the magnetic fields rotate the polarization of photons passing through the

magnetic fields of the galaxy cluster (Clarke et al., 2001; Carilli & Taylor, 2002; Clarke, 2004);

and cold fronts where magnetic fields suppress a Kelvin Helmholtz instability, preserving a sharp

discontinuity in the gas (Vikhlinin et al., 2001a,b; Ghizzardi et al., 2010). These measurements of

the magnetic fields in galaxy clusters, however, do not directly give the magnetic field strengths or

geometry but instead inform inferences of these properties using assumptions of magnetic length

scales and models. Although the magnetic fields aren’t dominant over gravitational forces or

gas pressure in the ICM, they are nevertheless believed to be dynamically important, maintaining

field strengths from ∼ 1 − 50𝜇m (Vacca et al., 2018; Donnert et al., 2018). The amplification

of the cluster magnetic fields to their present values is likewise an open question, where shocks,

turbulence, and jets launched by active galactic nuclei (AGN) are likely to play large roles (Donnert

et al., 2018). Computational modeling is a cornerstone for inferring magnetic fields, understanding

their dynamical role in the ICM, and how magnetic fields are created and amplified in galaxy

clusters.

One aspect of specific aspect that can be addressed by global galaxy cluster simulations is how
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the magnetized jets launched by AGN can affect magnetic fields and energy balance within the

ICM (Li et al., 2006; Wang et al., 2020). The jets emitted by AGN are collimated by the magnetic

fields generated by the AGN accretion disk and are thus inherently defined by their magnetic fields.

Observations of these jets have inferred a helical magnetic tower structure of the AGN jet (Gabuzda,

2021). Simulations of these magnetic AGN jets in isolation and with their impact on the galaxy

cluster has been performed in the past (Li et al., 2006; Gan et al., 2017; Martí, 2019; Barniol Duran

et al., 2017) although their role in the self-regulation of AGN feedback and cooling has been under-

investigated. Kinetic jet models are able to self-regulate (Meece Jr, 2016; Meece et al., 2017)

while thermal-only heating models have difficulty self-regulating while also maintaining a realistic

galaxy cluster, as was explored in Chapter 2. To rectify this gap in exploration, my current work is

focused on simulations comparing magnetized AGN feedback to kinetic jet and thermal feedback

to ascertain how well magnetized AGN feedback triggered by cold gas accretion can self-regulate

in galaxy clusters.

To best explore this question, we intend to perform the highest resolution simulations of galaxy

clusters to date, using world-class supercomputers. Said supercomputers, however, use GPUs from

a number of different manufacturers for the majority of their computational throughput. Thus,

a performance portable magnetohydrodynamics code such as the K-Athena code presented in

Chapter 4 is needed to utilize these GPU supercomputers. K-Athena only supports uniform grids,

however, and simulating galaxy clusters with high resolution near the galaxy cluster core requires

adaptive mesh refinement (AMR) – where the resolution of the simulation grid is increased near

fine features in the system and decreased where the flow is smooth. Resolving the entire ∼ 4 Mpc

box of a galaxy cluster simulation down to 10 pc size grid cells would require ∼ 10 EB (exabytes)

of memory disk space to store one output whereas the current largest supercomputer provides

∼ 100 PB (petabytes). AMR allows effectively the same accuracy of resolution for a fraction of the

data volume, allowing us to resolve a central box of ∼ 40 kpc around the AGN down to 10 pc.

Although implementing AMR into K-Athena would be possible, such a project would be chal-

lenging for a small university team. Thus, we collaborated with Los Alamos National Laboratory
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and researchers at the Institute of Advanced Study to develop Parthenon, a performance portable

AMR framework. Using this new framework we developed the performance portable AMR MHD

code AthenaPK, a successor to K-Athena that can perform these AMR simulations of magnetized

galaxy cluster with magnetized AGN feedback.

6.2 Methodology

6.2.1 Simulation Setup

The exascale galaxy cluster simulations we intend to run will use a Cartesian grid in a cubic

volume with side length of 3.2 Mpc, with 1283 cells in the base grid of a static mesh refinement

hierarchy. We enforce 3 levels of refinement with [−400, 400]3kpc (where the root grid is the 0th

level), 5 levels of refinement on [−100, 100]3kpc, and 11 levels of refinement on [−12.5, 12.5]3kpc,

giving us ∼ 12 pc resolution on the finest grid. We are currently testing simulations with the

physics discussed below with lower resolutions that fit into local supercomputer resources. These

test simulations will inform our upcoming simulation campaign on exascale systems.

Cosmological expansion is neglected in these simulations. We use a ΛCDM model to get the

virial mass of the NFW halo and to set its gas temperature, following Meece et al. (2017). We set

redshift 𝑧 = 0 at initialization with Ω𝑀 = 0.3, ΩΛ = 0.7, and 𝐻0 = 70 km s−1. We note that the

precise details of the cosmological model will not impact explorations of the baryonic physics in

the halo core, which is our primary interest.

6.2.1.1 Gravitational Potential

The gravitational potential has three components: a dark matter halo profile, a brighest cluster

galaxy (BCG) with a mass profile, and a supermassive black hole (SMBH). We chose parameters for

each of these to reflect a typical galaxy cluster. The dark matter follows the NFW profile (Navarro

et al., 1997), using 𝑀𝑁𝐹𝑊 = 1 × 1015M⊙ for the mass within the virial radius and a concentration
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parameter 𝑐𝑁𝐹𝑊 = 6. The gravitational field from the NFW profile takes the form

𝑔NFW(𝑟) = 𝐺

𝑟2

𝑀𝑁𝐹𝑊

[
ln

(
1 + 𝑟

𝑅𝑁𝐹𝑊

)
− 𝑟
𝑟+𝑅𝑁𝐹𝑊

]
ln (1 + 𝑐𝑁𝐹𝑊 ) − 𝑐𝑁𝐹𝑊

1+𝑐𝑁𝐹𝑊

. (6.1)

The scale radius 𝑅𝑁𝐹𝑊 for the NFW profile is computed from

𝑅𝑁𝐹𝑊 =

(
𝑀𝑁𝐹𝑊

4𝜋𝜌𝑁𝐹𝑊 [ln (1 + 𝑐𝑁𝐹𝑊 ) − 𝑐𝑁𝐹𝑊/(1 + 𝑐𝑁𝐹𝑊 )]

)1/3
(6.2)

where the scale density 𝜌𝑁𝐹𝑊 is computed from

𝜌𝑁𝐹𝑊 =
200
3
𝜌𝑐𝑟𝑖𝑡

𝑐3
𝑁𝐹𝑊

ln (1 + 𝑐𝑁𝐹𝑊 ) − 𝑐𝑁𝐹𝑊/(1 + 𝑐𝑁𝐹𝑊 ) . (6.3)

The critical density 𝜌𝑐𝑟𝑖𝑡 is computed from

𝜌𝑐𝑟𝑖𝑡 ≡
3𝐻2

0
8𝜋𝐺

. (6.4)

We use a Hernquist BCG profile

𝑔𝐵𝐶𝐺 (𝑟) = 𝐺
𝑀𝐵𝐶𝐺

𝑅2
1(

1 + 𝑟
𝑅

)2 (6.5)

with 𝑀𝐵𝐶𝐺 = 1011𝑀⊙ and 𝑅𝐵𝐶𝐺 = 4 kpc. We include the gravitational field from a SMBH black

hole with 𝑀𝑆𝑀𝐵𝐻 = 4 × 108𝑀⊙ at the center of the cluster halo.

6.2.1.2 Entropy Profile

Initial entropy profile of the gas follows the form

𝐾 ≡ 𝑘𝑏𝑇

𝑛
2/3
𝑒

(6.6)

for the specific entropy, where 𝑘𝑏 is Boltzmann’s constant, 𝑇 is the temperature, and 𝑛𝑒 is the

electron density, and is initialized follows a power law

𝐾 (𝑟) = 𝐾0 + 𝐾100 (𝑟/100 kpc)𝛼𝐾 , (6.7)

as introduced in the ACCEPT database (Cavagnolo et al., 2009). We use𝐾0 = 10.0 keV cm2, 𝐾100 =

150.0 keV cm2, and 𝛼𝐾 = 1.1 for the initial entropy profile, which is a typical profile for a CC

cluster.
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6.2.1.3 Initial Pressure and Density (Hydrostatic Equilibrium)

We compute the initial pressure and density by enforcing the initial cluster to be in hydrostatic

equilibrium given the gravitational profile described above and the ACCEPT-like entropy profile,

assuming an ideal gas with adiabatic index 𝛾 = 5/3. Additionally, to close the set of equations to

define the initial gas profile we fix the density at 𝑟 = 2000 kpc to 𝜌 = 10−28 g cm−3.

6.2.1.4 Linearly Interpolated Tabular Cooling

We use a sub-cycling cooling method using a linearly interpolated tabular cooling function.

Over each hydrodynamic cycle, we integrate the internal energy with cooling using an RK45

method, where the difference between the fourth order and fifth order estimations is used to adjust

the subcycle. When the relative error in the change in internal energy over a subcycle is greater

than 10−5, we redo the subcycle. We limit the minimum subcycle time step to be 1/100 the fluid

time step. Additionally, we limit the fluid time step to be no greater than 1/10 of the cooling time

within any cell. We use the cooling table from Schure et al. (2009) using solar metallicity.

We use a helium mass fraction 𝜒 = 0.25, with the remaining baryonic mass being hydrogen

and electrons, which allows temperature 𝑇 to be defined from density 𝜌 and pressure 𝑃 following

𝑇 =
𝜇𝑚ℎ

𝑘𝐵

𝑃

𝜌
. (6.8)

where 𝑚ℎ is the atomic mass of hydrogen, 𝑘𝐵 is Boltzmann’s constant, and 𝜇 is the mean particle

mass per 𝑚ℎ, found by

𝜇 =

[
3
4
𝜒 + (1 − 𝜒)2

]−1
. (6.9)

6.2.1.5 Precessing Jet Coordinates

For injection of kinetic feedback by the AGN, initialization of the magnetic tower field, and

feedback from the magnetic tower, we assume a precessing AGN jet and so employ coordinate

transforms to convert Cartesian coordinates relative to the simulation frame to cylindrical coordi-
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nates relative to the precessing jet and transform cylindrical vector fields relative to the precessing

jet to Cartesian coordinates relative to the simulation frame.

First, we define axes for Cartesian coordinates relative to the jet. Let 𝜙 𝑗 𝑒𝑡 = 𝜙0, 𝑗 𝑒𝑡 +𝜔𝜙, 𝑗𝑒𝑡 𝑡 be

the azimuthal angle of the jet (relative to 𝑥), where 𝜙0, 𝑗 𝑒𝑡 is the initial azimuthal angle and 𝜔𝜙, 𝑗𝑒𝑡

is the precession frequency, and let 𝜃 𝑗 𝑒𝑡 by the inclination angle of the jet. The axis of the jet points

along the vector 𝑛̂ ≡
(
1, 𝜃 𝑗 𝑒𝑡 , 𝜙 𝑗 𝑒𝑡

)
in spherical coordinates relative to the simulation frame.

Using Sympy to generate the coordinate transforms, a position with simulation Cartesian

coordinates (𝑥𝑠𝑖𝑚 , 𝑦𝑠𝑖𝑚 , 𝑧𝑠𝑖𝑚) has the following Cartesian coordinates relative to the jet

𝑥 𝑗 𝑒𝑡 = 𝑥𝑠𝑖𝑚 cos
(
𝜙 𝑗 𝑒𝑡

)
cos

(
𝜃 𝑗 𝑒𝑡

)
+ 𝑦𝑠𝑖𝑚 sin

(
𝜙 𝑗 𝑒𝑡

)
− 𝑧𝑠𝑖𝑚 sin

(
𝜃 𝑗 𝑒𝑡

)
cos

(
𝜙 𝑗 𝑒𝑡

)
(6.10)

𝑦 𝑗 𝑒𝑡 = −𝑥𝑠𝑖𝑚 sin
(
𝜙 𝑗 𝑒𝑡

)
cos

(
𝜃 𝑗 𝑒𝑡

)
+ 𝑦𝑠𝑖𝑚 cos

(
𝜙 𝑗 𝑒𝑡

)
+ 𝑧𝑠𝑖𝑚 sin

(
𝜙 𝑗 𝑒𝑡

)
sin

(
𝜃 𝑗 𝑒𝑡

)
(6.11)

𝑧 𝑗 𝑒𝑡 = 𝑥𝑠𝑖𝑚 sin
(
𝜃 𝑗 𝑒𝑡

)
+ 𝑧𝑠𝑖𝑚 cos

(
𝜃 𝑗 𝑒𝑡

)
. (6.12)

and the following cylindrical coordinates relative to the jet

𝑟 =

√︃
𝑥2
𝑗 𝑒𝑡

+ 𝑦2
𝑗 𝑒𝑡

(6.13)

𝜃 = arctan
𝑦 𝑗 𝑒𝑡

𝑥 𝑗 𝑒𝑡
(6.14)

ℎ = 𝑧 𝑗 𝑒𝑡 . (6.15)

Given a vector in cylindrical coordinates relative to the jet (such as the magnetic vector potential,

magnetic field, or kinetic jet velocity) denoted by (𝑣𝑟 , 𝑣𝜃 , 𝑣ℎ) at position (𝑟, 𝜃, ℎ), can be expressed

in Cartesian coordinates relative to the jet following

𝑣𝑥, 𝑗𝑒𝑡 = 𝑣𝑟 cos (𝜃) − 𝑣𝜃 sin (𝜃) (6.16)

𝑣𝑦, 𝑗𝑒𝑡 = 𝑣𝑟 sin (𝜃) + 𝑣𝜃 cos (𝜃) (6.17)

𝑣𝑧, 𝑗𝑒𝑡 = 𝑣ℎ. (6.18)

This vector in simulation Cartesian coordinates can then be found from multiplying the vector

(𝑣𝑥, 𝑗𝑒𝑡 , 𝑣𝑦, 𝑗𝑒𝑡 , 𝑣𝑧, 𝑗𝑒𝑡) by the DCM matrix to convert from jet Cartesian coordinates to simulation
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Cartesian coordinates:
𝑣𝑥,𝑠𝑖𝑚

𝑣𝑦,𝑠𝑖𝑚

𝑣𝑧,𝑠𝑖𝑚


=


cos

(
𝜙 𝑗 𝑒𝑡

)
cos

(
𝜃 𝑗 𝑒𝑡

)
− sin

(
𝜙 𝑗 𝑒𝑡

)
cos

(
𝜃 𝑗 𝑒𝑡

)
sin

(
𝜃 𝑗 𝑒𝑡

)
sin

(
𝜙 𝑗 𝑒𝑡

)
cos

(
𝜙 𝑗 𝑒𝑡

)
0

− sin
(
𝜃 𝑗 𝑒𝑡

)
cos

(
𝜙 𝑗 𝑒𝑡

)
sin

(
𝜙 𝑗 𝑒𝑡

)
sin

(
𝜃 𝑗 𝑒𝑡

)
cos

(
𝜃 𝑗 𝑒𝑡

)


𝑣𝑥, 𝑗𝑒𝑡

𝑣𝑦, 𝑗𝑒𝑡

𝑣𝑧, 𝑗𝑒𝑡


(6.19)

6.2.1.6 Magnetic tower

We initialize the galaxy cluster with a pre-existing magnetic tower following the form described

in Li et al. (2006). The magnetic fields are described in cylindrical coordinates as

𝐵𝑟 = 𝐵02
ℎ𝑟

ℓ2
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.20)

𝐵𝜃 = 𝐵0𝛼
𝑟

ℓ
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.21)

𝐵ℎ = 𝐵02

(
1 − 𝑟

2

ℓ2

)
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.22)

where 𝑟 is the distance from the jet axis aligned along ℎ̂, 𝜃 is the polar angle around ℎ̂, and ℎ is the

height from the assumed accretion disk. The parameter 𝛼 controls the the relative strength between

poloidal and toroidal fields, where 𝛼 ∼ 2.6 corresponds to roughly equal poloidal and toroidal flux.

Following Li et al. (2006), we use 𝛼 = 20, which corresponds to a strong toroidal flux consistent

with a magnetic tower that is highly wound by a rotating accretion disk.

6.2.1.7 AGN Feedback

We include AGN feedback using thermal heating, kinetic jet, and magnetic tower models

exploring different relative strengths. We divide the AGN feedback between the three mechanisms

following

¤𝐸𝐴𝐺𝑁 = ¤𝐸𝑇 + ¤𝐸𝐾 + ¤𝐸𝐵 = ( 𝑓𝑇 + 𝑓𝐾 + 𝑓𝐵) ¤𝐸𝐴𝐺𝑁 . (6.23)

where ¤𝐸𝐴𝐺𝑁 is the total AGN feedback rate; ¤𝐸𝑇 , ¤𝐸𝐾 , and ¤𝐸𝐵 are the total thermal, kinetic, and

magnetic AGN feedback rates; and 𝑓𝑇 , 𝑓𝐾 , and 𝑓𝐵 are the thermal, kinetic, and magnetic fractions

of the total AGN feedback rate.
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6.2.1.8 Thermal AGN Feedback

In the thermal feedback model, thermal energy is deposited at a uniform heating rate per volume

within a sphere around the center of the halo where the presumed AGN resides.

¤𝑒𝑇 (𝑟) =


𝑓𝑇

¤𝐸𝐴𝐺𝑁
(4/3)𝜋𝑅3

𝑇

𝑟 ≤ 𝑅𝑇

0 otherwise
(6.24)

where we use 𝑅𝑇 = 0.5 kpc for the radius of thermal feedback.

6.2.1.9 Kinetic AGN Feedback

In the kinetic feedback model, kinetic energy and mass is injected above and below a presumed

accretion disk inside an cylindrical jet. We align the jet along the 𝑧 axis with a radius 𝑅𝐾 = 1 kpc

and extend it 𝐻𝐾 = 10 kpc above and below the 𝑥𝑦 plane. The rate of mass injected by the jet

is set proportional to the kinetic jet power 𝑓𝐾 ¤𝐸𝐴𝐺𝑁 divided by a kinetic jet efficiency parameter

𝜖𝐾 = 10−3 (Meece et al., 2017):

¤𝑀𝐾 =
𝑓𝐾 ¤𝐸𝐴𝐺𝑁
𝜖𝐾𝑐

2 (6.25)

where 𝑐 is the speed of light. The jet then injects a mass density

¤𝜌𝐾 =
¤𝑀𝐾

2𝜋𝑅2
𝐾
𝐻 𝑗 𝑒𝑡

(6.26)

with a jet speed

𝑣𝐾 =
√︁

2𝜖𝐾𝑐. (6.27)

heading away from the 𝑥𝑦 plane The momentum density injected into the cluster is then

¤M𝐾 (r) =


sign(𝑧) ¤𝜌𝐾𝑣𝐾 ℎ̂ when 𝑟 ≤ 𝑅𝐾 and |ℎ | ≤ 𝐻𝐾

0 otherwise
(6.28)

where 𝑟 here is the distance from the jet axis and ℎ is the signed height above or below the accretion

disk. The injected kinetic energy per volume is

¤e𝐾 (r) =


1
2 ¤𝜌𝐾𝑣2𝐾 when 𝑟 ≤ 𝑅𝐾 and |𝑧 | ≤ 𝐻𝐾

0 otherwise
(6.29)

so that the total kinetic energy injected matches 𝑓𝐾𝐸𝐴𝐺𝑁 .
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6.2.1.10 Magnetic AGN Feedback

In the magnetic feedback model, a magnetic field is deposited proportional to the magnetic

tower field proposed in Li et al. (2006)

B𝑟 = B02
ℎ𝑟

ℓ2
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.30)

B𝜃 = B0𝛼
𝑟

ℓ
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.31)

Bℎ = B02

(
1 − 𝑟

2

ℓ2

)
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.32)

where 𝑟 is the distance from the jet axis, ℎ is the signed height above or below the accretion disk, ℓ

is the length scale, 𝛼 controls the ratio of polodial to torodial fields, and B0 is the strength of the

magnetic field. A vector potential corresponding to this magnetic field can be written as

A𝑟 = 0 (6.33)

A𝜃 = B0ℓ
𝑟

ℓ
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.34)

Aℎ = B0ℓ
𝛼

2
exp

(
−𝑟2 − ℎ2

ℓ2

)
(6.35)

so that ∇ × A = B. Constructing the magnetic fields from the vector potential is preferred to

maintain ∇ · B as close to zero as possible.

We apply magnetic fields from Equation 6.30 aligned to a precessing jet, and so the coordinate

and vector transformations described in §6.2.1.5 as necessary to transform (𝑥, 𝑦, 𝑧) → (𝑟, 𝜃, ℎ) and

(B𝑟 ,B𝜃 ,Bℎ) →
(
B𝑥 ,B𝑦,B𝑧

)
.

We use the magnetic field from Equation 6.30 to apply the initial magnetic field and to apply

magnetic feedback, which feedback can be scaled to a specified field rate or power.

Initializing magnetic fields is simple. To inject a 𝐵0 magnetic field, we set the initial magnetic

field to B = B|B0=𝐵0 . Injecting constant magnetic field increase is also simple. To inject a field

rate of ¤𝐵0, we add a magnetic field ¤B = B|B0= ¤𝐵0

210



Injecting magnetic energy at a specified power is much more complicated since the existing

magnetic field must be considered and both linear and quadratic contributions from the injected

magnetic field must also be considered. Given an existing magnetic field B𝑛 and a timestep Δ𝑡,

we inject a magnetic field following the magnetic tower model with a strength 𝐵𝑝 that must be

determined so that the new magnetic field is

B𝑛+1 = B𝑛 + Δ𝑡B|B0=𝐵𝑝 . (6.36)

The change in total magnetic energy is then

Δ𝐸𝐵 =

∫
Ω

1
2

B𝑛+1 · B𝑛+1 −
1
2

B𝑛 · B𝑛 𝑑𝑉 (6.37)

=
1
2

[∫
Ω

B𝑛 · B𝑛 + 2Δ𝑡B𝑛 · B|B0=𝐵𝑝 + (Δ𝑡)2 B|B0=𝐵𝑝 · B|B0=𝐵𝑝 − B𝑛 · B𝑛 𝑑𝑉
]

(6.38)

=
1
2

[∫
Ω

B𝑛 · B𝑛 + 2Δ𝑡B𝑛 · B|B0=𝐵𝑝 + (Δ𝑡)2 B|B0=𝐵𝑝 · B|B0=𝐵𝑝 − B𝑛 · B𝑛 𝑑𝑉
]

(6.39)

= Δ𝑡𝐵𝑝

∫
Ω

B𝑛 · B|B0=1 𝑑𝑉 + (Δ𝑡)2 𝐵2
𝑝

∫
𝜔

1
2
B|B0=1 · B|B0=1 𝑑𝑉 (6.40)

where Ω is the simulation domain. To determine the magnetic field strength 𝐵𝑝 to be injected,

the two integrals in Equation 6.40 corresponding the linear and quadratic contributions must first

be computed (via reduction over the entire domain), then 𝐵𝑝 can be determined by the quadratic

formula (only one root should be positive).

For the case of magnetic field injection by the AGN, the change in magnetic energy is set to

Δ𝐸𝐵 = Δ𝑡 𝑓𝐵 ¤𝐸𝐴𝐺𝑁 and 𝐵𝐴𝐺𝑁 is determined by the reductions above.

Applying a magnetic tower field injects a finite total magnetic energy even when applied over

all space due to the exponential decay away from the AGN. The total magnetic energy 𝐸𝐵 when

applied over all space is given by

𝐸𝐵 =

∫ ∞

0

∫ 2𝜋

0

∫ ∞

−∞

1
2

B · B𝑟 𝑑ℎ 𝑑𝜃 𝑑𝑟 = 𝐵2
0

𝜋3/2
(
𝛼2 + 5

)
ℓ3

8
√

2
. (6.41)
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6.2.1.11 AGN cold mass triggering

AGN feedback is triggered by cold mass around the presumed AGN. AGN triggering occurs

within a 𝑟𝑎𝑐𝑐 = 10 kpc radius accretion zone around the AGN. Within the accretion zone, gas with

a temperature below the user-defined threshold 𝑇𝑐𝑜𝑙𝑑 = 5 × 104 K triggers AGN feedback. The

mass accretion rate onto the AGN follows

¤𝑀𝐴𝐺𝑁 =

∫
𝑟<𝑟𝑎𝑐𝑐

𝜌𝑐𝑜𝑙𝑑 (r)/𝑡𝑎𝑐𝑐d𝑉 (6.42)

where 𝜌𝑐𝑜𝑙𝑑 (r) is equal to 𝜌(r) in cells where 𝑇 (r) ≤ 𝑇𝑐𝑜𝑙𝑑 and 0 otherwise, and 𝑡𝑎𝑐𝑐 = 100 Myr

is the accretion time scale. The total AGN feedback rate is then set to

¤𝐸𝐴𝐺𝑁 = 𝜖𝐴𝐺𝑁 ¤𝑀𝐴𝐺𝑁𝑐
2 (6.43)

where 𝜖𝐴𝐺𝑁 = 10−3 is the cold mass triggering efficiency.

The accreted mass is removed from the simulation. Mass is only removed from cells within the

accretion zone with a temperature below the cold gas temperature threshold. The density removed

follows the rate

¤𝜌 (r) =

𝜌(r)/𝑡𝑎𝑐𝑐 𝑇 (r) < 𝑇𝑐𝑜𝑙𝑑

0 otherwise
(6.44)

6.3 Current State of Simulations

Each of the components to initialize the galaxy cluster simulation and evolve the cluster with

triggered AGN feedback have been individually tested and verified to work as expected. Integrated

tests of all these components are underway. Analysis pipelines using yt (Turk et al., 2011) are also

in development. Testing of the full magnetized galaxy cluster simulation set up is expected to be

completed by early summer 2022 in time for exascale simulations later in the summer.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The ultimate goal of this dissertation is to better understand the behavior of diffuse astrophysical

plasmas, especially as applied to the intracluster medium (ICM), and to develop better numerical

tools and methods to explore these plasmas. In this final chapter in Section 7.1 I first summarize

each of the chapters comprising peer-reviewed or near submission work, which includes Chapters

2, 3, 4, and 5. I then describe the ongoing and future work of these projects in Section 7.2,

including the many projects spawned by Parthenon and AthenaPK, the work at Sandia National

Laboratories enabled by the relativistic discontinuous-Galerkin (DG) method I presented in Chapter

5, the ongoing magnetized galaxy cluster simulations and future additions to those simulations, and

finally the work on magnetized jets in AGN accretion disks that I plan to explore as a postdoctoral

fellow at Los Alamos National Laboratory.

7.1 Summary of Dissertation Work

7.1.1 Chapter 2: Tests of AGN Feedback Kernels in Simulated Galaxy Clusters

In Chapter 2, we explored the energy deposition of active galactic nuclei (AGN) feedback that

is necessary to prevent cooling catastrophes within the cluster while maintaining a realistic entropy

profile (Glines et al., 2020). To this end, we ran 91 simulations of idealized galaxy clusters with

a simplified model of AGN feedback, abstracting the thermalization of AGN jets and magnetic

fields as a spherically symmetric heating kernel balanced to the cooling within the cluster, testing

a range of heating kernel profiles with varying degrees of central peaking (See Figure 2.2 and

Table 2.1). We did not find a spherical heating kernel that produced both a quasi-stable galaxy

cluster that did not undergo a cooling catastrophe and also kept an observationally realistic entropy

profile. We did find that sharply centrally peaked heating kernels prevented cooling catastrophes

by severely exceeding radiative cooling in the cluster core where cooling times are short compared

to the lifetime of the cluster. These centrally overpowered heating kernels led to centrally inverted
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entropy profiles where the high central entropy was resistant to overcooling but was in-congruent

with entropy profiles of observed galaxy clusters. We also found that weakly centrally peaked

heating kernels kept realistic entropy profiles but failed to offset central cooling, leading to cooling

catastrophes well under the observationally expected lifetimes for these clusters (See Figure 2.3).

Although these simulations did not conclusively rule out a thermal-only abstraction for AGN

feedback, they do point towards more complex mechanisms than pure heating at play in self-

regulating cool-core (CC) clusters. To explore such questions, we would like to explore high fidelity

simulations with enough primary and secondary physics to realistically model the magnetized ICM

and AGN jet, including at least magnetic fields and potentially non-ideal MHD effects, cosmic ray

pressure, and possibly relativistic AGN jet velocities. Such simulations would also need at least

an order of magnitude increase in computing resources in order to include the additional physics

and increase resolution of the ICM. Enabling such simulations was the goal of the work presented

in Chapter 4 developing K-Athena– a performance portable MHD code that can utilize upcoming

supercomputers. This goal of high resolution magnetized galaxy cluster simulations is coming to

fruition with the in-progress work presented Chapter 6.

7.1.2 Chapter 3: Magnetized Decaying Turbulence in the Weakly Compressible Taylor-

Green Vortex

In Chapter 3, we explored the development of magnetized turbulence from the decay of a

large scale flow, performing 9 simulations of the magnetized Taylor-Green vortex. The decaying

turbulent plasma scenario models the growth of turbulence in the ICM due to large scale infrequent

perturbations, such as from a galaxy cluster merger or an AGN outburst. These simulations

are distinct from more commonly performed driven turbulence simulations, where a stochastic

force is applied to the plasma, continually injecting energy at the injection scale. In this aspect,

after turbulence is well developed in our simulations the energy spectrum of the simulations is

uncontaminated by injected energy and is purely a result of the extant energy in the turbulence.

In these simulations, magnetic energy came to dominate over kinetic energy even when the
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initial magnetic field was small. We found that the magnetized turbulence developed from this

decaying flow scaled following a 𝑘−4/3 power law, flatter than the 𝑘−5/3 power law for hydrody-

namical turbulence with comparatively more energy at smaller scales in the magnetized turbulence,

confirming results from related driven turbulence simulations (See Figure 3.4, Grete et al., 2018,

2021b). Using the energy transfer analysis developed by Grete et al. (2017), we explored the de-

velopment of the energy spectrum from the energy transfers between kinetic and magnetic energy

at different scales. The buildup of energy at smaller scales was aided by non-local energy transfer

from large scale kinetic energy to all scales of magnetic energy via magnetic tension; a mechanism

absent in hydrodynamical turbulence. In general, the magnetized turbulence behaved differently

from hydrodynamical turbulence and thus should not be ignored in explorations of turbulence in

the ICM.

7.1.3 Chapter 4: K-Athena: A Performance Portable Structured Grid Finite Volume Mag-

netohydrodynamics Code

In Chapter 4, we present the performance portable magnetohydrodynamics (MHD) code K-

Athena, which is designed to enable computational astrophysics on the next generation of su-

percomputers while maintaining performance on traditional supercomputers. These new super-

computers will use graphics processing units (GPUs) from a number of different vendors for the

majority of their computational throughput. At the same time, supercomputers using traditional

CPUs will persist for the near future. Astrophysics codes capable of efficiently utilizing both

GPUs from all manufacturers and traditional central processing units (CPUs) are needed to enable

simulations on any given hardware that a computational astrophysicists might have access to. Per-

formance portable codes provide this high performance on multiple architecture with a single code

base, eliminating the development cost involved with creating and maintaining multiple versions

for different architectures. K-Athena fulfills this need for a performance portable MHD code for

uniform grids.

We demonstrated K-Athena running simulations on many of the largest supercomputers avail-
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able at the time, showing high performance and efficiency on both CPUs and GPUs. K-Athena

ran at high performance on the NVidia “Volta” V100 GPUs on Summit, achieving 76% parallel

efficiency and attaining at peak a speed of 1.94 × 1012 cell updates/second. We also performed a

roofline analysis to compute how efficiently K-Athena was using each level of memory, ultimately

demonstrating that K-Athena was limited by the DRAM bandwidth on all architectures. This

roofline analysis also allowed us to compute for K-Athena a 62.8% performance portability metric

as measuring against theoretical performance limited by the DRAM bandwidth (Pennycook et al.,

2016). The K-Athena code has been used for two papers to date (Grete et al., 2021b; Glines et al.,

2021), including for the magnetized turbulence work shown in Chapter 3.

7.1.4 Chapter 5: Relativistic Discontinuous-Galerkin Hydrodynamics

In Chapter 5, we presented a robust method for evolving the special relativistic hydrodynamics

equations using a DG method. In a DG method, the fluid within individual elements of the

simulation domain is represented by linear combinations of a polynomials instead of just a cell

average, allowing linear, quadratic, and higher order spatial contributions to be carried in each

element. The methods have the dual advantage of being easily raised to arbitrary spatial orders by

just increasing the order of the polynomial basis and for non-Cartesian mesh boundary conditions

since stencils span a single cell (for which there exists an internal Cartesian-like grid) rather than

multiple cells. These traits make them extremely valuable for terrestrial plasma simulations, where

non-rectangular apparatuses introduce irregular boundaries that are best handled with unstructured

meshes but still benefit from higher order methods.

The relativistic hydrodynamics method we present includes a unique exploration of solvers

for the primitive recovery step – the non-trivial inversion of a transcendental equation to get the

primitive variables from the conserved variables, which is an essential step to compute fluxes in

both FV and DG methods. We show accuracy and speed performance for analytic and iterative

solvers for both the ideal equation of state and the Taub-Matthews approximation to the Synge gas

equation of state. In this exploration we show that the iterative methods for finding the roots of the
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quartic polynomial to invert the ideal equation of state is both faster and more accurate than the

analytic method while the analytic methods for finding the roots of the cubic polynomial to invert

the Taub-Matthews equation of state is conversely faster and more accurate. This reversed result

may be a consequence of the high complexity in analytic quartic solvers and the simplicity of the

Newton-Raphson method for the ideal equation of state versus the lower complexity of analytic

cubic solvers and higher complexity in the bisection method needed for the Taub-Matthews solver.

For the method we developed a novel operator for maintaining the physicality of conserved states

when running DG with higher orders (see Section 5.2.5). When shocks arise in DG simulations

(and in FV simulations), non-physical conserved variables can be introduced after integrating

fluxes around the discontinuity, especially when using spatial orders higher than 0th order. In a

special relativistic hydrodynamics method these non-physical conserved variables can correspond

to negative pressures or densities, superluminal velocities, or may correspond to imaginary or

complex variables. These non-physical conserved variables can be screened using Equation 5.25.

Within the algorithm we developed, when non-physical conserved variables are detected at interior

points in a DG cell the physicality enforcing operator smooths all points within the cell towards

the volume average so that all points are made physical as long as the volume average is physical.

In practice, this operator was necessary to run any simulation with shocks with a spatial 1st order

basis and higher.

We also compared the accuracy of this method relative to a FV scheme at evolving the relativistic

Kelvin-Helmholtz instability using both the HLL and HLLC Riemann solvers and with 0th, 1st,

and 2nd order bases. We found that the DG method we developed better suppresses non-physical

secondary vortices and instabilities in the linear growth phase of the Kelvin-Helmholtz instability

when compared to the FV method, especially when using higher order bases (see Figures 5.16,

5.17, 5.18, 5.19, 5.20, and 5.21). Non-physical boundary effects entered into the outflow boundary

conditions with increased resolution, however, indicating that more development higher order

outflow boundary conditions is needed.
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7.2 Ongoing and Future Work

7.2.1 Parthenon and AthenaPK

The K-Athena MHD code, however, was only capable of running performance portable uniform

grid simulations, where the resolution of the simulation is the same across the domain. This

limited the applicability of K-Athena for studying galaxy clusters, a class of systems requiring

high resolution near the central AGN and AGN jet but also including an expansive halo that

can be simulated with low resolution. Although possible, the design of K-Athena would make

implementation of performance portable AMR difficult for a small team. A performance portable

MHD code with adaptive mesh refinement (AMR) was needed for galaxy cluster simulations.

In fact, many simulated systems from both astrophysical and terrestrial plasma physics would

benefit from performance portable AMR capabilities. Such an AMR code would impact a large

cross-section of the computational plasma community.

To fulfill this need, we founded a collaboration to develop the Parthenon AMR framework

(https://github.com/lanl/parthenon): a performance portable AMR framework based on

the AMR implementation in Athena++ but tuned for performance portability on GPUs and

CPUs (Grete et al., 2022). Originally conceived as an AMR capable successor to K-Athena,

Parthenon has gone on to be the basis for many codes in the computational plasma astro-

physics community. These include AthenaPK (https://gitlab.com/theias/hpc/jmstone/

athena-parthenon/athenapk, Athena-Parthenon-Kokkos) an AMR-capable successor to

K-Athena; Phoebus (https://github.com/lanl/phoebus), a general relativistic (GRMHD)

code with neutrino radiation for modeling neutron star mergers and intermediate mass black hole

candidates; KHARMA, another GRMHD code to be used for interpretation of black hole imaging

via the Event Horizon Telescope as part of a 2022 INCITE award; RIOT, a Los Alamos National

Laboratory-based multiphysics code (Grete et al., 2022); and likely more codes yet to be developed.

This collaboration, which K-Athena inspired, will enable exascale simulations of the ICM, galaxy

clusters, magnetized turbulence, the formation of intermediate mass black holes, AGN accretion
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disks, black hole imaging, planet formation, and many terrestrial plasma systems. The success of

K-Athena and later Parthenon has also inspired Kokkos integration into other codes, including

Athena-K, a GRMHD code in development at the Institute of Advanced Science, and Enzo-E

(Bordner & Norman, 2018).

7.2.2 Relativistic DG Methods

The merit of the algorithm we developed has already been demonstrated in two upcoming

papers from Sandia National Laboratories on which I am co-author (Roberds et al., 2022; Hamlin

et al., 2022), which relied on this method and my implementation for different flavors of extended

relativistic MHD methods. Both papers use this relativistic method as a basis for a relativistic

two-fluid MHD scheme. In the relativistic two-fluid MHD equations, the electrons and ions of the

plasma comprise two relativistic fluids with distinct densities, flow velocities, and pressures. These

two fluids are coupled together via Maxwell’s equations and Ohm’s law (Amano, 2016).

Roberds et al. (2022) uses this two-fluid method to study electron emission across a warm diode

– a scenario where the electron species is accelerated across a gap via injected kinetic energy and

injected with sufficient thermal energy to be non-negligible to the injected kinetic energy. The

solution using the two-fluid MHD method was compared against a semi-analytic model for the 1D

warm diode problem and found to converge to 2nd order accuracy as was expected for this problem

(see Figure 7.1). Preliminary results are reported in Laity et al. (2021).

Hamlin et al. (2022) uses the two-fluid method for 2D numerical simulations of a magnetron, a

device that converts electrostatic potential in the electron population into microwave energy. That

work compares the fluid approach to the PIC method conventionally used for that system. Results

are awaiting publication.

Lessons learned from developing the relativistic hydrodynamics method for DG will be applied

to relativistic MHD algorithms implemented in AthenaPK for future projects. These methods and

implementations yet to be developed will be the basis for studies and simulations of relativistic

AGN jet feedback to determine whether the relativistic nature of the jet has an impact on energy
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Figure 7.1: Electric field (top left) and pressure (top right) along the 1D warm diode with electron
temperatures 𝑇𝑒 = 1, 10, 100 eV using the relativistic two-fluid MHD DG method with my contri-
butions in red, green and blue for each temperature and in black showing the exact solutions with
a semi-analytic model. L1 error in electric field (bottom left) and pressure (bottom right) of the
relativistic two-fluid MHD DG method to the exact solution, showing 2nd order convergence as
was expected for the second-order accurate fluid solver. Figures taken from Laity et al. (2021).

deposition and thermalization within a magnetized ICM.

7.2.3 Simulations of Magnetized Galaxy Clusters

In Chapter 6 I share my current work developing simulations of magnetized AGN jets within

a magnetized galaxy cluster. In order to achieve resolutions higher than previously possible in

galaxy cluster simulations with AGN feedback we developed Parthenon, a performance portable

AMR framework, and on top of that AthenaPK, a performance portable MHD code with AMR.

These code developments in performance portability will allow us to run on more architectures and

specifically on the GPU supercomputers comprising the highest echelons of current and near-future
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computing resources available. The unique scales of these computing resources will enable higher

fidelity galaxy cluster simulations than previously explored, giving us better tools to examine the

thermalization of AGN feedback within the ICM.

AthenaPK currently implements all the necessary components to explore high resolution

simulations studying the magnetic aspect of AGN feedback, which is discussed in Chapter 6. These

components include a new precessing magnetic tower injection model for AGN feedback, which

allows exploration of whether precessing magnetic towers can self-regulate a CC cluster like a

precessing kinetic jet (Meece Jr, 2016). These simulations and their analysis will run in summer

2022, with publication of results expected later this year.

With this performance portable MHD code as a base, we can add a variety of additional physics

while keeping the simulations computationally feasible. The first addition will be cosmic rays,

which may play an important role in self-regulating AGN feedback. Non-thermal, relativistically

moving electrons and especially protons comprising these cosmic rays have long been suspected

to play a key role in offsetting cooling and preventing cooling flows in the ICM, proving additional

heating and pressure (Loewenstein et al., 1991; Ando & Nagai, 2008). Although the cosmic ray

energy density is low compared to the thermal energy density in the ICM (Dunn & Fabian, 2004),

they may be a key factor in AGN feedback by elongating and inflating AGN-created bubbles by

exerting anisotropic pressure along magnetic field lines (Guo & Oh, 2008; Guo & Mathews, 2011).

AGN feedback itself injects cosmic rays into the ICM by creating shocks and turbulence where

charged particles can be accelerated to relativistic velocities via the first and second order Fermi

processes (Krymskii, 1977; Bell, 1978; Bustamante et al., 2010). Thus, cosmic ray injection may

be an important component of a self-regulating AGN.

The implementation of cosmic rays in AthenaPK will follow Jiang & Oh (2018), which has

a publicly available implementation in AthenaPK’s parent code Athena++. We will then extend

the current simulations campaign exploring magnetized AGN feedback to include the injection of

cosmic rays to see how they affect self-regulation of the AGN.

Beyond the addition of cosmic ray pressure, we will also investigate how using a non-ideal
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MHD that better describes the plasma of the ICM might affect AGN feedback and self-regulation.

Specifically, we will explore Braginskii MHD, which includes anisotropic transport of particles

not present in ideal MHD, which introduced anisotropic heat conduction and anisotropic pressure

along magnetic field lines (Braginskii, 1965). This model of the plasma better reflects the weakly

collisional nature of the ICM (Reynolds, 2018). In the ICM, these non-ideal effects may play a

role in magnetized turbulence (Kunz et al., 2011; Ruszkowski & Oh, 2011), the amplification of

magnetic fields (St-Onge et al., 2020), and may bring a small but non-negligible amount of heating

from cluster outskirts into the core (Voigt et al., 2002; Voigt & Fabian, 2004; Ruszkowski & Oh,

2011; Yang & Reynolds, 2016b). This more accurate representation of the ICM has been of keen

interest in the last decade (Ruszkowski & Oh, 2011; Berlok et al., 2020) and will be a key feature

for high fidelity simulations of galaxy clusters.

7.2.4 AGN Accretion Disk Channel for Intermediate Mass Black Holes

Being one of the only performance portable AMR frameworks available, the Parthenon library

is poised to impact many computational studies in astrophysical and terrestrial plasmas. AthenaPK

is also likely to be applied to many different systems in the near future. With more and more GPU

supercomputers coming online, there are ample computational resources available with diverse

GPU architectures but few codes that can use them.

One such area of exploration, headed by scientists at Los Alamos National Laboratories and to

which I will be contributing, is the formation of intermediate mass black holes via AGN accretion

disks.

With the advent of gravitational wave observatories such as the Laser Interferometer Gravitational-

Wave Observatory (LIGO), we now have unprecedented access to the masses of previously unob-

servable black holes via binary black hole (BBH) mergers. In the observation of GW190521

by LIGO, we observed an 85 M⊙ black hole merge with a 66 M⊙ black hole creating a 142 M⊙

black hole, the heaviest BBH merger to date (LIGO Scientific Collaboration and Virgo Collab-

oration et al., 2020). This merger poses theoretical inconsistencies since black hole masses in
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the ∼ 60 − 120 M⊙ mass gap are excluded by conventional theories of black hole formation via

pair instability supernovae, despite both progenitors in the BBH falling into this black hole mass

gap (Woosley, 2017). The mechanism by which these BBHs may have formed is as yet poorly

understood (Koliopanos, 2018), although several formation channels have been proposed including

primordial black holes (Lacroix & Silk, 2018), Population III stars (massive stars formed from

metal poor gas in the early universe; Lacroix & Silk, 2018), mergers of stellar-mass black holes in

dense environments (Rose et al., 2021), and super-Eddington accretion (accreting faster than the

traditional limit where radiation pressure emitted by accreting gas balances gravitational pull) in

dense environments (Ogawa et al., 2017; Toyouchi et al., 2021).

One channel of particular interest is the AGN channel, where stellar-mass black holes can

accrete at super-Eddington rates in the gas-rich environment of an AGN accretion disk (McKernan

et al., 2012, 2014). Such regions in the AGN accretion disk could form multiple > 50 M mass black

holes that could produce mergers such as GW190521. Of benefit to observational verification, said

super-Eddington accretion and the jets emitted from a mergers in an accretion disk should have a

signature as the jet breaks out of the AGN accretion disk (Zhu et al., 2021).

However, there are multiple aspects of the AGN channel that still need to be studied to determine

how to identify the combined the gravitational wave and electromagnetic signature on a BBH merger

embedded in an AGN accretion disk. Many of these aspects will be studied with performance

portable AMR simulations built upon the Parthenon library that I helped enable, including

GRMHD simulations of the BBH using Phoebus and jet simulations within the AGN accretion

disk using AthenaPK.

As a Metropolis fellow at Los Alamos National Laboratory, I will perform simulations of rela-

tivistic magnetized jets emerging from an AGN accretion to better characterize the electromagnetic

signature of a BBH merger for heavy black holes formed in the AGN channel. These simulations

will use the magnetized AGN jet physics implemented as part of my PhD work and re-contextualize

them into an AGN accretion disk using the “shearing box” approximation. This approximation

reformulates the MHD equations into a local, Cartesian reference frame co-rotating with a disk
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(Hawley et al., 1995; Sharma et al., 2006; Stone & Gardiner, 2010). The flow introduced by

the shearing box will approximate the AGN disk environment surrounding jets emanating from

mergers. After exploring these simulations comprising a magnetized jet escaping from a shearing

box, we will explore including coupling radiative transfer to the magnetohydrodynamics in order

to better model the dense environment of the AGN accretion disk. This work will use the same

algorithm as the cosmic ray solver we will use in the magnetized galaxy cluster simulations (Jiang

et al., 2014; Jiang & Oh, 2018). The inclusion of radiative transfer will enable better predictions of

electromagnetic observations of jets escaping AGN accretion disks. The next step will be to imple-

ment relativistic MHD jets in order to explore high velocity jets from mergers to see if relativistic

effects impact the jet structure and electromagnetic signature. That work will be informed by the

relativistic DG method developed in Chapter 5.

224



BIBLIOGRAPHY

Aarseth, S. J., Gott, III, J. R., & Turner, E. L. 1979, The Astrophysical Journal, 228, 664

Afzal, A., Ansari, Z., Faizabadi, A. R., & Ramis, M. K. 2017, Archives of Computational Methods
in Engineering, 24, 337

Alexakis, A., Mininni, P. D., & Pouquet, A. 2005, Phys. Rev. E, 72, 046301

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, Annual Review of Astronomy and Astrophysics,
49, 409

Amano, T. 2016, The Astrophysical Journal, 831, 100

Ando, S., & Nagai, D. 2008, Monthly Notices of the Royal Astronomical Society, 385, 2243

Arenas, A., & Chorin, A. J. 2006, Proceedings of the National Academy of Sciences, 103, 4352

Artigues, V., Kormann, K., Rampp, M., & Reuter, K. 2019, arXiv e-prints, arXiv:1911.08394

Aymar, R., Barabaschi, P., & Shimomura, Y. 2002, Plasma Physics and Controlled Fusion, 44, 519

Bambic, C. J., Morsony, B. J., & Reynolds, C. S. 2018, The Astrophysical Journal, 857, 84

Banerjee, N., & Sharma, P. 2014, MNRAS, 443, 687

Barniol Duran, R., Tchekhovskoy, A., & Giannios, D. 2017, Monthly Notices of the Royal Astro-
nomical Society, 469, 4957

Bartelmann, M. 2010, Classical and Quantum Gravity, 27, 233001

Bartelmann, M., & Schneider, P. 2001, Physics Reports, 340, 291

Basilakos, S., Plionis, M., & Lima, J. A. S. 2010, Physical Review D, 82, 083517

Bauer, M., Treichler, S., Slaughter, E., & Aiken, A. 2012, in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’12 (Los
Alamitos, CA, USA: IEEE Computer Society Press), 66:1–66:11

Baumjohann, W., & Treumann, R. A. 2012, Basic Space Plasma Physics (Revised Edition) (World
Scientific Publishing Company)

Beckingsale, D. A., Burmark, J., Hornung, R., et al. 2019, in 2019 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 71–81

Beckwith, K., & Stone, J. M. 2011, The Astrophysical Journal Supplement Series, 193, 6

Beg, F. 2019, From Interstellar Cloud to Star to Laboratory: Frontier HEDP Studies of Magnetized
Colliding Plasma Flows with Strong Radiative Cooling, Tech. Rep. DOE-UCSD-14493, Univ.
of California, San Diego, CA (United States), doi:10.2172/1500122

225



Bell, A. R. 1978, Monthly Notices of the Royal Astronomical Society, 182, 147

Bellan, P. M. 2008, Fundamentals of Plasma Physics (Cambridge University Press)

Bennett, J. C., Baker, G. M., Bettencourt, M. T., et al. 2015, doi:10.2172/1432926

Beresnyak, A. 2019, Living Reviews in Computational Astrophysics, 5, 2

Beresnyak, A., Giuliani, J. L., Jackson, S. L., et al. 2018, IEEE Transactions on Plasma Science,
46, 3881

Berlok, T., Pakmor, R., & Pfrommer, C. 2020, Monthly Notices of the Royal Astronomical Society,
491, 2919

Berlok, T., & Pessah, M. E. 2015, The Astrophysical Journal, 813, 22

Binney, J., & Tabor, G. 1995, Monthly Notices of the Royal Astronomical Society, 276, 663

Binney, J., & Tremaine, S. 1987, Galactic Dynamics

Bird, R. B., Stewart, W. E., & Lightfoot, E. N. 2006, Transport Phenomena (John Wiley & Sons)

Bittencourt, J. A. 2004, Fundamentals of Plasma Physics (New York, NY: Springer New York),
doi:10.1007/978-1-4757-4030-1

Blandford, R., Meier, D., & Readhead, A. 2019, Annual Review of Astronomy and Astrophysics,
57, 467

Blanton, E. L., Clarke, T. E., Sarazin, C. L., Randall, S. W., & McNamara, B. R. 2010, Proceedings
of the National Academy of Sciences, 107, 7174

Bodo, G., Mignone, A., & Rosner, R. 2004, PHYSICAL REVIEW E, 4

Böehringer, H., & Morfill, G. E. 1988, The Astrophysical Journal, 330, 609

Bonafede, A., Dolag, K., Stasyszyn, F., Murante, G., & Borgani, S. 2011, Monthly Notices of the
Royal Astronomical Society, 418, 2234

Bondi, H. 1952, Monthly Notices of the Royal Astronomical Society, 112, 195

Booth, C. M., & Schaye, J. 2009, MNRAS, 398, 53

Boozer, A. H. 2005, Reviews of Modern Physics, 76, 1071

Bordner, J., & Norman, M. L. 2018, arXiv:1810.01319 [astro-ph, physics:physics],
arXiv:1810.01319

Brachet, M. E., Bustamante, M. D., Krstulovic, G., et al. 2013, Physical Review E, 87, 013110

Brachet, M. E., Meiron, D. I., Orszag, S. A., et al. 1983, Journal of Fluid Mechanics, 130, 411

Braginskii, S. I. 1965, Reviews of Plasma Physics, 1, 205

226



Brandenburg, A., & Dobler, W. 2010, Astrophysics Source Code Library, ascl:1010.060

Bregman, J. N., & David, L. P. 1989, The Astrophysical Journal, 341, 49

Brent, R. P. 1973, Algorithms for Minimization Without Derivatives (Englewood Cliffs, New
Jersey: Prentice-Hall)

Britzen, S., Fendt, C., Eckart, A., & Karas, V. 2017, Astronomy & Astrophysics, 601, A52

Brüggen, M. 2003a, The Astrophysical Journal, 593, 700

—. 2003b, The Astrophysical Journal, 592, 839

Brüggen, M., & Vazza, F. 2015, in Magnetic Fields in Diffuse Media, ed. A. Lazarian, E. M. de
Gouveia Dal Pino, & C. Melioli (Berlin, Heidelberg: Springer), 599–614

Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014, The Astrophysical Journal Supplement
Series, 211, 19

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. 2020, Physical Review
Research, 2, 023068

Bustamante, M., Jez, P., Monroy Montañez, J. A., et al. 2010, High-Energy Cosmic-Ray Acceler-
ation, https://cds.cern.ch/record/1249755, doi:10.5170/CERN-2010-001.533

Butsky, I. S., & Quinn, T. R. 2018, The Astrophysical Journal, 868, 108

Carilli, C. L., & Taylor, G. B. 2002, Annual Review of Astronomy and Astrophysics, 40, 319

Carlberg, R. G., Yee, H. K. C., & Ellingson, E. 1997, The Astrophysical Journal, 478, 462

Carter Edwards, H., Trott, C. R., & Sunderland, D. 2014, Journal of Parallel and Distributed
Computing, 74, 3202

Casner, A. 2021, Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 379, 20200021

Cavagnolo, K. W., Donahue, M., Voit, G. M., & Sun, M. 2008, ApJL, 683, L107

—. 2009, ApJS, 182, 12

Chandran, B. D. G., & Cowley, S. C. 1998, Physical Review Letters, 80, 3077

Chatterjee, G., Schoeffler, K. M., Kumar Singh, P., et al. 2017, Nature Communications, 8, 15970

Chen, F. F., & Chen, F. F. 1984, Introduction to Plasma Physics and Controlled Fusion, 2nd edn.
(New York: Plenum Press)

Chen, J., & Liu, Q. H. 2013, Proceedings of the IEEE, 101, 242

Chiuderi, C., & Velli, M. 2015, Basics of Plasma Astrophysics, UNITEXT for Physics (Milano:
Springer Milan), doi:10.1007/978-88-470-5280-2

227



Choquette, J., Gandhi, W., Giroux, O., Stam, N., & Krashinsky, R. 2021, IEEE Micro, 41, 29

Churazov, E., Sunyaev, R., Forman, W., & Böhringer, H. 2002, Monthly Notices of the Royal
Astronomical Society, 332, 729

Ciotti, L., & Ostriker, J. P. 1997, The Astrophysical Journal, 487, L105

Clarke, T. E. 2004, Journal of The Korean Astronomical Society, 37, 337

Clarke, T. E., Kronberg, P. P., & Böhringer, H. 2001, The Astrophysical Journal, 547, L111

Cockburn, B., Hou, S., & Shu, C.-W. 1990, Mathematics of Computation, 54, 545

Cockburn, B., Kanschat, G., & Schötzau, D. 2005, Computers & Fluids, 34, 491

Cockburn, B., Lin, S.-Y., & Shu, C.-W. 1989, Journal of computational Physics, 84, 90

Cockburn, B., & Shu, C.-W. 1989, Mathematics of computation, 52, 411

—. 1998, Journal of Computational Physics, 141, 199

Colafrancesco, S., Dar, A., & De Rújula, A. 2004, Astronomy and Astrophysics, 413, 441

Craxton, R. S., Anderson, K. S., Boehly, T. R., et al. 2015, Physics of Plasmas, 22, 110501

Dagum, L., & Menon, R. 1998, IEEE Comput. Sci. Eng., 5, 46

Dallas, V., & Alexakis, A. 2013a, Physical Review E, 88, 053014

—. 2013b, Physics of Fluids, 25, 105106

—. 2013c, Physical Review E, 88, 063017

Dawson, J. M. 1983, Reviews of Modern Physics, 55, 403

Deakin, T., McIntosh-Smith, S., Price, J., et al. 2019, in 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 1–13

Deakin, T., Price, J., Martineau, M., & McIntosh-Smith, S. 2018, International Journal of Compu-
tational Science and Engineering, 17, 247

Dekel, A., & Birnboim, Y. 2007, Monthly Notices of the Royal Astronomical Society, 383, 119

Dennis, T. J., & Chandran, B. D. G. 2005, The Astrophysical Journal, 622, 205

Domainko, W., Gitti, M., Schindler, S., & Kapferer, W. 2004, Astronomy & Astrophysics, 425, L21

Domaradzki, J. A., Teaca, B., & Carati, D. 2010, Physics of Fluids, 22, 051702

Donnert, J., Vazza, F., Brüggen, M., & ZuHone, J. 2018, Space Science Reviews, 214,
doi:10.1007/s11214-018-0556-8

228



Du, P., Weber, R., Luszczek, P., et al. 2011, From CUDA to OpenCL: Towards a Performance-
portable Solution for Multi-platform GPU Programming

Dubois, Y., Devriendt, J., Slyz, A., & Silk, J. 2009, Monthly Notices of the Royal Astronomical
Society: Letters, 399, L49

Dubois, Y., Devriendt, J., Slyz, A., & Teyssier, R. 2010, Monthly Notices of the Royal Astronomical
Society, 409, 985

Dunn, R. J. H., & Fabian, A. C. 2004, Monthly Notices of the Royal Astronomical Society, 355,
862

Ebisu, T., Ishiyama, T., & Hayashi, K. 2022, Physical Review D, 105, 023016

Edgar, R. 2004, New Astronomy Reviews, 48, 843

Edwards, H. C., Trott, C. R., & Sunderland, D. 2014, Journal of Parallel and Distributed Comput-
ing, 74, 3202 , domain-Specific Languages and High-Level Frameworks for High-Performance
Computing

Egan, H., O’Shea, B. W., Hallman, E., et al. 2016, arXiv:1601.05083 [astro-ph], arXiv:1601.05083

Fabian, A. 2012, Annual Review of Astronomy and Astrophysics, 50, 455

Fabian, A. C. 1994, Annual Review of Astronomy and Astrophysics, 32, 277

Fabian, A. C., Sanders, J. S., Allen, S. W., et al. 2003, Monthly Notices of the Royal Astronomical
Society, 344, L43

Fabian, A. C., Sanders, J. S., Taylor, G. B., et al. 2006, Monthly Notices of the Royal Astronomical
Society, 366, 417

Fabian, A. C., Sanders, J. S., Ettori, S., et al. 2000, MNRAS, 318, L65

Fabjan, D., Borgani, S., Tornatore, L., et al. 2010, Monthly Notices of the Royal Astronomical
Society, 401, 1670

Federrath, C. 2013, Mon. Not. R. Astron. Soc., 436, 1245

—. 2016, Journal of Plasma Physics, 82, doi:10.1017/S0022377816001069

Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, arXiv:1302.4485 [astro-ph],
arXiv:1302.4485

Ferracina, L., & Spijker, M. 2005, Mathematics of Computation, 74, 201

Ferracina, L., & Spijker, M. N. 2004, SIAM Journal on Numerical Analysis, 42, 1073

Feynman, R. P., Hey, J. G., & Allen, R. W. 1998, Feynman Lectures on Computation (USA:
Addison-Wesley Longman Publishing Co., Inc.)

229



Fuhry, M., Giuliani, A., & Krivodonova, L. 2014, International Journal for Numerical Methods in
Fluids, 76, 982

Gabuzda, D. C. 2021, Galaxies, 9, 58

Gan, Z., Li, H., Li, S., & Yuan, F. 2017, The Astrophysical Journal, 839, 14

Gao, L., Navarro, J. F., Frenk, C. S., et al. 2012, Monthly Notices of the Royal Astronomical
Society, 425, 2169

Gaspari, M. 2015, Proceedings of the International Astronomical Union, 11, 17

Gaspari, M., Brighenti, F., & Temi, P. 2012a, Monthly Notices of the Royal Astronomical Society,
424, 190

Gaspari, M., Melioli, C., Brighenti, F., & D’Ercole, A. 2011, Monthly Notices of the Royal
Astronomical Society, 411, 349

Gaspari, M., Ruszkowski, M., & Sharma, P. 2012b, The Astrophysical Journal, 746, 94

Gaspari, M., & Sądowski, A. 2017, The Astrophysical Journal, 837, 149

Gaspari, M., Temi, P., & Brighenti, F. 2017, Monthly Notices of the Royal Astronomical Society,
466, 677

Ghizzardi, S., Rossetti, M., & Molendi, S. 2010, Astronomy & Astrophysics, 516, A32

Gitti, M., Brighenti, F., & McNamara, B. R. 2012, Advances in Astronomy, 2012, e950641

Giuliani, J. L., Beg, F. N., Gilgenbach, R. M., et al. 2012, IEEE Transactions on Plasma Science,
40, 3246

Glines, F. W., Anderson, M., & Neilsen, D. 2015, in 2015 IEEE International Conference on Cluster
Computing, 611–618, iSSN: 2168-9253

Glines, F. W., Grete, P., & O’Shea, B. W. 2021, Physical Review E, 103, 043203

Glines, F. W., O’Shea, B. W., & Voit, G. M. 2020, The Astrophysical Journal, 901, 117

Glines, F. W., Beckwith, K. R. C., Braun, J. R., et al. 2022, The Astrophysical Journal Supplement
Series

Godunov, S. K. 1959, Matematicheskii Sbornik, 89, 271

Gómez, P. L., Loken, C., Roettiger, K., & Burns, J. O. 2002, The Astrophysical Journal, 569, 122

Gottlieb, S. 2015, in Spectral and High Order Methods for Partial Differential Equations ICOSA-
HOM 2014, ed. R. M. Kirby, M. Berzins, & J. S. Hesthaven, Lecture Notes in Computational
Science and Engineering (Cham: Springer International Publishing), 17–30

Gottlieb, S., Ketcheson, D. I., & Shu, C.-W. 2011, Strong Stability Preserving Runge-Kutta and
Multistep Time Discretizations (World Scientific)

230



Gottlieb, S., & Shu, C.-W. 1998, Mathematics of Computation, 67, 73

Govoni, F., & Feretti, L. 2004, International Journal of Modern Physics D, 13, 1549

Grete, P., Glines, F. W., & O’Shea, B. W. 2021a, IEEE Transactions on Parallel and Distributed
Systems, 32, 85

Grete, P., O’Shea, B. W., & Beckwith, K. 2018, The Astrophysical Journal, 858, L19

—. 2021b, The Astrophysical Journal, 909, 148

—. 2021c, The Astrophysical Journal, 909, 148

Grete, P., O’Shea, B. W., Beckwith, K., Schmidt, W., & Christlieb, A. 2017, Physics of Plasmas,
24, 092311

Grete, P., Vlaykov, D. G., Schmidt, W., & Schleicher, D. R. G. 2016, Physics of Plasmas, 23,
062317

Grete, P., Dolence, J. C., Miller, J. M., et al. 2022, arXiv:2202.12309 [astro-ph], arXiv:2202.12309

Griebel, M., & Zaspel, P. 2010, Computer Science - Research and Development, 25, 65

Guo, F., & Mathews, W. G. 2011, The Astrophysical Journal, 728, 121

Guo, F., & Oh, S. P. 2008, Monthly Notices of the Royal Astronomical Society, 384, 251

Hahn, O., Martizzi, D., Wu, H.-Y., et al. 2017, Monthly Notices of the Royal Astronomical Society,
470, 166

HajiRassouliha, A., Taberner, A. J., Nash, M. P., & Nielsen, P. M. F. 2018, Signal Processing:
Image Communication, 68, 101

Hamlin, N. D., Smith, T., Roberds, N., Glines, F., & Beckwith, K. 2022, 26

Hammond, J. R., & Mattson, T. G. 2019, in Proceedings of the International Workshop on OpenCL,
IWOCL’19 (New York, NY, USA: Association for Computing Machinery)

Harlow, F. H. 1962, The Particle-in-Cell Method for Numerical Solution of Problems in Fluid
Dynamics, Tech. Rep. LADC-5288, Los Alamos National Lab. (LANL), Los Alamos, NM
(United States), doi:10.2172/4769185

Harlow, F. H., Evans, M., & Richtmyer, R. D. 1955, A Machine Calculation Method for Hydrody-
namic Problems (Los Alamos Scientific Laboratory of the University of California)

Hawkins, M. R. S. 2007, Astronomy & Astrophysics, 462, 581

Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, The Astrophysical Journal, 440, 742

Heinrich, A. M., Chen, Y.-H., Heinz, S., Zhuravleva, I., & Churazov, E. 2021, Monthly Notices of
the Royal Astronomical Society, stab1557

231



Heroux, M. A., & Willenbring, J. M. 2012, Scientific Programming, 20, doi:10.1155/2012/408130

Heroux, M. A., Bartlett, R. A., Howle, V. E., et al. 2005, ACM Trans. Math. Softw., 31, 397

Heroux, M. A., Doerfler, D. W., Crozier, P. S., et al. 2009, doi:10.2172/993908

Higueras, I. 2004, Journal of Scientific Computing, 21, 193

—. 2005, SIAM Journal on Numerical Analysis, 43, 924

Hillel, S., & Soker, N. 2016, Monthly Notices of the Royal Astronomical Society, 455, 2139

Ho, L. C. 2004, Coevolution of Black Holes and Galaxies: Volume 1, Carnegie Observatories
Astrophysics Series (Cambridge University Press)

Hoekstra, H., Bartelmann, M., Dahle, H., et al. 2013, Space Science Reviews, 177, 75

Holmberg, E. 1941, The Astrophysical Journal, 94, 385

Holmen, J. K., Humphrey, A., Sunderland, D., & Berzins, M. 2017, in Proceedings of the Practice
and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact,
PEARC17 (New York, NY, USA: ACM), 27:1–27:8

Holmen, J. K., Peterson, B., & Berzins, M. 2019, in 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 36–49

Hopkins, P. F. 2014, Astrophysics Source Code Library, ascl:1410.003

Hornung, R., Jones, H., Keasler, J., et al. 2015, ASC Tri-lab Co-design Level 2Milestone Report
2015, Tech Report LLNL-TR-677453, LLNL

Howes, G. G., Dorland, W., Cowley, S. C., et al. 2008, Physical Review Letters, 100, 065004

Hu, J., & Lou, Y.-Q. 2004, The Astrophysical Journal, 606, L1

Huarte-Espinosa, M., Frank, A., Blackman, E. G., et al. 2012, The Astrophysical Journal, 757, 66

Humpherys, J., Jarvis, T. J., & Evans, E. J. 2017, Foundations of Applied Mathematics

Incropera, F. P., & DeWitt, D. P. 1981, Fundamentals of Heat Transfer (Wiley)

Intel. 2021, Xeon Platinum 8280 Specs, https://www.intel.com/content/www/us/en/products/sku/192478/intel-
xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html

Intel Corporation. 2016, Intel 64 and IA-32 Architectures Optimization Reference Manual

Iwai, H. 1999, IEEE Journal of Solid-State Circuits, 34, 357

Jia, Z., Maggioni, M., Smith, J., & Scarpazza, D. P. 2019, arXiv:1903.07486 [cs], arXiv:
1903.07486

Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. 2018, arXiv:1804.06826 [cs], arXiv:
1804.06826

232



Jiang, Y.-F., & Oh, S. P. 2018, The Astrophysical Journal, 854, 5

Jiang, Y.-F., Stone, J. M., & Davis, S. W. 2014, The Astrophysical Journal Supplement Series, 213,
7

Jubelgas, M., Springel, V., & Dolag, K. 2004, Monthly Notices of the Royal Astronomical Society,
351, 423

Jubelgas, M., Springel, V., Enßlin, T., & Pfrommer, C. 2008, Astronomy and Astrophysics, 481, 33

Kale, L. V., & Krishnan, S. 1993, CHARM++: A Portable Concurrent Object Oriented System
Based on C++, Tech. rep., Champaign, IL, USA

Katz, N., Weinberg, D. H., & Hernquist, L. 1996, The Astrophysical Journal Supplement Series,
105, 19

Khosroshahi, H. G., Jones, L. R., & Ponman, T. J. 2004, Monthly Notices of the Royal Astronomical
Society, 349, 1240

Kida, S., & Orszag, S. A. 1990, Journal of Scientific Computing, 5, 85

Klimontovich, Y. L. 1994, Physics-Uspekhi, 37, 737

Klöckner, A., Warburton, T., Bridge, J., & Hesthaven, J. S. 2009, Journal of Computational Physics,
228, 7863

Kochanek, C. S. 2006, in Gravitational Lensing: Strong, Weak and Micro, ed. P. Schneider, C. S.
Kochanek, & J. Wambsganss (Berlin, Heidelberg: Springer), 91–268

Koliopanos, F. 2018, arXiv:1801.01095 [astro-ph], arXiv:1801.01095

Kolmogorov, A. 1941, Akademiia Nauk SSSR Doklady, 30, 301

Komissarov, S., & Porth, O. 2021, New Astronomy Reviews, 92, 101610

Konstantinidis, E., & Cotronis, Y. 2017, Journal of Parallel and Distributed Computing, 107, 37

Korpi, M. J., Brandenburg, A., Shukurov, A., Tuominen, I., & Nordlund, A. 1999, The Astrophysical
Journal, 514, L99

Kramer, R. M. J., Cyr, E. C., Miller, S. T., et al. 2020, A Plasma Modeling Hierarchy and Verification
Approach, Tech. Rep. SAND-2020-3576, Sandia National Lab. (SNL-NM), Albuquerque, NM
(United States), doi:10.2172/1608511

Kroupp, E., Stambulchik, E., Starobinets, A., et al. 2018, Physical Review E, 97, 013202

Krymskii, G. F. 1977, Akademiia Nauk SSSR Doklady, 234, 1306

Kumar, P., & Zhang, B. 2015, Physics Reports, 561, 1

Kunz, M. W., Schekochihin, A. A., Cowley, S. C., Binney, J. J., & Sanders, J. S. 2011, Monthly
Notices of the Royal Astronomical Society, 410, 2446

233



Lacroix, T., & Silk, J. 2018, The Astrophysical Journal, 853, L16

Laity, G., Robinson, A., Cuneo, M., et al. 2021, Towards Predictive Plasma Science and Engi-
neering through Revolutionary Multi-Scale Algorithms and Models, Final Report., Tech. Rep.
SAND2021-0718, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia
National Laboratories, SNL California, doi:10.2172/1813907

Landauer, R. 1988, Nature, 335, 779

Larson, R. B. 1981, Monthly Notices of the Royal Astronomical Society, 194, 809

Lecoanet, D., McCourt, M., Quataert, E., et al. 2016, Monthly Notices of the Royal Astronomical
Society, 455, 4274

Ledvina, S. A., Ma, Y.-J., & Kallio, E. 2008, Space Science Reviews, 139, 143

Lee, E., Brachet, M. E., Pouquet, A., Mininni, P. D., & Rosenberg, D. 2008, Physical Review E,
78, 066401

—. 2010, Physical Review E, 81, 016318

Leiserson, C. E., Thompson, N. C., Emer, J. S., et al. 2020, Science, 368, eaam9744

LeVeque, R. J. 2002, Finite Volume Methods for Hyperbolic Problems (Cambridge; New York:
Cambridge University Press)

Li, H., Lapenta, G., Finn, J. M., Li, S., & Colgate, S. A. 2006, The Astrophysical Journal, 643, 92

Li, Y., & Bryan, G. L. 2012, The Astrophysical Journal, 747, 26

—. 2014a, The Astrophysical Journal, 789, 54

—. 2014b, The Astrophysical Journal, 789, 153

Li, Y., Bryan, G. L., Ruszkowski, M., et al. 2015, ApJ, 811, 73

Li, Y., Gendron-Marsolais, M.-L., Zhuravleva, I., et al. 2020, The Astrophysical Journal Letters,
889, L1

LIGO Scientific Collaboration and Virgo Collaboration, Abbott, R., Abbott, T. D., et al. 2020,
Physical Review Letters, 125, 101102

Lima, J. A. S., Cunha, J. V., & Alcaniz, J. S. 2003, Physical Review D, 68, 023510

Lind, S. J., Rogers, B. D., & Stansby, P. K. 2020, Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 476, 20190801

Liu, C., Zhou, G., Shyy, W., & Xu, K. 2019, Shock Waves, 29, 1083

Lo, Y. J., Williams, S., Van Straalen, B., et al. 2015, in High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation, ed. S. A. Jarvis, S. A. Wright, & S. D.
Hammond (Springer International Publishing), 129–148

234



Loewenstein, M., Zweibel, E. G., & Begelman, M. C. 1991, The Astrophysical Journal, 377, 392

Longair, M. S. 2008, Galaxy Formation, 2nd edn., Astronomy and Astrophysics Library (Berlin ;
New York: Springer)

Luo, W., Li, Y., Wang, H., et al. 2019, Laser and Particle Beams, 37, 301

Lyutikov, M. 2007, The Astrophysical Journal, 668, L1

Malyshkin, L., & Kulsrud, R. 2001, The Astrophysical Journal, 549, 402

Marcowith, A., Ferrand, G., Grech, M., et al. 2020, arXiv:2002.09411 [astro-ph], arXiv:2002.09411

Markevitch, M., Vikhlinin, A., & Mazzotta, P. 2001, The Astrophysical Journal, 562, L153

Marques, D., Duarte, H., Ilic, A., et al. 2017, in 2017 International Conference on High Performance
Computing Simulation (HPCS), 898–907, iSSN: null

Martí, J.-M. 2019, Galaxies, 7, 24

Martí, J. M., & Müller, E. 2003, Living Reviews in Relativity, 6, doi:10.12942/lrr-2003-7

—. 2015, Living Reviews in Computational Astrophysics, 1, 3

Martineau, M., McIntosh-Smith, S., & Gaudin, W. 2017, Concurrency and Computation: Practice
and Experience, 29, e4117, e4117 cpe.4117

Martizzi, D., Hahn, O., Wu, H.-Y., et al. 2016, Monthly Notices of the Royal Astronomical Society,
459, 4408

Mathews, W. G. 1971, The Astrophysical Journal, 165, 147

May, M. M., & White, R. H. 1966, Physical Review, 141, 1232

McComb, W. D. 1990, The Physics of Fluid Turbulence

McCourt, M., Sharma, P., Quataert, E., & Parrish, I. J. 2012, Monthly Notices of the Royal
Astronomical Society, 419, 3319

McDonald, M., Veilleux, S., Rupke, D. S. N., & Mushotzky, R. 2010, ApJ, 721, 1262

McDonald, M., McNamara, B. R., Voit, G. M., et al. 2019, The Astrophysical Journal, 885, 63

McKernan, B., Ford, K. E. S., Kocsis, B., Lyra, W., & Winter, L. M. 2014, Monthly Notices of the
Royal Astronomical Society, 441, 900

McKernan, B., Ford, K. E. S., Lyra, W., & Perets, H. B. 2012, Monthly Notices of the Royal
Astronomical Society, 425, 460

McNamara, B. R., & Nulsen, P. E. J. 2007, Annual Review of Astronomy and Astrophysics, 45,
117

235



McNamara, B. R., Wise, M., Nulsen, P. E. J., et al. 2000, ApJL, 534, L135

Medina, D. S., St-Cyr, A., & Warburton, T. 2014, arXiv:1403.0968 [cs], arXiv:1403.0968

Meece, G. R., O’Shea, B. W., & Voit, G. M. 2015, The Astrophysical Journal, 808, 43

Meece, G. R., Voit, G. M., & O’Shea, B. W. 2017, The Astrophysical Journal, 841, 17pp

Meece Jr, G. R. 2016, AGN Feedback and Delivery Methods for Simulations of Cool-Core Galaxy
Clusters (Michigan State University)

Meier, D. L. 1999, The Astrophysical Journal, 518, 788

Messina, P. 2017, Computing in Science Engineering, 19, 63

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, The Journal
of Chemical Physics, 21, 1087

Metzler, C. A., & Evrard, A. E. 1994, The Astrophysical Journal, 437, 564

Mignone, A., & Bodo, G. 2005, Monthly Notices of the Royal Astronomical Society, 364, 126

—. 2006, Monthly Notices of the Royal Astronomical Society, 368, 1040

Mignone, A., & McKinney, J. C. 2007, Monthly Notices of the Royal Astronomical Society, 378,
1118

Mignone, A., Plewa, T., & Bodo, G. 2005, The Astrophysical Journal Supplement Series, 160, 199

Mignone, A., Ugliano, M., & Bodo, G. 2009, Monthly Notices of the Royal Astronomical Society,
393, 1141

Mignone, A., Zanni, C., Tzeferacos, P., et al. 2011, The Astrophysical Journal Supplement Series,
198, 7

Miller, G. H., Moses, E. I., & Wuest, C. R. 2004, Optical Engineering, 43, 2841

Miniati, F. 2014, The Astrophysical Journal, 782, 21

—. 2015, The Astrophysical Journal, 800, 60

Mo, H., Van den Bosch, F., & White, S. 2010, Galaxy Formation and Evolution (Cambridge; New
York: Cambridge University Press)

Moe, S. A., Rossmanith, J. A., & Seal, D. C. 2015, arXiv:1507.03024 [math], arXiv:1507.03024

Montgomery, D., & Turner, L. 1981, The Physics of Fluids, 24, 825

Morganti, R. 2017, Frontiers in Astronomy and Space Sciences, 4

Myers, A., Colella, P., & Straalen, B. V. 2016, The Astrophysical Journal, 816, 56

Nakamura, M., Li, H., & Li, S. 2006, The Astrophysical Journal, 652, 1059

236



—. 2007, The Astrophysical Journal, 656, 721

Narayan, R., & Medvedev, M. V. 2001, The Astrophysical Journal, 562, L129

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, The Astrophysical Journal, 462, 563

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, The Astrophysical Journal, 490, 493

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

Navarro, J. F., Hayashi, E., Power, C., et al. 2004, Monthly Notices of the Royal Astronomical
Society, 349, 1039

Nelson, D., Pillepich, A., Springel, V., et al. 2019, Monthly Notices of the Royal Astronomical
Society, 490, 3234

Nolte, P. o. P. a. A. D. D., & Nolte, D. D. 2001, Mind at Light Speed: A New Kind of Intelligence
(Simon and Schuster)

Norman, M. L., & Bryan, G. L. 1999, in The Radio Galaxy Messier 87, ed. H.-J. Röser &
K. Meisenheimer, Lecture Notes in Physics (Berlin, Heidelberg: Springer), 106–115

Núñez-de la Rosa, J., & Munz, C.-D. 2018, Computer Physics Communications, 222, 113

NVIDIA Corporation. 2014, NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110/210

—. 2016, NVIDIA Tesla P100

—. 2017, NVIDIA Tesla V100 GPU Architecture

Ogawa, T., Mineshige, S., Kawashima, T., Ohsuga, K., & Hashizume, K. 2017, Publications of the
Astronomical Society of Japan, 69, 33

Ongena, J., Koch, R., Wolf, R., & Zohm, H. 2016, Nature Physics, 12, 398

Ottinger, P. F., & Schumer, J. W. 2006, Physics of Plasmas, 13, 063109

Panagoulia, E. K., Fabian, A. C., & Sanders, J. S. 2014, Monthly Notices of the Royal Astronomical
Society, 438, 2341

Parrish, I. J., Quataert, E., & Sharma, P. 2009, The Astrophysical Journal, 703, 96

Patterson, D. 2010, IEEE Spectrum, 47, 28

Pennycook, S., Sewall, J., & Lee, V. 2019, Future Generation Computer Systems, 92, 947

Pennycook, S. J., Sewall, J. D., & Lee, V. W. 2016, arXiv:1611.07409 [cs], arXiv:1611.07409

Pfrommer, C., Enßlin, T. A., Springel, V., Jubelgas, M., & Dolag, K. 2007, Monthly Notices of the
Royal Astronomical Society, 378, 385

237



Pillepich, A., Nelson, D., Springel, V., et al. 2019, Monthly Notices of the Royal Astronomical
Society, 490, 3196

Pouquet, A., Lee, E., Brachet, M. E., Mininni, P. D., & Rosenberg, D. 2010, Geophysical and
Astrophysical Fluid Dynamics, 104, 115

Prasad, D., Sharma, P., & Babul, A. 2015, ApJ, 811, 108

—. 2017, Monthly Notices of the Royal Astronomical Society, 471, 1531

—. 2018, The Astrophysical Journal, 863, 62

Pratt, G. W., Arnaud, M., Biviano, A., et al. 2019, Space Science Reviews, 215, 25

Pratt, G. W., Croston, J. H., Arnaud, M., & Böhringer, H. 2009, Astronomy and Astrophysics, 498,
361

Rafferty, D. A., McNamara, B. R., & Nulsen, P. E. J. 2008, ApJ, 687, 899

Reed, W. H., & Hill, T. R. 1973, Triangular Mesh Methods for the Neutron Transport Equation,
Tech. Rep. LA-UR-73-479; CONF-730414-2, Los Alamos Scientific Lab., N.Mex. (USA)

Reguly, I. Z., & Mudalige, G. R. 2020, Computers & Fluids, 199, 104425

Rephaeli, Y., & Silk, J. 1995, The Astrophysical Journal, 442, 91

Revaz, Y., Combes, F., & Salomé, P. 2008, A&A, 477, L33

Reynolds, C. 2018, The Micro- and Macro-Physics of Thermal Conduction in the ICM, 49

Reynolds, O. 1883, Philosophical Transactions of the Royal Society of London, 174, 935

Riccardi, G., & Durante, D. 2008, in International Mathematical Forum, Vol. 42, 2081–2111

Richardson, L. F. 1922, Weather Prediction by Numerical Process (Cambridge: Cambridge Uni-
versity Press)

Ritchie, B. W., & Thomas, P. A. 2002, Monthly Notices of the Royal Astronomical Society, 329,
675

Ritos, K., Kokkinakis, I. W., & Drikakis, D. 2018, Computers & Fluids, 173, 307

Roberds, N. A., Cartwright, K. L., Sandoval, A. J., et al. 2022, 9

Roettiger, K., Loken, C., & Burns, J. O. 1997, The Astrophysical Journal Supplement Series, 109,
307

Rogers, K. K., & Peiris, H. V. 2021, Physical Review D, 103, 043526

Roh, S., Ryu, D., Kang, H., Ha, S., & Jang, H. 2019, The Astrophysical Journal, 883, 138

Rose, S. C., Naoz, S., Sari, R., & Linial, I. 2021, arXiv:2201.00022 [astro-ph], arXiv:2201.00022

238



Rosin, M. S., Schekochihin, A. A., Rincon, F., & Cowley, S. C. 2011, Monthly Notices of the Royal
Astronomical Society, 413, 7

Rott, N. 1990, Annual Review of Fluid Mechanics, 22, 1

Rudakov, L. I., & Sudan, R. N. 1997, Physics Reports, 283, 253

Russell, H. R., McNamara, B. R., Fabian, A. C., et al. 2016, MNRAS, 458, 3134

Russell, H. R., McDonald, M., McNamara, B. R., et al. 2017, ApJ, 836, 130

Ruszkowski, M., & Begelman, M. C. 2002, The Astrophysical Journal, 581, 223

Ruszkowski, M., Brüggen, M., & Begelman, M. C. 2004, The Astrophysical Journal, 611, 158

Ruszkowski, M., Lee, D., Brüggen, M., Parrish, I., & Oh, S. P. 2011, The Astrophysical Journal,
740, 81

Ruszkowski, M., & Oh, S. P. 2011, Monthly Notices of the Royal Astronomical Society, 414, 1493

Ryu, D., Chattopadhyay, I., & Choi, E. 2006, The Astrophysical Journal Supplement Series, 166,
410

Ryutov, D. D., & Remington, B. A. 2002, Plasma Physics and Controlled Fusion, 44, B407

Sammak, S., Nouri, A. G., Ansari, N., & Givi, P. 2015, in Mathematical Modeling of Technological
Processes, ed. N. Danaev, Y. Shokin, & A.-Z. Darkhan, Communications in Computer and
Information Science (Cham: Springer International Publishing), 124–132

Sanchez, R., & Newman, D. E. 2015, Plasma Physics and Controlled Fusion, 57, 123002

Sarazin, C. L. 1988, X-Ray Emission from Clusters of Galaxies

Schekochihin, A. A. 2020, arXiv:2010.00699 [astro-ph, physics:nlin, physics:physics],
arXiv:2010.00699

Schekochihin, A. A., Cowley, S. C., Dorland, W., et al. 2009, The Astrophysical Journal Supplement
Series, 182, 310

Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L., & McWilliams, J. C. 2004, The
Astrophysical Journal, 612, 276

Schmidt, W., & Federrath, C. 2011, Astronomy & Astrophysics, 528, A106

Schneider, V., Katscher, U., Rischke, D. H., et al. 1993, Journal of Computational Physics, 105, 92

Schure, K. M., Kosenko, D., Kaastra, J. S., Keppens, R., & Vink, J. 2009, Astronomy & Astro-
physics, 508, 751

Sharma, P., Hammett, G. W., Quataert, E., & Stone, J. M. 2006, The Astrophysical Journal, 637,
952

239



Shebalin, J. V., Matthaeus, W. H., & Montgomery, D. 1983, Journal of Plasma Physics, 29, 525

Short, C. J., Thomas, P. A., & Young, O. E. 2013, Monthly Notices of the Royal Astronomical
Society, 428, 1225

Shu, C.-W., & Osher, S. 1989, Journal of Computational Physics, 83, 32

Shumlak, U. 2015, High Fidelity Physics Using the Multi-Fluid Plasma Model

Sijacki, D., Springel, V., Di Matteo, T., & Hernquist, L. 2007, Monthly Notices of the Royal
Astronomical Society, 380, 877

Simionescu, A., ZuHone, J., Zhuravleva, I., et al. 2019, Space Science Reviews, 215, 24

Simon, H. D. 1992, Parallel Computational Fluid Dynamics - Implementations and Results, Tech.
rep., Cambridge, MA (United States); MIT Press

Sinars, D. B., Sweeney, M. A., Alexander, C. S., et al. 2020, Physics of Plasmas, 27, 070501

Smith, B., O’Shea, B. W., Voit, G. M., Ventimiglia, D., & Skillman, S. W. 2013, The Astrophysical
Journal, 778, 152

Smith, B. D., Bryan, G. L., Glover, S. C. O., et al. 2017, Monthly Notices of the Royal Astronomical
Society, 466, 2217

Sommerfeld, A. 1909, Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeits-
bewegungen

Spitzer, L. 1956, Physics of Fully Ionized Gases

—. 1978, Physical Processes in the Interstellar Medium, doi:10.1002/9783527617722

Springel, V. 2005, Monthly Notices of the Royal Astronomical Society, 364, 1105

—. 2010, Annual Review of Astronomy and Astrophysics, 48, 391

Springel, V., Yoshida, N., & White, S. D. M. 2001, New Astronomy, 6, 79

St-Onge, D. A., Kunz, M. W., Squire, J., & Schekochihin, A. A. 2020, arXiv e-prints, 2003,
arXiv:2003.09760

Steijl, R., & Barakos, G. N. 2018, Computers & Fluids, 173, 22

Steinwandel, U. P., Boess, L. M., Dolag, K., & Lesch, H. 2021, arXiv:2108.07822 [astro-ph],
arXiv:2108.07822

Stokes, G. G. 1851, Transactions of the Cambridge Philosophical Society, 9, 8

Stone, J. E., Gohara, D., & Shi, G. 2010, Computing in Science Engineering, 12, 66

Stone, J. M., & Gardiner, T. 2009, New Astronomy, 14, 139

240



Stone, J. M., & Gardiner, T. A. 2010, The Astrophysical Journal Supplement Series, 189, 142

Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., & Simon, J. B. 2008a, The Astrophysical
Journal Supplement Series, 178, 137

—. 2008b, The Astrophysical Journal Supplement Series, 178, 137

Stone, J. M., & Norman, M. L. 1992, The Astrophysical Journal Supplement Series, 80, 753

Stone, J. M., Tomida, K., White, C. J., & Felker, K. G. 2020a, The Astrophysical Journal Supplement
Series, 249, 4

—. 2020b, arXiv:2005.06651

Straatsma, T. P., Antypas, K. B., & Williams, T. J. 2017, Exascale Scientific Applications: Scala-
bility and Performance Portability, 1st edn. (Chapman & Hall/CRC)

Sunyaev, R. A., & Zel’dovich, Y. B. 1980, Annual Review of Astronomy and Astrophysics, 18, 537

Synge, J. 1957, The Relativistic Gas, Series in Physics (North-Holland Publishing Company)

Tabor, G., & Binney, J. 1993, Monthly Notices of the Royal Astronomical Society, 263, 323

Taub, A. H. 1948, Physical Review, 74, 328

Taylor, G. I. 1938, Proceedings of the Royal Society of London. Series A - Mathematical and
Physical Sciences, 164, 476

Taylor, G. I., & Green, A. E. 1937, Proceedings of the Royal Society of London Series A, 158, 499

Teyssier, R. 2002, Astronomy & Astrophysics, 385, 337

Theis, T. N., & Wong, H.-S. P. 2017, Computing in Science Engineering, 19, 41

Tobias, S. M. 2021, Journal of Fluid Mechanics, 912, doi:10.1017/jfm.2020.1055

Top500. 2000, ASCI Red | TOP500, https://www.top500.org/system/168753/

—. 2010, Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, NVIDIA 2050 | TOP500,
https://www.top500.org/system/176929/

—. 2020, Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu Interconnect
D | TOP500, https://www.top500.org/system/179807/

—. 2021, Frontera - Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR |
TOP500, https://www.top500.org/system/179607/

Toro, E. F. 2009, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction, 3rd edn. (Dordrecht ; New York: Springer)

Toyouchi, D., Inayoshi, K., Hosokawa, T., & Kuiper, R. 2021, The Astrophysical Journal, 907, 74

241



Trac, H., & Pen, U.-L. 2003, Publications of the Astronomical Society of the Pacific, 115, 303

Tremmel, M., Karcher, M., Governato, F., et al. 2017, Monthly Notices of the Royal Astronomical
Society, 470, 1121

Tremmel, M., Quinn, T. R., Ricarte, A., et al. 2019, Monthly Notices of the Royal Astronomical
Society, 483, 3336

Treumann, R. A., & Baumjohann, W. 1997, Advanced Space Plasma Physics (PUBLISHED BY IM-
PERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING
CO.), doi:10.1142/p020

Trott, C. R., Lebrun-Grandié, D., Arndt, D., et al. 2022, IEEE Transactions on Parallel and
Distributed Systems, 33, 805

Tskhakaya, D., Matyash, K., Schneider, R., & Taccogna, F. 2007, Contributions to Plasma Physics,
47, 563

Tukey, J. W. 1977, Exploratory Data Analysis (Reading, Mass. : Addison-Wesley Pub. Co.)

Tümer, A., Tombesi, F., Bourdin, H., et al. 2019, Astronomy & Astrophysics, 629, A82

Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, The Astrophysical Journal Supplement Series,
192, 9

Vacca, V., Murgia, M., Govoni, F., et al. 2018, Galaxies, 6, 142

Vahala, G., Keating, B., Soe, M., et al. 2008, Commun. Comput. Phys., 23

van Dyke, M. 1982, NASA STI/Recon Technical Report A, 82, 36549

van Leer, B. 1979, Journal of Computational Physics, 32, 101

Vidal-García, A., Falgarone, E., Arrigoni Battaia, F., et al. 2021, Monthly Notices of the Royal
Astronomical Society, 506, 2551

Vikhlinin, A., Markevitch, M., & Murray, S. S. 2001a, The Astrophysical Journal, 549, L47

—. 2001b, The Astrophysical Journal, 551, 160

Villiers, J.-P. D., Hawley, J. F., & Krolik, J. H. 2003, The Astrophysical Journal, 599, 1238

Vlaykov, D. G., Grete, P., Schmidt, W., & Schleicher, D. R. G. 2016, Physics of Plasmas, 23,
062316

Voigt, L. M., & Fabian, A. C. 2004, \mnras, 347, 1130

Voigt, L. M., Schmidt, R. W., Fabian, A. C., Allen, S. W., & Johnstone, R. M. 2002, Monthly
Notices of the Royal Astronomical Society, 335, L7

Voit, G. M. 2005, Reviews of Modern Physics, 77, 207

242



Voit, G. M., & Bryan, G. L. 2001, Nature, 414, 425

Voit, G. M., Donahue, M., Bryan, G. L., & McDonald, M. 2015, Nature, 519, 203

Voit, G. M., Meece, G., Li, Y., et al. 2017, The Astrophysical Journal, 845, 80

Wadsley, J., Stadel, J., & Quinn, T. 2004, New Astronomy, 9, 137

Wagh, B., Sharma, P., & McCourt, M. 2014, Monthly Notices of the Royal Astronomical Society,
439, 2822

Walker, S., Simionescu, A., Nagai, D., et al. 2019, Space Science Reviews, 215, 7

Wang, C., Ruszkowski, M., Pfrommer, C., Oh, P., & Yang, H. 2020, 236, 124.02

Wang, S., Khoury, J., Haiman, Z., & May, M. 2004, Physical Review D, 70, 123008

Wang, Z. J., Fidkowski, K., Abgrall, R., et al. 2013, International Journal for Numerical Methods
in Fluids, 72, 811

Weinberger, R., Springel, V., & Pakmor, R. 2020, The Astrophysical Journal Supplement Series,
248, 32

Weinberger, R., Springel, V., Hernquist, L., et al. 2017, Monthly Notices of the Royal Astronomical
Society, 465, 3291

White, C. J., Stone, J. M., & Gammie, C. F. 2016a, The Astrophysical Journal Supplement Series,
225, 22

—. 2016b, The Astrophysical Journal Supplement Series, 225, 22

White, M., Cohn, J. D., & Smit, R. 2010, Monthly Notices of the Royal Astronomical Society, 408,
1818

Williams, S., Waterman, A., & Patterson, D. 2009, Commun. ACM, 52, 65

Wilson, J. R. 1972, The Astrophysical Journal, 173, 431

Woosley, S. E. 2017, The Astrophysical Journal, 836, 244

Wu, H.-Y., Evrard, A. E., Hahn, O., et al. 2015, Monthly Notices of the Royal Astronomical Society,
452, 1982

Wu, K., & Tang, H. 2016, The Astrophysical Journal Supplement Series, 228, 3

Wu, K. K. S., Fabian, A. C., & Nulsen, P. E. J. 1998, Monthly Notices of the Royal Astronomical
Society, 301, L20

Xu, Z., Zhao, H., & Zheng, C. 2015, Journal of Computational Physics, 281, 844

Yang, H.-Y. K., & Reynolds, C. S. 2016a, The Astrophysical Journal, 829, 90

243



—. 2016b, The Astrophysical Journal, 818, 181

Yang, Y., Shi, Y., Wan, M., Matthaeus, W. H., & Chen, S. 2016, Phys. Rev. E, 93, 061102

Young, D. S. D. 2010, The Astrophysical Journal, 710, 743

Zanna, L. D., & Bucciantini, N. 2002, Astronomy & Astrophysics, 390, 1177

Zhang, U.-H., Schive, H.-Y., & Chiueh, T. 2018, The Astrophysical Journal Supplement Series,
236, 50

Zhang, W., Almgren, A., Beckner, V., et al. 2019, Journal of Open Source Software, 4, 1370

Zhao, D., & Aluie, H. 2018, Phys. Rev. Fluids, 3, 054603

Zheng, Y., Kamil, A., Driscoll, M. B., Shan, H., & Yelick, K. 2014, in 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, 1105–1114

Zhu, J.-P., Zhang, B., Yu, Y.-W., & Gao, H. 2021, The Astrophysical Journal, 906, L11

Zhuravleva, I., Churazov, E., Schekochihin, A. A., et al. 2019, Nature Astronomy, 3, 832

—. 2014, Nature, 515, 85

ZuHone, J. A., Markevitch, M., & Johnson, R. E. 2010, The Astrophysical Journal, 717, 908

Zylstra, A. B., Hurricane, O. A., Callahan, D. A., et al. 2022, Nature, 601, 542

244


	List of Tables
	List of Figures
	Introduction
	 Galaxy Clusters
	 Plasmas 
	Plasma Regimes
	 Turbulence in Plasmas 
	 The Simulation of Plasmas as a Research Tool 
	Numerical Methods for Plasmas in the Fluid Approximation

	The Intracluster Medium – Plasma Physics Applied to Galaxy Clusters
	The cool core cluster problem
	Self-Regulating AGN Feedback via Precipitation 
	 The nature of AGN Feedback 
	Simulation of Galaxy Clusters

	 The Changing Supercomputer Architecture Landscape 
	 Performance Portability 

	 Outline of Dissertation 

	Tests of AGN Feedback Kernels in Simulated Galaxy Clusters
	Introduction
	Methodology
	Simulation Setup
	AGN Feedback Kernels

	Results
	Categorization of Simulations
	Central Cooling
	Central Convective Zone
	Central Entropy Floor

	Important radii: rL, rH, r-, r+, and rmulti
	Condensation of Cold Gas
	Central Heating

	Discussion
	No Adequate Heating Kernel
	Robustness of Feedback Algorithm
	Comparison to Observations
	Comparison to Other Simulations
	Implications
	Other Models Investigated
	Future Models

	Summary

	Magnetized Decaying Turbulence in the Weakly Compressible Taylor-Green Vortex
	Introduction
	Method
	MHD Equations and Numerical Method
	Magnetized TG Vortex
	Energy Transfer Analysis

	Results
	Bulk Properties
	Evolution of energy reservoirs
	Energy Spectra
	Spectral Index

	Energy Transfer
	Nonlocal Energy Transfer
	Inverted Turbulent Cascades
	Cross-Scale Flux


	Discussion
	Comparison to driven turbulence simulations
	Comparison to previous results
	Implication of results
	Limitations

	Conclusions

	K-Athena: a performance portable structured grid finite volume magnetohydrodynamics code
	Introduction
	Method
	Kokkos
	Athena++
	K-Athena = Kokkos + Athena++

	Results
	Profiling
	Performance portability
	Overview of architectures used
	Roofline model
	Performance portability metric

	Scaling
	Single CPU and GPU performance
	Weak scaling

	Strong scaling

	Current limitations and future enhancements
	Conclusions

	Relativistic Discontinuous-Galerkin Hydrodynamics
	Introduction
	Theoretical Background and Discretization
	Special Relativistic Hydrodynamics
	Equations of State
	Spatial and Temporal Discretizations
	Computation of the Surface Flux
	Physicality Enforcing Operator

	Recovery of Primitive Variables
	Ideal Gas Equation of State
	Taub-Matthews Equation of State
	Conserved to Primitive Solver Comparisons

	Tests of the Relativistic Hydrodynamics Scheme
	Linear Waves
	1D Riemann Problems
	1D Taub-Matthews Equation of State Test
	2D Riemann Problems
	 2D Riemann Problems: Test 1
	 2D Riemann Problems: Test 2
	 2D Riemann Problems: Test 3

	Kelvin-Helmholtz Instability
	Linear Growth Phase
	Non-linear Evolution

	Performance

	Summary

	Simulations of Galaxy Clusters with Magnetic AGN Jet Feedback
	Motivation
	Methodology
	Simulation Setup
	Gravitational Potential
	Entropy Profile
	Initial Pressure and Density (Hydrostatic Equilibrium)
	Linearly Interpolated Tabular Cooling
	Precessing Jet Coordinates
	Magnetic tower
	AGN Feedback
	Thermal AGN Feedback
	Kinetic AGN Feedback
	Magnetic AGN Feedback
	AGN cold mass triggering


	Current State of Simulations

	Summary and Future Directions
	Summary of Dissertation Work
	Chapter 2: Tests of AGN Feedback Kernels in Simulated Galaxy Clusters
	Chapter 3: Magnetized Decaying Turbulence in the Weakly Compressible Taylor-Green Vortex
	Chapter 4: K-Athena: A Performance Portable Structured Grid Finite Volume Magnetohydrodynamics Code 
	Chapter 5: Relativistic Discontinuous-Galerkin Hydrodynamics

	Ongoing and Future Work
	Parthenon and AthenaPK
	Relativistic DG Methods
	Simulations of Magnetized Galaxy Clusters
	AGN Accretion Disk Channel for Intermediate Mass Black Holes



