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ABSTRACT

APPLICATION OF RIGOROUS HIGH-ORDER METHODS AND NORMAL FORMS TO
NONLINEAR SYSTEMS

By

Adrian Weisskopf

The nonlinearities of dynamical systems often display the most interesting and fascinating behavior.

At the same time, those nonlinearities complicate finding closed form analytic solutions, especially

for complex systems, to the point where it is often impossible. Differential algebra (DA) based

methods allow us to analyze those systems with all their nonlinearities up to arbitrary order in an

automated, computer based framework that operates with floating point accuracy.

This thesis will investigate repetitive dynamical systems from seemingly unrelated fields of

study using DA methods such as DA based transfer and Poincaré maps, the DA normal form

algorithm, normal form defect studies, and verified methods based on Taylor Models. The common

mathematical underpinnings of those dynamical systems allow us to analyze them with different

techniques that have the same methods at their core.

Specifically, we will analyze resonances, associated fixed point structures, and oscillation periods

of particles in the accelerator storage ring of the muon 𝑔-2 experiment at Fermilab to gain a detailed

understanding of the stability of the system and the potential loss mechanism of particles. If

successful, the muon 𝑔-2 experiment raises existential questions about the completeness of the

Standard Model of particle physics, which makes our contributions to understanding of the system’s

stability highly relevant.

The same methods used for the analysis of the accelerator storage ring will also be used to generate

far reaching sets of satellite orbits for formation flying missions under the Earth’s gravitational zonal

perturbations. Our approach is particularly elegant and precise, and its theoretical limits are far

beyond the range of practical applications.

One central method in both of those analyses is the DA normal form algorithm. Using the

well-known example of the centrifugal governor for illustration, the special properties of the resulting



normal form, the sensitivities and limitations of the algorithm, and its resulting quantities are

explained in detail.

In the last chapter, we will provide first results and an outlook for future work of the presented

methods in the realm of verified methods, and illustrate the current possibilities as well as future

opportunities and challenges. In particular, Taylor Model based verified global optimization is

introduced and used to calculate rigorous stability estimates for different configurations of the muon

𝑔-2 storage ring.
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CHAPTER 1

INTRODUCTION

Henri Poincaré was a pioneer – his three volumes on ‘New Methods of Celestial Mechanics’ [65]

were one of the greatest methodological contributions not only to the field of celestial mechanics,

but for the mathematical theory of dynamical systems in general. Numerous methods to describe

and analyze dynamical systems in various research areas have been established and developed based

on his work.

Poincaré’s ideas and concepts were groundbreaking, but strongly limited in their application.

Performing his perturbation theory approaches by hand requires a certain simplicity or algebraic

structure of the considered system. Many complex systems do not exhibit this simplicity by definition

and are impossible to solve in a purely analytic closed form. Consequently, those systems are often

reduced in their complexity to ideal cases or simplified versions to solve them analytically.

Computer based numerical methods have been developed to solve complex systems for very

specific initial conditions with floating point accuracy. However, to develop sophisticated solutions

of complex systems, which are more general than just for a specific set of initial conditions, it is

critical to capture as much of the algebraic structure of the problem as possible. The differential

algebra (DA) framework developed by Berz et al. [14, 10, 13, 9] (Sec. 2.1) constitutes a hybrid

structure that manages both of these aspects. It captures the algebraic structure of a system up

to arbitrary order to carry out the perturbation part going back to Poincaré’s theory, while its

implementation in COSY INFINITY [21, 18, 53] allows for an automated calculation of algebraic

solutions in a computer environment based on floating point arithmetic.

This thesis will use this powerful hybrid and its associated methods to dive into the fascinating

world of nonlinear dynamical systems. The common mathematical underpinnings of many of those

systems make it possible to apply the highly developed DA methods to seemingly unrelated fields of

study using suitable transformations and projections. To emphasize this versatility of the methods,

we analyze one problem from the field of accelerator physics in Chapter 5, and one problem from
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the field of astrodynamics in Chapter 4. Additionally, we introduce a key technique – the DA normal

form algorithm [14] – in Chapter 3, where we analyze the well known system of the centrifugal

governor not in its usual linearized version, but with its high order nonlinearities.

The analysis in the field of accelerator physics in Chapter 5 is concerned with the stability and

the oscillation frequencies of particles in the storage ring of the muon 𝑔-2 experiment at Fermilab

(E989). We investigate the dependence of these frequencies on offsets in the momentum of the

particles and on the amplitudes of oscillation. Nonlinear effects of the various electric field and

magnetic field components of the storage rings that are used to confine the particles and bend their

trajectory cause these shifts in the frequencies, which potentially influences the beam’s susceptibility

to resonances. In fact, for the specific ring configurations considered in this thesis, the resonance

behavior and their associated fixed point structures make this analysis particularly interesting from a

dynamical systems point of view.

In contrast, the analysis in the field of astrodynamics in Chapter 4 is concerned with the

trajectories of satellites in low and medium Earth orbits under zonal gravitational perturbation. The

perturbation significantly distorts the orbits from their Keplerian form, causing them to rotate within

their orbital plane and precess around the Earth at different frequencies. We present a method that

elegantly solves one of the key challenges in astrodynamics, namely the bounded motion problem

under zonal perturbation. Our method generates far reaching continuous sets of orbits, which remain

in close proximity to each other over decades despite the perturbation.

An essential tool in all of those applications are DA transfer maps and Poincaré maps [14, 34]

(see. Sec. 2.2). Instead of continuously working with the equations of motions in the form of

ordinary differential equations (ODE) as Poincaré did, we work with maps generated from those

ODEs. They yield an arbitrarily high order description of a system’s behavior between two discrete

instances of time or location. Maps are particularly useful for the analysis of repetitive systems in

the form of Poincaré return maps, where the maps represent the system’s behavior in a chosen cross

section of the motion for each turn. A repetitive application of the map to a state in that cross section

corresponds to the propagation of the state in the system. Accordingly, the repetitive application
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allows for a stroboscopic study of the repetitive motion with all the implications regarding its

stability.

Origin preserving Poincaré return maps, which are expanded around a linearly stable fixed point,

are the starting point of the DA normal form algorithm [14, 12, 11] (see Sec. 2.3). The linearly

stable fixed point corresponds to a stable equilibrium state in the Poincaré projection of the system.

With the DA normal form algorithm, the phase space behavior around the fixed point of the map

is transformed to normalized coordinates, which are closely related to action-angle coordinates.

In those normal form coordinates, the phase space behavior is rotationally invariant with only

amplitude dependent angle advancements up to the order of calculation. Accordingly, the angle

advancements and the amplitude describe the dynamics in a nutshell (see Sec. 2.3.1).

This generalized nonlinear normalization method up to arbitrary order is very powerful and has

many applications making it the main component of many techniques used in this thesis. As already

mentioned above, the entire Chapter 3 focuses on a detailed walk through of the DA normal form

algorithm using the centrifugal governor as an example. While the principal structure of the process

is rather straightforward, the implications of individual steps are not always obvious. This chapter

allows discussing those intricacies in full detail.

One critical aspect of the normal form transformation is its sensitivity to resonances (see

Sec. 2.3.2). Resonances can affect the normalization process such that the rotationally invariant

structure of the resulting normal form is perturbed depending on the strength of the resonances.

Accordingly, those resonances constituting one of the driving factors of the normal form defect

(see Sec. 2.4), which is a measure of the variance of the (pseudo-)invariants produced by the normal

form. This variance yields a local rate of divergence and can therefore be used as a stability estimate.

Phase space regions with large normal form defects can trigger diverging phase space behavior and

indicate less stable motion.

As an outlook for future developments, Chapter 6 discusses the first steps of enhancing the

methods for these specific applications by making them completely verified. We will see that

fully transferring these methods to a verified version is everything but trivial and still to be further
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investigated. As a starting point for the verified analysis, we introduce verified global optimization

[7, 61, 22, 55, 50, 37] and its application for a verified stability estimate of the muon 𝑔-2 storage

ring.

The basis of this discussion and the global optimization method (see Sec. 2.6) are Taylor Models

[46, 51, 47, 48, 15, 66] (see Sec. 2.5), which yield a structure for verified computations by enhancing

the DA framework with rigorous remainder bounds.
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CHAPTER 2

METHODS

The methods used for this thesis are hybrids of numerical and analytical techniques based on a

differential algebra (DA) framework, which was first developed to its current extent by Berz et al.

[14, 9, 10]. The following summary and introduction to the DA framework (Sec. 2.1), DA maps

(Sec. 2.2), and the DA normal form algorithm (Sec. 2.3) are based on [14] and have been given in

similar form in my previous publications [88, 89, 86, 87].

In Sec. 2.3.1, the resulting quantities of the normal form, namely the tune, tune shifts, and

normal form radii, are discussed in more detail. The influence of resonances on the normal form are

described in Sec. 2.3.2. Sec. 2.4 yields an introduction to the normal form defect, a measure for the

non-invariance of the normal form radii, based on [22].

The introduction to Taylor Models (Sec. 2.5) for verified computations and their applications

including verified global optimization (Sec. 2.6) are based on the work of Makino and Berz et al.

[46, 51, 47, 48, 22, 54].

2.1 The Differential Algebra (DA) Framework

The fundamental purpose of the DA framework [14] is to provide a mathematical backbone

for computer based storage and manipulation of analytic functions. In principle, this is done by

representing an analytic function 𝑓 in terms of its Taylor polynomial expansion T 𝑓 up to order 𝑚,

similar to how real numbers are represented by an approximation up to a certain arbitrary number

of significant digits. In order to discuss the mathematical construction of the differential algebra

framework in more detail, we require the notation ‘=𝑚’ instead of just ‘≈’ to clarify that both sides

of such an equation are equivalent up to order 𝑚.

A Taylor polynomial expansion T 𝑓 of order 𝑚 represents multiple analytic functions which are

equivalent up to order 𝑚. This gives rise to the definition of equivalence classes following [14, p. 91].

The equivalence class [ 𝑓 ]𝑚 represents all elements 𝑓 of the vector space of infinitely differentiable
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functions C∞(R𝑛) with 𝑛 real variables that have identical derivatives at the origin up to order 𝑚.

The origin is chosen out of convenience and without loss of generality – any other point may be

selected. In the DA framework, the equivalence class [ 𝑓 ]𝑚 is represented by a DA vector, which

stores all the coefficients of the Taylor expansion of 𝑓 and the corresponding order of the terms in an

orderly fashion. Operations are defined on the vector space 𝑚𝐷𝑛 of all the equivalence classes []𝑚 .

There are three operations: addition, vector multiplication, and scalar multiplication, which

yield results equivalent to the result up to order 𝑚 of adding two polynomials, multiplying two

polynomials, and multiplying them with a scalar. The first two operations on the equivalence classes

(DA vectors) form a ring. The scalar multiplication makes the three operations on the real (or

complex) DA vectors an algebra, where not every element has a multiplicative inverse. An example

of such elements without a multiplicative inverse is functions without a constant part like 𝑓 (𝑥) = 𝑥,

since 1/ 𝑓 (𝑥) = 1/𝑥 is not defined at the origin and can therefore not be expanded around it.

To make the algebra a differential algebra, the derivation 𝐷 satisfying Leibniz’s law (𝐷 ( 𝑓 𝑔) =

𝑓 𝐷 (𝑔) + 𝑔𝐷 ( 𝑓 )) is introduced, which is almost trivial in the picture of differentiating polynomial

expansions. The derivation opens the door to algebraic treatment of ordinary and partial differential

equations as it is common in the study of differential algebras [68, 67, 39].

Implemented in COSY INFINITY [21, 18, 53], the DA framework allows preserving the

algebraic structure up to arbitrary order while manipulating the coefficients of the DA vectors with

floating point accuracy. Detailed examples of the operations on 1𝐷1 and 2𝐷1 are given in [14] and

[86], respectively. An example of a DA vector in the application of DA transfer maps and Poincaré

maps is given in Sec. 2.2.

2.2 DA Transfer Maps and Poincaré Maps

The dynamics of a system are often described by a set of ordinary differential equations (ODE)

¤®𝑧 = 𝑓 (®𝑧, 𝑡), which describe the incremental change of a state ®𝑧 over an independent variable 𝑡 like

time. For practical purposes, it is often advantageous to generally describe the long term propagation

of a state ®𝑧.
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In the terminology of dynamical system theory, a so-called flow operator M𝑇 is used to describe

the action of the system on a state ®𝑧 after a fixed time 𝑇 . Since it is often impossible to determine the

flow in a closed form, numerical integration of the ODE is required. The DA framework allows for a

hybrid integration that conserves the algebraic structure up to arbitrary order during the integration.

Integrating a local expansion 𝛿®𝑧𝑖 around an initial state ®𝑧0 yields the final state ®𝑧 𝑓 in form of a 𝑚

order flow map M𝑇 , which depends on the expansion in (𝛿®𝑧, 𝛿 ®[), where 𝛿 ®[ is the expansion around

a reference set of parameters ®[0.

More generally speaking, a transfer map M algebraically expresses how a final state ®𝑧 𝑓 is

dependent on an initial state ®𝑧𝑖 and system parameters ®[, as

®𝑧 𝑓 = M (®𝑧𝑖, ®[) . (2.1)

Transfer maps are also called propagators or simply maps. The expansion point of the map belongs

to a chosen reference orbit/state of the system, e.g. a (pseudo-)closed orbit for a fixed point map

and/or the ideal orbit of the unperturbed system.

There are special transfer maps called Poincaré maps [65] that constrain the initial and final

state to Poincaré surfaces S𝑖 and S 𝑓 , respectively. For the simulation of storage rings and their

particle optical elements, this concept is used to represent how the state directly after a storage ring

element depends on system parameters and the state directly before the element. A setup of multiple

consecutive storage ring elements is described by the composition of their Poincaré maps.

Poincaré return maps represent the case where S𝑖 is equal to S 𝑓 . They are particularly useful for

the representation of dynamics in repetitive systems like the ones considered in this thesis. Multiple

applications of a Poincaré return map correspond to the propagation of the system. The Poincaré

return maps are particularly advantageous when they are origin preserving, i.e., the expansion point

is a fixed point of the map, because system dynamics represented by origin preserving Poincaré

return maps can be further analyzed by normal form methods and for the asymptotic stability of the

system.

Constraining the map to the Poincaré surface S is often done by calculating the flow of an

ODE and projecting it onto the surface S. This reduces the dimension of the original map and
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generates the Poincaré map. An implementation of a timewise projection onto a surface S defined

by 𝜎(®𝑧, ®[) = 0 is outlined in [34].

The projection uses DA inversion methods that compute the inverse A−1 to the auxiliary map A,

which contains the constraining conditions of the Poincaré surface S. Given that A has no constant

part, the auxiliary map and its inverse satisfy A−1 ◦ A =𝑚 A ◦ A−1 =𝑚 I . The basic idea of

the projection of a transfer map M onto a surface defined by 𝜎(®𝑧, ®[) = 0 is to replace one of the

variables or parameters of M by an expression in terms of all the other variables and parameters

such that the constraint 𝜎(M) = 0 is satisfied. This eliminates the corresponding component of

the map and thereby reduces its dimensionality. In [34], the timewise projection is prepared by

calculating an expansion of the map M in time 𝑡. The DA inversion methods are then used to find

the intersection time 𝑡★(®𝑧, ®[) dependent on the state variables ®𝑧 and system parameters ®[ such that

𝜎(M(®𝑧, ®[, 𝑡★(®𝑧, ®[))) = 0.

2.3 The DA Normal Form Algorithm

The DA normal form (DANF) algorithm [14] is an advancement from the DA-Lie based version,

the first arbitrary order algorithm by Forest, Berz, and Irwin [31]. Given an origin preserving

map M of a repetitive Hamiltonian system, where the components of the map are in phase space

coordinates, the DA normal form algorithm provides a nonlinear change of phase space variables by

an order-by-order transformation to rotationally invariant normal form coordinates.

Implemented in COSY INFINITY [53, 19], this is a fully automated process, which can be

performed up to arbitrary order. It is only limited by floating point accuracy and the capability

of the computer system to handle DA vectors of the chosen computation order. In the standard

configuration, order ten calculations of a six dimensional system are easily manageable.

In Chapter 3, the normal form algorithm is explained in great detail for the one dimensional

system of a centrifugal governor. Here we want to explain the more general form for a 2𝑛 dimensional

symplectic system with an optional parameter dependence on 𝑛[ parameters summarized in ®[. The

explanations are largely based on [14].
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For parameter dependent maps, the algorithm starts by expanding the origin preserving map

M(®𝑧, ®[) around its parameter dependent fixed point ®𝑧FP ( ®[), which satisfies

M
(
®𝑧FP ( ®[), ®[

)
= ®𝑧FP ( ®[). (2.2)

Defining the extended map N = (M−I®𝑧, ®[), the parameter dependent fixed point ®𝑧FP is determined

by evaluating the inverse of N at the expansion point ®𝑧 = ®0:(
®𝑧FP ( ®[) , ®[

)
= N−1

(
®0, ®[

)
. (2.3)

The map M is then expanded around its parameter dependent fixed point ®𝑧FP .

The resulting map M0 = L + ∑
𝑚 U𝑚 consists of a linear part L and the nonlinear parts U𝑚 of

order 𝑚. Due to the transformation to the parameter dependent fixed point, the map has no terms,

only depending on a parameter. Accordingly, the entire linear part is independent of parameters.

The variables of the map are the canonical phase space coordinates ®𝑧 = ( ®𝑞0, ®𝑝0) and, if applicable,

parameters ®[. The normal form algorithm transforms this map order by order up to the full order of

the map. For each transformation step, the transformation A𝑚 and its inverse are determined and

applied to the result M𝑚−1 from the previous transformation step as follows

M𝑚 = A𝑚 ◦M𝑚−1 ◦A−1
𝑚 . (2.4)

The first step of the algorithm is to linearly decouple the map into 𝑛 two dimensional subspaces.

The linear transformation diagonalizes the system, transforming the (parameter dependent) fixed

point map into the complex conjugate eigenvector space of its linear part. We assume linearly stable

behavior around the (parameter dependent) fixed point of the map with distinct complex conjugate

eigenvalue pairs of magnitude one since this property is shared among all systems considered in this

thesis (see [14] for other cases). If any of the eigenvalues _★ had an absolute value larger than 1,

the motion would be unstable since the state on the corresponding eigenvector ®𝑣★ would grow in

magnitude by a factor of _★ > 1 with each iteration. Additionally, eigenvalues of symplectic maps

come in reciprocal pairs such that eigenvalues with a magnitude smaller than 1 have a reciprocal

partner eigenvalue _★ > 1, which are again linearly unstable.
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The complex conjugate eigenvalue pairs 𝑒±𝑖` 𝑗 of the diagonalized linear part are grouped together

such that the matrix �̂� of the diagonalized linear part R of the resulting map M1 = R + ∑
𝑚 S𝑚

has the following decoupled form

�̂� =

©«

�̂�1
. . .

�̂�𝑙
. . .

�̂�𝑛

ª®®®®®®®¬
where �̂� 𝑗 =

©«
𝑒
+𝑖` 𝑗 0

0 𝑒
−𝑖` 𝑗

ª®®¬ . (2.5)

The new nonlinear terms of order 𝑚 that resulted from the linear transformation are denoted by

S𝑚 . The complex phase ±` 𝑗 of the eigenvalue pairs will be of critical importance in the nonlinear

transformations of the algorithm.

In summary, the first transformation step performed the following operation

M1 = A1 ◦M ◦A−1
1 = A1 ◦ L ◦A−1

1 +
∑︁
𝑚

A1 ◦ U𝑚 ◦A−1
1 = R +

∑︁
𝑚

𝑆𝑚 , (2.6)

where A1 is the linear transformation from the original coordinate space ( ®𝑞0, ®𝑝0) to the complex

conjugate coordinate space ( ®𝑞1, ®𝑝1) and A−1
1 is its inverse for the transformation in the opposite

direction.

With the linearly decoupled map, the following steps of the normal form algorithm can be

performed for each of these linearly decoupled subspaces separately. The 𝑗 th subspace of the linearly

decoupled map M1 can be explicitly written as

M1, 𝑗 ( ®𝑞1, ®𝑝1, ®[) = R 𝑗 +
∑︁
𝑚

S𝑚, 𝑗 =
©«
𝑒
+𝑖` 𝑗 0

0 𝑒
−𝑖` 𝑗

ª®®¬
©«
𝑞1, 𝑗

𝑝1, 𝑗

ª®®¬ (2.7)

+
∑︁

𝑚=| | ®𝑘++®𝑘−||1+|| ®𝑘[ | |1

©«
S+
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

S−
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

ª®®®¬
𝑛∏
𝑙=1

(𝑞1,𝑙)
𝑘+
𝑙 (𝑝1,𝑙)

𝑘−
𝑙

𝑛[∏
𝑢=1

([𝑢)𝑘
[
𝑢 (2.8)

where 𝑘+
𝑙

represents the positive integer exponent of 𝑞1,𝑙 , 𝑘−𝑙 represents the positive integer exponent

of 𝑝1,𝑙 , and 𝑘
[
𝑢 represents the positive integer exponent of [𝑢. The positive integer exponents are

summarized in the vectors ®𝑘+, ®𝑘−, and ®𝑘[, respectively. The 𝐿1-Norm | | · | |1 of the sum of these

vectors is used to ensure that only polynomial terms of order 𝑚 are considered.
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To get a better feeling of the expression in Eq. (2.8), we present some terms of the M−
1, 𝑗

component

M−
1, 𝑗 ( ®𝑞1, ®𝑝1, ®[) = 𝑒

−𝑖` 𝑗 · 𝑝1, 𝑗 + S−
2
(
(2,0,...,0)𝑇 ,(0,...,0)𝑇 ,(0,...,0)𝑇

)
, 𝑗
· 𝑞2

1,1 + ... (2.9)

+ S−
2
(
(0,...,0,𝑘+

𝑗
=1,0,...,0)𝑇 ,(0,...,0,𝑘−

𝑙
=1,0,...,0)𝑇 ,(0,...,0)𝑇

)
, 𝑗
· 𝑞1, 𝑗 𝑝1,𝑙 + ...

+ S−
2
(
(0,...,0)𝑇 ,(0,...,0,1)𝑇 ,(1,0,...,0)𝑇

)
, 𝑗
· 𝑝1,𝑛[1 + ...

Due to the linear transformation into the complex conjugate eigenvector space of the purely

real linear part, the two components of each subspace form a complex conjugate pair. Accordingly,

the ‘+’ and ‘-’ notation is used, where the sign corresponds to the sign of the complex eigenvalue

phase of the map component of that subspace. Specifically, this means that M+
1, 𝑗 = M−

1, 𝑗 , with

𝑞1, 𝑗 = 𝑝1, 𝑗 and S+
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

= S−
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗 .

This property is maintained throughout all the following nonlinear transformation steps, which are

performed order by order starting with order two. The general form of the nonlinear transformation

is A𝑚 =𝑚 I + T𝑚 , where T𝑚 is a polynomial containing only terms of order 𝑚. Hence, the

transformation A𝑚 is a near-identity transformation and a full identity up to order 𝑚 − 1. The

transformation A𝑚 is determined by finding T𝑚 such that the 𝑚th order of the map M𝑚−1 is

simplified or even eliminated when the transformation A𝑚 and its inverse A−1
𝑚 =𝑚 I − T𝑚 are

applied to it in the 𝑚th order nonlinear transformation step (see Eq. (2.4)).

The higher order terms of the transformation A𝑚 do not influence the 𝑚th order terms of the

map. Accordingly, they are irrelevant for the 𝑚th order transformation step and can be chosen freely,

e.g. to make the transformation symplectic with A𝑚 = exp(𝐿T𝑚 ) which we will do (see [14]).

However, the higher orders of the resulting map M𝑚 are strongly dependent on A𝑚 , its higher order

terms, and its corresponding inverse. In Chapter 3, the influences of the second order transformation

on the third order terms of the resulting map are analyzed in great detail. While these influences are

not to be dismissed, the key element of this 𝑚 order transformation step is the elimination of as

many 𝑚th order terms of the map M𝑚−1 as possible by a smart choice of T𝑚 .
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Given the map M𝑚−1, representing M simplified up to order 𝑚 − 1 and applying A𝑚 and its

inverse to it, yields [14, Eq. (7.60)]:

A𝑚 ◦M𝑚−1 ◦A−1
𝑚 =𝑚 (I + T𝑚) ◦ (R + S𝑚) ◦ (I − T𝑚)

=𝑚 (I + T𝑚) ◦ (R −R ◦ T𝑚 + S𝑚)

=𝑚 R + S𝑚 + [T𝑚 ,R] , (2.10)

where R is the diagonalized linear part and S𝑚 represents only the 𝑚th order terms of the map

M𝑚−1 (the leading order of terms that have not been simplified yet).

The equations above only consider terms up to order 𝑚, since terms of order 𝑚 + 1 and larger

are irrelevant for determining T𝑚 . The maximum simplification would be achieved by finding T𝑚

such that the commutator C𝑚 = T𝑚 ◦R −R ◦ T𝑚 = [T𝑚 ,R] = −S𝑚 , which would eliminate all

nonlinear terms S𝑚 of order 𝑚.

Since the commutator only involves T𝑚 and R we can investigate this transformation separately

in the 𝑛 individual subspaces. The components of the 𝑗 th subspace of the commutator C𝑚 = [T𝑚 ,R]

are

C𝑚, 𝑗 =
∑︁

𝑚=| | ®𝑘++®𝑘−||1+|| ®𝑘[ | |1

©«
C+
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

C−
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

ª®®®¬
𝑛∏
𝑙=1

(𝑞𝑙)
𝑘+
𝑙 (𝑝𝑙)

𝑘−
𝑙

𝑛[∏
𝑢=1

([𝑢)𝑘
[
𝑢 , (2.11)

where

C±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

= T ±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

(
𝑒
𝑖 ®̀

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖` 𝑗
)
. (2.12)

Accordingly, the commutator terms C±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

can eliminate their corresponding nonlinear

terms of the map S±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

by choosing

T ±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

=

−S±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

𝑒
𝑖 ®̀

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖` 𝑗
, (2.13)

if

𝑒
𝑖 ®̀

(
®𝑘+−®𝑘−

)
− 𝑒

±𝑖` 𝑗 ≠ 0. (2.14)

12



In other words, only the S±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

terms corresponding to C±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

for which the

condition [14, Eq. (7.65)]

mod2𝜋
©«` 𝑗 (𝑘+𝑗 − 𝑘−𝑗 ∓ 1) +

∑︁
𝑙≠ 𝑗

`𝑙

(
®𝑘+ − ®𝑘−

)ª®¬ = 0, (2.15)

is satisfied, survive.

A straightforward solution of the condition in Eq. (2.15) is

𝑘+𝑗 − 𝑘−𝑗 = ±1 ∧ 𝑘+
𝑙
= 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.16)

where the first condition concerns the 𝑗 th subspace and the second condition is regarding all the

other subspaces 𝑙 with 𝑙 ≠ 𝑗 .

The surviving terms of the 𝑚th order transformation step in the 𝑗 th subspace can be generally

written as

S+
𝑚( ®𝑘+®𝑒 𝑗 ,®𝑘,®𝑘[), 𝑗

and S−
𝑚( ®𝑘,®𝑘+®𝑒 𝑗 ,®𝑘[), 𝑗

with 2| | ®𝑘 | |1 + 1 + || ®𝑘[ | |1 = 𝑚, (2.17)

where the unit vector ®𝑒 𝑗 consists only of zeros except for a 1 at the 𝑗 th entry.

From Eq. (2.17) it becomes clear that only certain terms of uneven order in the phase space

coordinates ( ®𝑞, ®𝑝) survive. These terms have the special property that each complex conjugate

phase space variable pair is raised to the same exponent except for the phase space variable pair

of the respective subspace. Accordingly, all even order terms in phase space coordinates can be

eliminated by the nonlinear normal form transformations.

The remaining terms of S𝑚 (from Eq. (2.17)) describe the entire dynamics of the systems in a

nutshell and are the key elements of the normal form and therefore essential for further dynamic

analysis.

Resonances between the complex phases ®̀ of the different subspaces in the denominator of

Eq. (2.13) can break this special structure and therefore the rotational invariance of the normal form

as will be discussed in Sec. 2.3.2. For now, we will continue only with the terms that are supposed

to survive, namely the terms specified in Eq. (2.17).
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Once the nonlinear transformation steps transformed the map up to its full order, the map has

been significantly simplified to

©«
M+

𝑚, 𝑗

M−
𝑚, 𝑗

ª®®¬ =
©«
𝑞𝑚, 𝑗 𝑓

+
𝑗

(
𝑞𝑚,1𝑝𝑚,1, 𝑞𝑚,2𝑝𝑚,2, ..., 𝑞𝑚,𝑛𝑝𝑚,𝑛, ®[

)
𝑝𝑚, 𝑗 𝑓

−
𝑗

(
𝑞𝑚,1𝑝𝑚,1, 𝑞𝑚,2𝑝𝑚,2, ..., 𝑞𝑚,𝑛𝑝𝑚,𝑛, ®[

)ª®®¬ , (2.18)

where

𝑓 +𝑗 = 𝑒+𝑖` +
∑︁

𝑚=2| | ®𝑘 | |1+1+|| ®𝑘[ | |1

S+
𝑚( ®𝑘+®𝑒 𝑗 ,®𝑘,®𝑘[), 𝑗

𝑛∏
𝑙=1

(
𝑞𝑚,𝑙 𝑝𝑚,𝑙

) 𝑘𝑙 𝑛[∏
𝑢=1

([𝑢)𝑘
[
𝑢 (2.19)

Since the original map is real, the last step of the algorithm is transforming the resulting map to

the real normal form basis ( ®𝑞NF , ®𝑝NF), which is composed of the real and imaginary parts of the

current complex conjugate basis ( ®𝑞𝑚 , ®𝑝𝑚). The relation between the bases is

𝑞NF, 𝑗 =
𝑞𝑚, 𝑗 + 𝑝𝑚, 𝑗

2
𝑝NF, 𝑗 =

𝑞𝑚, 𝑗 − 𝑝𝑚, 𝑗

2𝑖
(2.20)

𝑞𝑚, 𝑗 = 𝑞NF, 𝑗 + 𝑖𝑝NF, 𝑗 𝑝𝑚, 𝑗 = 𝑞NF, 𝑗 − 𝑖𝑝NF, 𝑗 . (2.21)

The squared normal form radius 𝑟2
NF, 𝑗

is given by the product of 𝑞𝑚, 𝑗 𝑝𝑚, 𝑗 , with

𝑞𝑚, 𝑗 𝑝𝑚, 𝑗 = 𝑞2
NF, 𝑗

+ 𝑝2
NF, 𝑗

= 𝑟2
NF, 𝑗

. (2.22)

Applying the basis transformation to the map components of M𝑚 in each subspace yields

MNF, 𝑗 = Areal, 𝑗 ◦M𝑚, 𝑗 ◦A−1
real, 𝑗

=
1
2

©«
1 1

−𝑖 𝑖

ª®®¬ ·
©«
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

) (
𝑞NF, 𝑗 + 𝑖 𝑝NF, 𝑗

)
𝑓 −
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

) (
𝑞NF, 𝑗 − 𝑖 𝑝NF, 𝑗

)ª®®¬
=

©«
1
2

(
𝑓 +
𝑗
+ 𝑓 +

𝑗

)
𝑞NF, 𝑗 +

𝑖
2

(
𝑓 +
𝑗
− 𝑓 +

𝑗

)
𝑝NF, 𝑗

−𝑖
2

(
𝑓 +
𝑗
− 𝑓 +

𝑗

)
𝑞NF, 𝑗 +

1
2

(
𝑓 +
𝑗
+ 𝑓 +

𝑗

)
𝑝NF, 𝑗

ª®®¬
=

©«
Re

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
−Im

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
Im

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
Re

(
𝑓 +
𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

)) ª®®¬ ·
©«
𝑞NF, 𝑗

𝑝NF, 𝑗

ª®®¬ . (2.23)

Writing 𝑓 +
𝑗

and its complex conjugate counterpart 𝑓 −
𝑗

in terms of complex phases with

𝑓 ±𝑗
(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

)
= 𝑒

±𝑖Λ 𝑗

(
𝑟2NF,1,...,𝑟

2
NF,𝑛,®[

)
(2.24)
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yields the following normal form

MNF, 𝑗 =
©«
cos

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
− sin

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
sin

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

))
cos

(
Λ 𝑗

(
𝑟2
NF,1, ..., 𝑟

2
NF,𝑛, ®[

)) ª®®¬ ·
©«
𝑞NF, 𝑗

𝑝NF, 𝑗

ª®®¬ , (2.25)

which clearly shows the circular phase space behavior in normal form subspaces with only amplitude

®𝑟NF and parameter ®[ depended angle advancements ®Λ.

The radii of the circular motion – the normal form radii – are constants of motion up to

the calculation order. The entire dynamics in the normal form are given by the constant angle

advancements ®Λ along the circular phase space curves. The rotational invariance implies an

interpretation of the normal form as an averaged representation of the original Poincaré return map

M, in the limit where the map application is repeated infinitely many times.

Normalizing the angle advancements ®Λ to [0, 1] yields the tunes ®a and amplitude and parameter

dependent tune shifts 𝛿®a(®𝑟NF , ®[). Accordingly,

Λ(𝛿®a(®𝑟NF , ®[))
2𝜋

= a + 𝛿a(𝛿®a(®𝑟NF , ®[)) (2.26)

The normal form transformation A and its inverse A−1 are given by the composition of all the

individual transformations of each transformation step with

MNF = Areal ◦A𝑚 ◦A𝑚−1 ◦ ... ◦A1︸                                 ︷︷                                 ︸
A

◦M ◦A−1
1 ◦ ... ◦A−1

𝑚−1 ◦A
−1
𝑚 ◦A−1

real︸                                    ︷︷                                    ︸
A−1

. (2.27)

The normal form transformation A yields how the normal form variables (𝑞NF, 𝑗 , 𝑝NF, 𝑗 ) depend

on the original phase space variables ( ®𝑞0, ®𝑝0) and, if considered, system parameters ®[, which

suggests the following notation for A and its inverse

A = ( ®𝑞NF ( ®𝑞0, ®𝑝0, ®[) , ®𝑝NF ( ®𝑞0, ®𝑝0, ®[)) (2.28)

A−1 = ( ®𝑞0 ( ®𝑞NF, ®𝑝NF, ®[) , ®𝑞0 ( ®𝑞NF, ®𝑝NF, ®[)) . (2.29)

15



2.3.1 Tunes, Tune Shifts, and Normal Form Radii

DA normal form methods are used to transform the origin preserving phase space Poincaré return

map to the rotationally invariant normal form up to calculation order. From the normal form, the

angle advancements ®Λ(®𝑟NF , ®[) as a functions of amplitude ®𝑟NF and parameters ®[ are particularly

straightforward to extract. Scaling the angle advancements in each of the normal form phase spaces

to [0, 1] instead of [0, 2𝜋] provides the average number of phase space revolutions per system

revolution represented by the Poincaré return map. In beam physics terminology, the frequencies of

normal form phase space revolutions is known as the tunes ®a and their amplitude and parameter

dependent tune shifts 𝛿®a(®𝑟NF , ®[).

The tune a 𝑗 corresponds to the scaled complex phase ` 𝑗 of the complex conjugate eigenvalues

_±
𝑗

of the linear transformation. Hence, the tune is related to the linear motion around the expansion

point, i.e., the motion ‘infinitely close’ to the expansion point. Interpreting the tune and its tune shifts

as the phase space rotation frequency suggests that the tune – the phase space rotation frequency of

the expansion point – is a rotation with no amplitude, where the frequency is determined by the

linear motion around the expansion point. In particular, this means that different maps with the

same expansion point can have different tunes depending on the linear motion around the expansion

point. Since the tunes are calculated from the linear coefficients directly without any nonlinear

transformations, performing the tune calculation with parameter dependent linear coefficients

directly yields the parameter dependent tune shifts.

The tune shifts indicate the change of the phase space rotation frequency dependent on the

phase space amplitudes ®𝑟NF and variations in the system parameters ®[. Since the normal form

transformation is symplectic, it preserves the phase space volume, which is critical to understanding

the connection between the original phase space coordinates and their normal form radii. If the

system is only weakly coupled between the different phase spaces, the normal form radius 𝑟NF, 𝑗 is a

measure for the invariant phase space area of the 𝑗 th subspace denoted by 𝐴 𝑗 . Hence, the original

phase space coordinates of an invariant phase space orbit in the 𝑗 th subspace enclose the area 𝐴 𝑗 ,

which roughly corresponds to the normal form radius of 𝑟NF, 𝑗 =
√︁
𝐴 𝑗/𝜋.
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The normal form radii are the link between the tune dependencies and the original coordinates.

The dependency of the tune shifts on the normal form radii is a result of the surviving terms S𝑚

of the nonlinear normal form transformations. However, the crucial terms are the T𝑚 terms from

Eq. (2.13) that are used to cancel all the other nonlinear terms S𝑚 . On the one hand, the T𝑚 terms

determine how the original coordinates ®𝑧 = ( ®𝑞, ®𝑝) and the system parameters ®[ relate to the normal

form radii ®𝑟NF , since the T𝑚 are the essential part of the normal form transformation. On the other

hand, they influence the higher order nonlinear terms S𝑙 with 𝑙 > 𝑚, which either survive and

determine the dependency of the tune shifts on the normal form radii, or they determine the higher

order terms T𝑙 .

2.3.2 Resonances

The denominator of T𝑚 in Eq. (2.13) has a potentially large effect on the size of T𝑚 the closer it is

to satisfying the resonance condition in Eq. (2.15). If the condition is satisfied, the corresponding

nonlinear terms in S𝑚 can not be eliminated. Accordingly, terms survive which do not fit the normal

form structure. They break the normal form by the size of their respective coefficient.

If the condition is almost satisfied close to a resonance, then the denominator of T𝑚 becomes very

small, making T𝑚 very large. In this situation, there are two options. One option is to continue the

procedure with the very large T𝑚 coefficient, which conserves the normal form structure but yields

diverging coefficients in all higher order terms. The other option is to let the corresponding term

in S𝑚 survive, which breaks the normal form structure but avoids a divergence of the coefficients.

In practice, one chooses a cutoff value for the size of the denominator, which restricts the size

of potentially diverging coefficients. If the denominator is smaller than the cutoff value, the T𝑚

coefficient is set to zero, letting the corresponding S𝑚 term survive.

Rewriting the resonance condition in terms of tunes yields

®𝑤 · ®a = 𝑔, (2.30)

where ®𝑤 consists only of integer values and 𝑔 is a natural number N0. The values in ®𝑤 and 𝑔 are
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chosen such that the greatest common divisor of all values is 1. With this definition, the order of the

resonance is given by 𝑚res = | | ®𝑤 | |1.

In the normal form algorithm a tune resonance defined by ( ®𝑤, 𝑔) appears in all terms

S±
𝑚( ®𝑘+,®𝑘−,®𝑘[), 𝑗

for which

𝑤 𝑗 = 𝑘+𝑗 − 𝑘−𝑗 ∓ 1 ∧ 𝑤𝑙 = 𝑘+
𝑙
− 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.31)

and − 𝑤 𝑗 = 𝑘+𝑗 − 𝑘−𝑗 ∓ 1 ∧ −𝑤𝑙 = 𝑘+
𝑙
− 𝑘−

𝑙
∀𝑙 ≠ 𝑗 , (2.32)

according to Eq. (2.16). Resonances of order 𝑚res appear for the first time in the normal form

transformation step of order 𝑚NF = 𝑚res − 1.

Consider a four dimensional phase space system (𝑛 = 2) without parameter dependence, where

the eigenvalue phases `𝑖 satisfy the following order seven resonance 2`1 − 5`2 = −4𝜋. This

corresponds to the tune resonance condition of −2a1 + 5a2 = 2 denoted by
(
(−2, 5)𝑇 , 2

)
. The first

terms of the normal form to encounter this resonance are the sixth order complex conjugate terms

S+
6((0,5)𝑇 ,(1,0)𝑇 ),1

and S−
6((1,0)𝑇 ,(0,5)𝑇 ),1

(2.33)

as well as S−
6((0,4)𝑇 ,(2,0)𝑇 ),2

and S+
6((2,0)𝑇 ,(0,4)𝑇 ),2

. (2.34)

Accordingly, for each subspace, one complex conjugate pair survives due to the resonance between

`1 and `2, which break the rotational symmetry structure of the resulting normal form.

2.4 The Normal Form Defect

The volume conserving property of Hamiltonian systems expressed by Liouville’s theorem

is maintained by the normal form transformation. Given the rotational invariants of the normal

form, the size of the phase space volume is determined by the normal form radii. Accordingly,

the normal form phase space radii constitute invariants of motion up to the order of the normal

form transformation if no resonance conditions were encountered. However, they are usually not

invariants of the full (order) motion.

While the expansion of the transfer map improves in accuracy with every additional order

considered, the same is not guaranteed for the normal form transformation. It is unknown how well
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or even if the normal form converges with higher orders. This is due to its sensitivity to resonances,

which may initiate asymptotic behavior once the order of a close-by resonance is reached. The

higher the order of the computation, the more resonances are potentially relevant. Depending on the

complexity of the original transfer map, it is usually unpredictable which resonances may affect the

normal form and in what way.

However, if the normal form transformation converges, its high order limit will yield the exact

invariants. In the case of exact invariants, the system is integrable and can be transformed into a

trivial system by introducing the invariants as variables. Those variables are known as action-angle

coordinates, where the action is constant and unique for each phase space curve and each point on

the phase space curve is associated with the action-angle. For complex systems such as the ones

discussed in this thesis, there are no exact invariants that can be expressed in terms of finite order

terms. Thus, tools to assess the error of the calculated pseudo-invariants in the form of normal form

radii are useful.

The normal form defect represents the inaccuracy of the normal form radii as invariants

and is locally defined for each phase space state. Given an origin preserving fixed point map

M (𝑞, 𝑝) = (𝑄, 𝑃) of a repetitive system and the corresponding normal form transformation

A (𝑞, 𝑝) =
(
𝑞NF , 𝑝NF

)
, the normal form defect 𝑑NF (®𝑧0) of the phase space state ®𝑧0 = (𝑞, 𝑝) is

given by the difference between the normal form radius 𝑟 (®𝑧1 = M (®𝑧0)) of the mapped phase space

state ®𝑧1 = M (®𝑧0) and the normal form radius 𝑟 (®𝑧0) of the original phase space state ®𝑧0. Generally,

the normal form radius 𝑟 of a phase space state ®𝑧 is the magnitude of the vector formed by the normal

form phase space state
(
𝑞NF , 𝑝NF

)
= A (®𝑧0), specifically

𝑟 (®𝑧) =
√︂(

𝑞NF (®𝑧)
)2

+
(
𝑝NF (®𝑧)

)2
. (2.35)

Accordingly, the normal form defect is given by

𝑑NF (®𝑧0) = 𝑟1 − 𝑟0 = 𝑟 (®𝑧1) − 𝑟 (®𝑧0) = 𝑟 (M (®𝑧0)) − 𝑟 (®𝑧0)

=

√︂(
𝑞NF (M (®𝑧0))

)2
+

(
𝑝NF (M (®𝑧0))

)2
−

√︂(
𝑞NF (®𝑧0)

)2
+

(
𝑝NF (®𝑧0)

)2
. (2.36)
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The application of the one turn map represents the evolution of the system by describing how

each phase space state changes after one revolution of the system. The normal form defect indicates

how much the normal form radii, i.e., a (pseudo-)invariants of the motion, change between two states

of the motion connected by the map M. An increasing normal form radius with time indicates

diverging phase space behavior with larger amplitudes, i.e. the normal form defect measures the

local rate of divergence per map application.

Analyzing the normal form defect for a whole set of states within a certain phase space domain

D allows for stability estimations by placing an upper bound on the rate of divergence. The upper

bound can be determined in various ways, including rigorous global optimization methods on the

normal form defect over the given domain. The upper bound can serve as a Nekhoroshev-type

stability estimate [64] that allows for the calculation of the minimum amount of revolutions of the

system 𝑁 , for which the motion will be guaranteed to stay within the allowed region D:

𝑁 =
𝑟max − 𝑟 (®𝑧ini)

max
(
𝑑NF (®𝑧)

) with ®𝑧 ∈ D (2.37)

where 𝑟 (®𝑧ini) is the upper bound of the normal form radius of the initial state of the system and

𝑟max is the lower bound of the maximum normal form radius corresponding to motion still within

the allowed region D (see Fig. 2.1).

The concept of the normal form defect based Nekhoroshev-type stability estimate is comparable

to an augmented Lyapunov function [45]. A regular Lyapunov function 𝐿 is not increasing along

any phase space curve, with 𝐿 (M(®𝑧)) ≤ 𝐿 (®𝑧). This works very well for systems with damping. For

damped motion in a convex potential, the total energy function can serve as a Lyapunov function.

For systems without damping, this is a lot less straightforward. Under the assumption that the

normal form algorithm produces a normal form radius which is a true invariant of the motion, the

normal form transformation to calculate the normal form radius is a regular Lyapunov function

proving eternal stability. However, the errors to the limited floating point accuracy already break this

hypothetical scenario. An augmented or pseudo-Lyapunov function 𝐿★ = 𝐿 + max
(
𝑑NF (D)

)
is

increasing in a very slow and well estimated way with a verified upper bound on the rate of increase
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𝑟 (®𝑧ini)

𝑟max
D

𝑁 𝑑NF (D)

Figure 2.1: Schematic illustration of the various normal form quantities involved in the calculation
of the minimum iteration number within allowed region D.

per iteration

𝐿 (M(®𝑧)) ≤ 𝐿★ = 𝐿 (®𝑧) + max
(
𝑑NF (D)

)
(2.38)

Accordingly, it can not prove eternal stability, but rigorously estimate the long term stability. See

[16] and [42] for a detailed discussion.

In [22], this method was successfully used to analyze the long term stability of the Tevatron

storage ring at the Fermi National Accelerator Laboratory. However, it can be generally used in

dynamical systems applications to assess stability. Particularly, in complex systems where the stability

in different phase space regions is not evident, the normal form defect based Nekhoroshev-type

stability estimate is a great tool to capture the maximum rate of divergence.

2.5 Verified Computations Using Taylor Models (TM)

Based on DA vectors (Sec. 2.1), Taylor Models (TM) were developed by Makino and Berz

[46, 51, 47, 48, 15, 66] as a structure for rigorously verified computations, which deals much better

with issues known from interval arithmetic like the dependency problem [48], the wrapping effect
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[54, 52, 17], and linear scaling of the overestimation with domain size. Accordingly, the following

introduction to TM and their application is largely based on their work [46, 47, 48, 15, 66, 54].

To better understand the advantages of TM, we will first take a quick look at the alternative of

using interval arithmetic for verified computations.

2.5.1 Interval arithmetic

Intervals are a basic concept to represent a range of numbers and are often used to capture uncertainty.

The interval 𝐼 = [𝑎, 𝑏] = {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏} represents all numbers between 𝑎 and 𝑏, and the values 𝑎

and 𝑏 themselves.

The basic interval arithmetic [59, 60, 41] for the addition, subtraction, multiplication, and

division of two intervals 𝐼1 = [𝑎1, 𝑏1] and 𝐼2 = [𝑎2, 𝑏2] are given by the following operations. The

addition yields

𝐼1 + 𝐼2 = [𝑎1 + 𝑎2, 𝑏1 + 𝑏2] . (2.39)

The subtraction operation 𝐼1 − 𝐼2 works equivalently by performing the addition of 𝐼1 with

−𝐼2 = [−𝑏2,−𝑎2].

The multiplication yields

𝐼1 · 𝐼2 = [min (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2) ,max (𝑎1𝑎2, 𝑎1𝑏2, 𝑏1𝑎2, 𝑏1𝑏2)] . (2.40)

The division is only possible if the divisor interval does not contain zero. If the divisor does not

contain zero, the division 𝐼1/𝐼2 is equivalently defined by multiplying 𝐼1 with

1
𝐼2

=

[
1
𝑏2

,
1
𝑎2

]
for 0 ∉ 𝐼2. (2.41)

This arithmetic provides the mathematically tightest bounds when the quantities represented by 𝐼1

and 𝐼2 are independent. But since this is rarely the case, the calculated bounds are an overestimation

due to the dependency problem, which is easily illustrated by considering the difference between an

interval and itself. The result of the expression 𝑥 − 𝑥 should be zero, but from the arithmetic above

the difference between two identical intervals is

𝐼 − 𝐼 = [𝑎, 𝑏] − [𝑎, 𝑏] = [− (𝑏 − 𝑎) , (𝑏 − 𝑎)] , (2.42)
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which has a width of 2 (𝑏 − 𝑎) instead of zero width.

Compared to DA vectors (see Sec. 2.1), which form a ring structure, intervals do not even form

a group structure, because neither for addition nor multiplication there is an inverse for intervals of

nonzero width.

For the interval evaluation of functions, further rules can be established. Monotonically

increasing functions 𝑓mon↗ like exp(𝑥) can be evaluated by

𝑓mon↗( [𝑎, 𝑏]) =
[
𝑓mon↗(𝑎), 𝑓mon↗(𝑏)

]
. (2.43)

Monotonically decreasing functions 𝑓mon↘ can be equivalently evaluated by

𝑓mon↘( [𝑎, 𝑏]) =
[
𝑓mon↘(𝑏), 𝑓mon↘(𝑎)

]
. (2.44)

Trigonometric functions are compositions of monotonically increasing and monotonically

decreasing sections, which are well known. Accordingly, the interval evaluation of a trigonometric

function can be implemented based on many subcases depending on the size and position of the

interval.

Considering the function 𝑓 (𝑥) = sin( 𝜋𝑥2 ) − exp(𝑥) and evaluating it over the domain interval

𝐼1 = [−1, 1] yields

𝑓 (𝐼1) = sin
(
𝜋𝐼1
2

)
− exp (𝐼1) = 𝐼1 − [exp (−1) , exp (1)] (2.45)

=

[
−1 − 𝑒, 1 − 𝑒−1

]
⊂ [−3.718282, 0.632121] . (2.46)

We will compare this interval evaluation to the performance of different order Taylor Models in the

following section.

2.5.2 Taylor Models

Taylor Models [46, 51, 47, 48, 15, 66] are remainder-enhanced DA vectors. The DA part of the TM

is a 𝑚th order Taylor polynomial in form of a regular DA vector representation of a function 𝑓 ,

which is differentiable 𝑚 times, as introduced in Sec. 2.1. The remainder part complements this by
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rigorously verified bounds on the error of using the truncated Taylor expansion up to order 𝑚 in

form of a DA vector compared to 𝑓 itself.In contrast to regular DA vectors, TM need to be defined

over a domain D to be able to rigorously bound the remainder.

This approach is based on the Taylor Remainder Theorem: Given a function 𝑓 : ®D =

[
®𝑎, ®𝑏

]
⊂

R𝑛 → G ⊂ R being (𝑚 + 1) times continuously partially differentiable on the domain ®Dwith ®𝑥0 ∈ ®D.

Then for each ®𝑥 ∈ ®D there is a [ ∈ (0, 1) such that

𝑓 (®𝑥) =
𝑚∑︁
𝑘=0

(
(®𝑥 − ®𝑥0) · ®∇®𝑦

) 𝑘
𝑓 (®𝑦)

𝑘!

�������
®𝑦=®𝑥0︸                                    ︷︷                                    ︸

P𝑚, 𝑓

+

(
(®𝑥 − ®𝑥0) · ®∇®𝑦

)𝑚+1
𝑓 (®𝑦)

(𝑚 + 1)!

�������
®𝑦=®𝑥0+(®𝑥−®𝑥0)[︸                                              ︷︷                                              ︸

E𝑚,D, 𝑓

(2.47)

where P𝑚, 𝑓 is the polynomial part and E is an expression for the remainder.

A Taylor Models is characterized by its order 𝑚, the function 𝑓 it is representing and the domain

D over which the representation of 𝑓 is within the verified bounds of the Taylor Model. We denote a

Taylor Model with

T𝑚,D, 𝑓 =

(
P𝑚, 𝑓 , 𝜖𝑚,D, 𝑓

)
, (2.48)

where P𝑚, 𝑓 is the Taylor polynomial term of order 𝑚 and 𝜖𝑚,D, 𝑓 is a rigorous verified estimation

𝜖𝑚,D, 𝑓 of the remainder size over the domain D such that for function 𝑓�� 𝑓 (®𝑥) − P𝑚, 𝑓 (®𝑥)
�� < 𝜖

𝑚, ®D, 𝑓 ∀®𝑥 ∈ ®D. (2.49)

A Taylor Model can be visualized as a tube that wraps around the 𝑚th order DA representation

with a distance 𝜖 such that the original expression is guaranteed to lie within the tube over the given

domain D (see Fig. 2.2).

Except for order 𝑚 = 1, the Taylor Model bounding of 𝑓 significantly outperforms the interval

bounding. The tightness of the bounding also improves drastically with higher order Taylor Models.

With every additional order, the polynomial part clings closer to 𝑓 , and the reminder gets smaller

and smaller.

This tighter and tighter bounding with higher orders shows how the DA part of the Taylor Models

avoids more and more of the dependency problem. Dependent expressions like 1 + 𝑥 − 𝑥, which
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Figure 2.2: Verified representation of 𝑓 (𝑥) = sin( 𝜋𝑥2 ) − exp(𝑥) over the domain D = 𝐼1 = [−1, 1]
with interval methods using 𝑓 (D) and with Taylor Models (P𝑚, 𝑓 , 𝜖𝑚,D, 𝑓 ) of various orders 𝑚. The
original function 𝑓 (𝑥) is indicated by the black line, while its DA polynomial representation is
shown in green. The bounds at a distance 𝜖𝑚,D, 𝑓 from the DA polynomial are red. The two straight
blue lines indicate the bounds of the interval evaluation. Note that the scale of the 𝑦 axis is changing
to better illustrate the tightness of the Taylor Model representation with higher orders. Accordingly,
the interval bounds are only shown for order 𝑚 = 1 and order 𝑚 = 2.

may arise as the first order part of expressions like exp(𝑥) − sin(𝑥) are reduced to just 1 + 0 in the

DA part of the Taylor Model description. As we saw in Sec. 2.5.1, Interval arithmetic is not able to

avoid this dependency problem.

The fourth order Taylor Model representation of the function 𝑓 (𝑥) = sin( 𝜋𝑥2 ) − exp(𝑥) over the

domain D = 𝐼1 = [−1, 1] would be

T4,𝐼1, 𝑓 (𝑥) =
(
−1 + (𝜋 − 2)𝑥

2
− 𝑥2

2
− (𝜋3 − 8)𝑥3

48
− 𝑥4

24
, 0.102345

)
(2.50)
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2.6 Taylor Model based Verified Global Optimizers

The goal of a verified global optimizer [7, 61, 22, 55, 50, 37] is finding the optimum of a given

scalar objective function 𝑓 (®𝑥) of 𝑛var variables 𝑥𝑖 over a predefined 𝑛var dimensional global search

domain box ®B. Without loss of generality, it is assumed that the optimum is a minimum. If the

optimum is a maximum, consider the optimization of − 𝑓 (®𝑥).

Ideally, the result of global optimization yields the minimum 𝑓★ of the objective function

𝑓 (®𝑥) and all locations ®𝑥★, where the minimum is assumed within the global search domain box ®B.

However, straightforward and exact analytic solutions of the optimization problem only exist for

elementary objective functions. As soon as higher order terms and multiple variables are involved,

iterative algorithms to track down the optimum are inevitable. Consequently, results are often only

approximations of the actual minimum and all their locations where it is assumed. Verified global

optimizers compensate for the shortcoming of being unable to pinpoint the exact minimum by

yielding rigorously verified bounds on the minimum and its locations.

The fundamental idea of a global optimization algorithm is the efficient elimination of subdo-

mains/subboxes of the initial search box ®B by proving that those eliminated subboxes do not contain

the minimum. The basic steps of the algorithm are the following:

1. Split domain box ®B into subdomains ®B𝑖

2. Determine a lower bound 𝑓𝑖,LB of 𝑓 over ®𝑥 ∈ ®B𝑖

3. Calculate/Update the cutoff value C – the currently lowest known upper bound of the minimum.

4. Eliminate all boxes B𝑖 with a lower bound 𝑓𝑖,LB larger than the cutoff value C

5. Restart the algorithm at step 1 for each of the non-eliminated domain boxes ®B#
𝑖

The more subdomain boxes are eliminated in step 4 in each iteration, the more effective the

algorithm. Accordingly, it is essential to use methods for very tight bounding in step 2 (making

𝑓𝑖,LB as large as possible), and to use heuristics to significantly improve the cutoff value C in step 3,

making it as small as possible.
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For the determination of the cutoff value C in step 3, any method or combination of methods that

produce a tight verified upper bound on the global minimum of the search domain are useful. A

typical technique is the verified evaluation of individual points within the domain box. The testing

points are chosen either randomly in a Monte-Carlo based approach or by heuristics, e.g., the results

of non-verified optimization over the domain. Depending on the computational effort of those

methods, the improvement of the cutoff value and its benefits for the algorithm must be weighed

against the computation time of the cutoff method.

For step 2, Taylor Models (see Sec. 2.5) are particularly useful, especially high order Taylor

Models, since they allow for very tight bounding compared to interval methods. This property can

mainly be ascribed to the avoidance of the dependency problem due to the DA vector part of the

TM. For very complex objective functions like the normal form defect (see Sec. 2.4), the evaluation

with very high order Taylor Models (e.g. order ten) can take considerably more time compared

to evaluations with lower order Taylor Models (e.g. order three). Again, the benefits of the more

precise bounding with high order Taylor Model evaluation have to be weighed against the associated

computation time. A rule of thumb is that the larger the evaluation domain and the more complex

the objective function, the larger the benefit of higher order Taylor Models.

For the rigorous bounding of Taylor Models, there are multiple approaches. The standard method

uses order bounds, where the terms belonging to each order are bound and summed up together

with the remainder bound. More sophisticated methods are discussed in great detail in [56]. They

can be briefly summarized as follows. The linear dominated bounder (LDB) is very efficient for

linear dominated domains. The quadratic dominated bounder (QDB) is good at determining the

minimum of a multidimensional quadratic dominated function but losses its efficiency with very

high dimensional problems. The quadratic fast bounder (QFB) is not as exact as the QDB but very

efficient in providing a good lower bound near a local minimum, where the Hessian matrix of the

objective function over the domain is positive definite.

To avoid an infinite continuation of the splitting, stop conditions are implemented, which are

checked before a domain box is split. A typical stop condition sets a lower bound on the size of the
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domain, either by setting a lower bound on the volume of the domain box or its side length. Another

possible stop condition is a lower bound on the tightness of the bounding of the minimum of the

objective function rather than the domain size. With such a stop condition in place, the algorithm

would not split a non-eliminated domain box over which the bounds of the minimum are tighter than

a certain given value. This is particularly useful if the exact minimum is not relevant but rather the

order of magnitude of the minimum.
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CHAPTER 3

AN EXAMPLE-DRIVEN WALK-THROUGH OF THE DA NORMAL FORM ALGORITHM

This chapter is based on my arXiv preprint and MSU Report MSUHEP-190617 Introduction to the

Differential Algebra Normal Form Algorithm using the Centrifugal Governor as an Example [87].

We provide a very detailed description of the steps involved in the DA normal form algorithm

(Sec. 2.3) and their implications for the normal form using the example of the centrifugal governor.

We pick this example because it is one dimensional and the derivation of the equations of motion and

the linearization of the motion are well known. This understanding yields the groundwork for the

non-trivial analysis of the nonlinear phenomena using the steps of the DA normal form algorithm.

3.1 The Centrifugal Governor

The centrifugal governor (see Fig. 3.1) is a device involving gravitational and centrifugal forces

with the rotation axis parallel to the direction of the gravitational force. We consider a mathematically

Figure 3.1: Schematic illustration of centrifugal governor.

idealized governor, which consists of two massless rods of equal length 𝑅 suspended in a common
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plane with the rotation axis. A point mass 𝑚 is attached at the end (opposite to where the rod is

mounted) of each of the rods. The angle between the rotation axis and the rod is denoted by the

angle 𝜙. A mechanism links the two rods and the rotation axis, which guarantees identical angles

and therefore identical behavior on both sides. An external torque applied via the rotation axis

ensures that the rotation frequency 𝜔 of the centrifugal governor arms is kept constant.

In the usual application of a centrifugal governor, the rotation frequency is not fixed but

negatively coupled to the angle 𝜙 through an additional mechanism external to the governor itself.

This additional mechanism makes the system self regulating by decreasing 𝜔 for an increase in

𝜙. Accordingly, in those applications, e.g. the steam engine, the rotation frequency 𝜔 changes

during the regulating process. However, as already mentioned above, for the introduction to the DA

normal form algorithm, we consider the motion of the system for a fixed rotation frequency 𝜔, i.e.

no self-regulating coupling mechanism between 𝜙 and 𝜔.

3.1.1 Units

To limit the number of parameters in the following calculations to just the rotation frequency 𝜔, we

scale time, distance, and mass in such a way that the mass 𝑚, the gravitational constant 𝑔, and the

length of the rods 𝑅 are all equal to one in their respective scaled units and therefore disappear from

the equations. Specifically, mass is considered in units of the point mass 𝑚, distances are considered

in units of the rod length 𝑅, and time is considered in units of

𝑇0 [s] =
√√√

𝑅[m]

𝑔

[
m
s2

] , (3.1)

such that the gravitational constant 𝑔 equal one in units of distance 𝑅 and time 𝑇0.

3.1.2 The Equilibrium Point

For any given fixed rotation frequency 𝜔, there is an angle 𝜙0 so that 𝜙(𝑡) = 𝜙0 is a solution of the

motion of the centrifugal governor arms. This equilibrium angle is characterized by the alignment

of the rods with the vector sum of the vertical gravitational force 𝐹grav and the radial centrifugal
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force 𝐹cent such that there is no torque acting on the rods in the common plane of the rods and the

rotation axis.

For any frequency 𝜔, 𝜙0 = 0 satisfies this requirement, since the centrifugal force is zero and

there is only the gravitational force acting vertically downwards. However, if the rotation frequency

𝜔 is sufficiently high enough (see Eq. (3.3), a bifurcation of the equilibrium angle occurs – the angle

𝜙0 = 0 becomes an unstable equilibrium state, while stable equilibrium angle 𝜙0(𝜔) > 0 arises,

which satisfies the alignment condition with

tan 𝜙0 =
𝐹cent
𝐹grav

=
𝑚𝜔2𝑅 sin 𝜙0

𝑚𝑔
= 𝜔2 sin 𝜙0. (3.2)

For 𝜙0 > 0, this corresponds to

cos 𝜙0 =
1
𝜔2 ⇒ 𝜙0 = arccos

(
1
𝜔2

)
for 𝜔 > 1 = 𝜔min. (3.3)

Fig. 3.2 visualizes the stable equilibrium angle as a function of the rotation frequency 𝜔.
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Figure 3.2: Illustration of the stable equilibrium angle 𝜙0 of the arms of the centrifugal governor as
a function of the rotation frequency 𝜔. For 𝜔 > 𝜔min = 1, 𝜙0 = 0 is an unstable equilibrium angle.

Since the vertical contribution of the gravitational force to the vector sum is nonzero and

independent of the rotation frequency, an equilibrium angle of 𝜙0 = 90° is only approached
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asymptotically for the rotation frequency 𝜔 approaching infinity. The bifurcation of the equilibrium

state at 𝜔min = 1 is also clearly visible.

Tab. 3.1 lists stable equilibrium angles for some specific rotation frequencies, especially for the

fast-changing region between 𝜔 = 1 and 𝜔 = 2.

Table 3.1: List of stable equilibrium angles 𝜙0 of the centrifugal governor arms for some specific
rotation frequencies 𝜔.

𝜔 𝜙0 [deg] 𝜙0 [rad]

1 0° 0
√

2/ 4√3 30° 𝜋
6

4√2 45° 𝜋
4√

2 60° 𝜋
3

2 ≈ 75.52° ≈ 1.318
20 ≈ 89.86° ≈ 1.568

lim𝜔→∞ 90° 𝜋
2

3.1.3 The Equations of Motion

To understand the dynamics of the centrifugal governor arms around an equilibrium state, we derive

the equations of motion starting with the Lagrangian formulation of the problem. It yields

𝐿 =
𝑚

2

(
¤𝜙2𝑅2 + 𝜔2𝑅2 sin2 𝜙

)
− 𝑚𝑔𝑅 (1 − cos 𝜙) =

¤𝜙2

2
−

(
−𝜔2 sin2 𝜙

2
+ (1 − cos 𝜙)

)
︸                              ︷︷                              ︸

𝑈eff

, (3.4)

where 𝑈eff is the effective or centrifugal-gravitational potential. In Fig. 3.3, we illustrate the

centrifugal-gravitational potential 𝑈eff for multiple rotation frequencies 𝜔.

The minimum of the effective potential well corresponds to the stable equilibrium angle discussed

in Sec. 3.1.2. The axis notations indicate that the width and the depth of the potential, in particular,

increase with increasing rotation frequency 𝜔. The higher the rotation frequency 𝜔, the less relevant

are the gravitational influences and the deeper and the more symmetric the potential well. The

asymmetry of the effective potential will also be apparent in the dynamics of the system, which we
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Figure 3.3: Potential well of 𝑈eff for multiple oscillation frequencies 𝜔 The equilibrium angle 𝜙0
corresponds to the minimum of the potential well.

discuss in Sec. 3.1.4. For the rest of the chapter, we will focus on the case 𝜔 =
√

2, which yields a

clear 2:1 asymmetry left and right of its equilibrium angle.

To continue the derivation of the equations of motion, we derive the generalized canonical

momentum 𝑝𝜙 to the position variable 𝜙 from the Lagrangian, where

𝑝𝜙 =
𝑑𝐿

𝑑 ¤𝜙
= 𝑚𝑅2 ¤𝜙 = ¤𝜙. (3.5)

Using the Legendre transformation, the Hamiltonian

𝐻 =
𝑝2
𝜙

2𝑚𝑅2 − 𝑚𝜔2𝑅2 sin2 𝜙
2

+ 𝑚𝑔𝑅 (1 − cos 𝜙) =
𝑝2
𝜙

2
+𝑈eff = 𝐸 (3.6)

is obtained, which is not explicitly time dependent and therefore a constant of motion. The

Hamiltonian also happens to correspond to the energy 𝐸 of this system.

The equations of motions are derived from the Hamiltonian via Hamilton’s equations where

¤𝜙 =
𝑑𝐻

𝑑𝑝𝜙
=

𝑝𝜙

𝑚𝑅2 = 𝑝𝜙 (3.7)

and ¤𝑝𝜙 = −𝑑𝐻

𝑑𝜙
= −𝑚𝑔𝑅 sin 𝜙 + 𝑚𝜔2𝑅2 sin 𝜙 cos 𝜙 = sin 𝜙

(
𝜔2 cos 𝜙 − 1

)
. (3.8)

In coordinates (𝛿𝜙, 𝛿𝑝𝜙) relative to the equilibrium state (𝜙0, 0), the equations of motions are

d𝛿𝜙
d𝑡

= 𝛿𝑝𝜙 and
d𝛿𝑝𝜙

d𝑡
= sin (𝜙0 + 𝛿𝜙)

(
𝜔2 cos (𝜙0 + 𝛿𝜙) − 1

)
. (3.9)
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3.1.4 Illustration of System Dynamics

With the equations of motion relative to the equilibrium state (Eq. (3.9)) and the understanding of

how the shape of the effective potential well changes with the rotation frequency 𝜔, we can now

interpret the dynamics of the centrifugal governor when the angle of the rods is perturbed from the

equilibrium angle 𝜙0 (𝜔).

In Fig. 3.4, the dynamics of the rods are shown for a rotation frequency of 𝜔 =
√

2, which

corresponds to an equilibrium angle of 𝜙0 = 60°. While the oscillation is periodic, it is asymmetric
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Figure 3.4: Dynamics of the centrifugal governor for a rotation frequency of 𝜔 =
√

2. The
centrifugal governor arms were initiated with ¤𝜙 = 𝑝𝜙 = 0 and at the following angles: 60°, 65.5°,
69.5°, 73.5°, 77.5°, 81.5°, 85.5°, and 89.5°. The left plot shows the oscillatory behavior around the
equilibrium angle at 𝜙0 = 60° over time. The right plot shows the stroboscopic phase space
behavior from repetitive map evaluation. To related phase space behavior to the position behavior in
time, the 𝜙 axis of both plots are aligned.

around the equilibrium point, as we would expect from the asymmetric effective potential for 𝜔 =
√

2

in Fig. 3.3. The asymmetry of the oscillation is larger, the larger the angle during initiation. The

maximum downward angle displacement (often more generally referred to as amplitude) and the

maximum upward angle displacement of the governor’s arms relative to their equilibrium angle are

related through the effective potential, which corresponds to the energy of the vertical motion for
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𝛿𝑝𝜙 = 0. For both those angle displacements, the effective potential has the same maximum value

or ‘invariant amplitude’corresponding to the energy. The maximum amplitudes in the momentum

space in the right plot of Fig. 3.4 are related the same way. In other words, the phase space motion

in Fig. 3.4 corresponds to contour lines of the energy.

For future reference, it is useful to associate the term ‘amplitude’ not only with a physical

displacement or a maximum/minimum momentum but also with an abstract quantity that relates all

the different versions of phase space amplitudes like the energy in this case.

Apart from the asymmetric upward and downward position amplitudes, the left plot in Fig. 3.4

clearly shows a change in the period of oscillation depending on the angle during initiation, or more

generally speaking, depending on the invariant amplitude of the motion the energy. The larger the

amplitude, the longer is the period of oscillation. This is particularly prominent for the oscillation

with the largest amplitude. It is also obvious, especially for the larger amplitudes that the relation

between the amplitude and the period is nonlinear.

However, there is no trivial way of extracting this nonlinear relation between the amplitude and

the period of oscillation from the equations of motion and/or the energy. Additionally, if we were

unaware of the function for the effective potential and energy, or were considering a more complex

system, it would also be very difficult to relate the different phase space amplitudes to each other.

The DA normal form algorithm generates both relations in an automated process up to calculation

order. In the order-by-order process, it determines an invariant amplitude up to calculation order as

a function of the original phase space variables and also determines the period of oscillation as a

function of that invariant amplitude.

All the normal form algorithm requires is an origin preserving transfer map (see Sec. 2.2),

which represents the flow of the ODEs (see Eq. 3.9) relative to the linearly stable fixed point

of the considered phase space motion. For the centrifugal governor example, the equilibrium

phase space state (𝜙0, 0) constitutes such a phase space fixed point, as the right plot in Fig. 3.4

already indicated. In other words, we require a functional description of how the relative phase

space state 𝑧fin = (𝛿𝜙fin, 𝛿𝑝𝜙,fin) after a fixed time 𝑡0 depends on the initial relative phase space
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state 𝑧ini = (𝛿𝜙ini, 𝛿𝑝𝜙,ini). DA based maps (Sec. 2.2) can provide this functional description

up to arbitrary order. We will use them to represent the dynamics around the equilibrium state

corresponding to a rotation frequency of 𝜔 =
√

2, for the later analysis with the DA normal form

algorithm.

3.2 Map Calculation via Integration

As mentioned above, the following analysis of the centrifugal governor considers the system at a

fixed rotation frequency of 𝜔 =
√

2. We are interested in the dynamics around the corresponding

equilibrium state of the centrifugal governor arms at (60°, 0). The goal of this section is to generate

a DA map describing the phase space dynamics relative to that equilibrium state.

For consistency with the following notation during the DA normal form algorithm introduction,

we denote the phase space coordinates relative to the equilibrium point with (𝑞0, 𝑝0) instead of the

previously used
(
𝛿𝜙, 𝛿𝑝𝜙

)
. We will also conduct the calculations in radians rather than degrees due

to their slightly easier implementation.

The map is calculated by integrating the ODEs (see Eq. (3.9)) from the initial phase space state

(𝑞ini, 𝑝ini) =
(
𝜙0

(
𝜔 =

√
2
)
+ 𝛿𝜙, 𝛿𝑝𝜙

)
=

(𝜋
3
+ 𝑞0, 𝑝0

)
(3.10)

from 𝑡 = 0 until 𝑡 = 𝑡0 = 1. Since the flow of the ODEs in Eq. (3.9) remains expanded around the

equilibrium state for any 𝑡0, the time of the integration can be chosen freely.

The resulting map of the integration M0 = (𝑄(𝑞0, 𝑝0), 𝑃(𝑞0, 𝑝0))𝑇 has the following form:

M0 = C + L + ∑
𝑚 U𝑚 , where the constant part is denoted by C, the linear part with L and each of

the nonlinear parts of order 𝑚 with U𝑚 . Since the system is expanded around the equilibrium point,

the constant part of the map corresponds to the equilibrium state ( 𝜋3 , 0). The following explicit

formulation of M0 up to order three introduces the notation of various coefficients of the map:
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M0 (𝑞0, 𝑝0) =
©«
M+

0 (𝑞0, 𝑝0)

M−
0 (𝑞0, 𝑝0)

ª®®¬ =
©«
𝑄 (𝑞0, 𝑝0)

𝑃 (𝑞0, 𝑝0)

ª®®¬ =
©«
𝑞const

𝑝const

ª®®¬︸   ︷︷   ︸
C

+
©«
(𝑄 |𝑞0) (𝑄 |𝑝0)

(𝑃 |𝑞0) (𝑃 |𝑝0)

ª®®¬
©«
𝑞0

𝑝0

ª®®¬︸                         ︷︷                         ︸
L

+
©«
U+

2(2,0)

U−
2(2,0)

ª®®¬ 𝑞2
0 +

©«
U+

2(1,1)

U−
2(1,1)

ª®®¬ 𝑞0𝑝0 +
©«
U+

2(0,2)

U−
2(0,2)

ª®®¬ 𝑝2
0︸                                                      ︷︷                                                      ︸

U2

+
©«
U+

3(3,0)

U−
3(3,0)

ª®®¬ 𝑞3
0 +

©«
U+

3(2,1)

U−
3(2,1)

ª®®¬ 𝑞2
0𝑝0 +

©«
U+

3(1,2)

U−
3(1,2)

ª®®¬ 𝑞0𝑝
2
0 +

©«
U+

3(0,3)

U−
3(0,3)

ª®®¬ 𝑝3
0︸                                                                              ︷︷                                                                              ︸

U3

+... (3.11)

The position 𝑄 and momentum 𝑃 components of the map M0 correspond to the upper and

lower component and are denoted by ‘+’ and ‘-’ , respectively. The coefficients in the upper and

lower component for the nonlinear 𝑚(= 𝑎 + 𝑏)th order terms 𝑞𝑎𝑝𝑏 are denoted by U±
𝑚(𝑎,𝑏) . The

coefficients in the linear matrix (𝑎 |𝑏) indicate the factor with which 𝑎 is linearly dependent on 𝑏.

The following Tab. 3.2 lists the values of the coefficients in Eq. (3.11) above. The integration

was performed with an order 20 Picard-iteration based integrator with stepsize ℎ = 10−3 over 1000

iterations within COSY INFINITY. Details on the implementation of the integrator under the name

fixed point integrator are given in [86].

3.3 The DA Normal Form Algorithm

In Sec. 2.3, the general DA normal form algorithm [14] was introduced for a linearly stable

2𝑛 dimensional system. This chapter provides a detailed example-driven walk-through of the

differential algebra based normal form algorithm for the symplectic one dimensional (1D) system of

the centrifugal governor with a fixed rotation frequency of 𝜔 =
√

2 corresponding to an equilibrium

angle of 𝜙0 = 60°.

The normal form resulting from the DA normal form algorithm constitutes circular motion with

a quasi-invariant as radius and only normal form phase space amplitude (and parameter) dependent
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Table 3.2: Integration result for map around equilibrium state (𝜙0(𝜔 =
√

2) = 𝜋
3 , 0) integrated until

𝑡 = 1 using an order 20 Picard-iteration based integrator with stepsize ℎ = 10−3 over 1000 iterations
within COSY INFINITY. The component M+

0 = 𝑄(𝑞0, 𝑝0) is on the left, M−
0 = 𝑃(𝑞0, 𝑝0) on the

right.

O Coeff. Value Coeff. Value
0 𝑞const 1.04719755 𝑝const 0
1 (𝑄 |𝑞0) 0.33918599 (𝑃 |𝑞0) -1.15214118
1 (𝑄 |𝑝0) 0.76809412 (𝑃 |𝑝0) 0.33918599
2 U+

2(2,0) -0.44622446 U−
2(2,0) -0.55821731

2 U+
2(1,1) -0.29304415 U−

2(1,1) -0.64033440
2 U+

2(0,2) -0.08403817 U−
2(0,2) -0.29304415

3 U+
3(3,0) 0.31844278 U−

3(3,0) 0.50817317
3 U+

3(2,1) 0.29904862 U−
3(2,1) 0.76091921

3 U+
3(1,2) 0.13758223 U−

3(1,2) 0.46230241
3 U+

3(0,3) 0.03017663 U−
3(0,3) 0.13758223

angle advancements. Fig. 3.5 illustrates the oscillatory phase space behavior of the governor’s arms

around the equilibrium point (left plot already seen in different orientation in Fig. 3.4) and compares

it to its associated rotationally invariant phase space behavior in the normal form representation.

The orientation of the phase space in Fig 3.5 is according to the usual convention, where the position

𝑞 is on the horizontal axis and the momentum 𝑝 on the vertical axis. In Fig. 3.4, this convention

was ignored for the sake of a better understanding when comparing the phase space behavior to

the position behavior over time. Accordingly, the asymmetry with larger downwards amplitudes is

shown in the horizontal (𝜙) direction in Fig 3.5a.

For the introduction of the DA normal form algorithm, we use the following notation. The

starting map (see Tab. 3.2) is dependent on the ‘original’ variables (𝑞0, 𝑝0) relative to the expansion

point (see Sec. 3.1.2). The transformations of the normal form algorithm are done order by order.

With each transformation step, the index of the map and the variables is going to increase by 1, i.e.

as a result of the first (order) transformation we get M1 dependent on the variables (𝑞1, 𝑝1). For

each order 𝑚 there is a transformation A𝑚 and its inverse A−1
𝑚 , which are applied to resulting map

of the previous transformation M𝑚−1 to yield the resulting map of the 𝑚th order transformation
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a) b)

Figure 3.5: Phase space behavior of the centrifugal governor arms around their equilibrium angle of
𝜙0(𝜔 =

√
2) = 60° provided by a tenth order Poincaré map of the system. a) shows the original

phase space behavior. b) shows the associated circular behavior in normal form.

M𝑚 (𝑞𝑚 , 𝑝𝑚) = (A𝑚 ◦M𝑚−1 ◦A−1
𝑚 ) (𝑞𝑚 , 𝑝𝑚).

The transformation A−1
𝑚 transforms (𝑞𝑚 , 𝑝𝑚) to (𝑞𝑚−1, 𝑝𝑚−1), which are the variables of the

map of the previous order M𝑚−1. The transformation A𝑚 transforms the intermediate result of

M𝑚−1 ◦A−1
𝑚 , which is in the (𝑞𝑚−1, 𝑝𝑚−1) phase space, back to the new phase space in (𝑞𝑚 , 𝑝𝑚).

In [14], the variables (𝑞𝑚 , 𝑝𝑚) are denoted by the (𝑠+, 𝑠−) notation and the normal form coordinates

(𝑞NF , 𝑝NF) are written as (𝑡+, 𝑡−) instead.

The nonlinear normal form transformation steps below are calculated up to third order. It will

become obvious during the process that transformations of higher even and odd orders follow the

same pattern as the second and third order transformation, respectively.

3.3.1 The Parameter Dependent Fixed Point

The DA normal form algorithm starts with an origin preserving map. Accordingly, the result from

the integration is shifted to the equilibrium/fixed point MFP = M0 − C, hence MFP = L +∑
𝑚 U𝑚

is an origin preserving fixed point map with MFP(®0) = ®0.

If the map were dependent on changes 𝛿[ of a system parameter [, e.g., changes in the driving
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frequency 𝜔 = 𝜔0 + 𝛿𝜔, the normal form algorithm would require the calculation of the parameter

dependent fixed point ®𝑧(𝛿[) = (𝑞FP(𝛿[), 𝑝FP(𝛿[)) such that MFP(®0, 𝛿[) = ®0. In Eq. (3.3), the

relation of the equilibrium point (fixed point) and the driving frequency was already calculated

yielding the parameter dependent fixed point

®𝑧 (𝛿𝜔) =
(
arccos

(
1

(𝜔0 + 𝛿𝜔)2

)
, 0

)
for (𝜔0 + 𝛿𝜔)2 ≥ 1.

For less straightforward systems, one uses the following inversion method on the extended map

(MFP − I®𝑧, I𝛿 ®[) to find the parameter dependent fixed point ®𝑧(𝛿 ®[) [14, Eq. (7.47)]:(
®𝑧 (𝛿 ®[) , I𝛿 ®[

)
=

(
MFP − I®𝑧, I𝛿 ®[

)−1 (
®0, 𝛿 ®[

)
, (3.12)

where I®𝑧 and I𝛿 ®[ are the identity map of ®𝑧 and 𝛿 ®[, respectively.

Given the parameter dependent fixed point, the map is expanded around it:

MPDFP = MFP (®𝑧 (𝛿 ®[) + ®𝑧, 𝛿 ®[) −MFP (®𝑧 (𝛿 ®[) , 𝛿 ®[) . (3.13)

To limit the complexity of the introduction, we will not consider parameter dependence in the

further calculations and therefore proceed with MFP.

3.3.2 The Linear Transformation

The first order transformation is the diagonalization, transforming the system into the eigenvector

space of the linear part L. In order to determine the transformation A1 and its inverse A−1
1 for the

diagonalization, we determine the eigenvalues _± and eigenvectors ®𝑣± of the linear matrix �̂� in the

linear part L. For this, we require that all eigenvalues of MFP are distinct. Furthermore, we only

consider cases where MFP is linearly stable, which means that all eigenvalues have an absolute

value |_ | ≤ 1. This also means that det( �̂�) ≤ 1, otherwise at least one of the eigenvalues is larger

than 1, making the system linearly unstable. Particularly interesting is the case det( �̂�) = 1, which

indicates that the system is symplectic and only stable in the case of complex conjugate eigenvalues

_± = 𝑒±𝑖`. While there are procedures for the cases of real and degenerate eigenvalues with a
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magnitude smaller than one (see [14]), this chapter only illustrates the procedures for the most

relevant and common symplectic case of only complex conjugate eigenvalues and eigenvectors.

Solving the characteristic polynomial yields the eigenvalues

_± =
tr

(
�̂�
)

2
±

√︄
tr

(
�̂�
)2

4
− det

(
�̂�
)
= 𝑟𝑒±𝑖`

with 𝑟 =

√︃
det

(
�̂�
)

and ` = sign (𝑄 |𝑝0) arccos

(
tr

(
�̂�
)

2𝑟

)
.

To generalize the procedure of diagonalization, the Twiss parameters [25] are used with

𝛼 =
(𝑄 |𝑞0) − (𝑃 |𝑝0)

2𝑟 sin `
𝛽 =

(𝑄 |𝑝0)
𝑟 sin `

𝛾 =
−(𝑃 |𝑞0)
𝑟 sin `

.

With this notation the linear matrix �̂� can be generally written as

�̂� =
©«
cos ` + 𝛼 sin ` 𝛽 sin `

−𝛾 sin ` cos ` − 𝛼 sin `

ª®®¬ .
The complex conjugate eigenvectors ®𝑣± associated with the complex conjugate eigenvalues _±

of �̂� are then obtained by solving
(
�̂� − _±I

)
®𝑣± = ®0.

As a result, the following eigenvectors are calculated

®𝑣± =
©«

𝛽

−𝛼 ± 𝑖

ª®®¬ or ®𝑣± =
©«
𝛼 ± 𝑖

−𝛾

ª®®¬ ,
for the case that either 𝛽 = 0 or 𝛾 = 0. The transformation A−1

1 consist of the two complex conjugate

eigenvectors ®𝑣±, guaranteeing that A−1
1 (𝑞1, 𝑝1) is real just like the original variables (𝑞0, 𝑝0) and

the fixed point map MFP. The transformation A1 is calculated accordingly such that the resulting

map M1 = A1 ◦ MFP ◦ A−1
1 is in the complex conjugate eigenvector space and has complex

conjugate components M̄+
1 = M−

1 . For 𝛽 ≠ 0, the transformations are

A−1
1 =

©«
(𝑞0 |𝑞1) (𝑞0 |𝑝1)

(𝑝0 |𝑞1) (𝑝0 |𝑝1)

ª®®¬ =
1

2
√
𝛽

©«
𝛽 𝛽

𝑖 − 𝛼 −𝑖 − 𝛼

ª®®¬ (3.14)

A1 =
©«
(𝑞1 |𝑞0) (𝑞1 |𝑝0)

(𝑝1 |𝑞0) (𝑝1 |𝑝0)

ª®®¬ =
𝑖
√
𝛽

©«
−𝑖 − 𝛼 −𝛽

−𝑖 + 𝛼 𝛽

ª®®¬ . (3.15)
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For the centrifugal governor example with 𝜔 =
√

2, the eigenvalues are _± = 𝑟𝑒±𝑖` with 𝑟 = 1

and ` = 1.22474487. The Twiss parameters are

𝛼 = 0 𝛽 = 0.816496581 ≈
√︂

2
3

𝛾 = 1.22474487 ≈
√︂

3
2
.

The resulting diagonalized map is of the form M1 = R+∑
𝑚 𝑆𝑚 , where S𝑚 are the transformed

nonlinear parts of order 𝑚 in the eigenvector space of �̂� and R is the diagonalized linear part, where

the linear matrix �̂� of R only consist of the eigenvalues 𝑒±𝑖` on its main diagonal:

M1 (𝑞1, 𝑝1) =
©«
𝑒𝑖` 0

0 𝑒−𝑖`

ª®®¬
©«
𝑞1

𝑝1

ª®®¬︸                ︷︷                ︸
R

+
©«
S+

2(2,0)

S−
2(2,0)

ª®®¬ 𝑞2
1 +

©«
S+

2(1,1)

S−
2(1,1)

ª®®¬ 𝑞1𝑝1 +
©«
S+

2(0,2)

S−
2(0,2)

ª®®¬ 𝑝2
1︸                                                     ︷︷                                                     ︸

S2

+
©«
S+

3(3,0)

S−
3(3,0)

ª®®¬ 𝑞3
1 +

©«
S+

3(2,1)

S−
3(2,1)

ª®®¬ 𝑞2
1𝑝1 +

©«
S+

3(1,2)

S−
3(1,2)

ª®®¬ 𝑞1𝑝
2
1 +

©«
S+

3(0,3)

S−
3(0,3)

ª®®¬ 𝑝3
0︸                                                                             ︷︷                                                                             ︸

S3

+... (3.16)

Tab. 3.3 lists the values to the coefficients above for the centrifugal governor example for a

rotation frequency corresponding to an equilibrium angle of 𝜙0(𝜔 =
√

2) = 𝜋
3 = 60°.

3.3.3 The Nonlinear Transformations

The nonlinear transformations are the key steps of the normal form algorithm. In this first part of

this subsection, we are going to look at an 𝑚th order transformation in general, before going through

the nonlinear transformation for orders two and three in detail.

3.3.3.1 General 𝑚th Order Nonlinear Transformation

All the following nonlinear transformation steps are done order by order and are all of the same

form: M𝑚 = A𝑚 ◦ M𝑚−1 ◦ A−1
𝑚 , where the 𝑚th transformation does not change any of the

lower order terms of M𝑚−1 that have already been transformed in the previous transformations.

Hence, M𝑚 differs from M𝑚−1 only in the orders 𝑚 and larger. The 𝑚th order transformation
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Table 3.3: Coefficients of M1 up to order three. Note the complex conjugate property
S±
𝑚(𝑘+,𝑘−) = S̄∓

𝑚(𝑘−,𝑘+) .

O Coeff. Real Part Imaginary Part
1 e𝑖` 0.339185989 0.940719334
1 e−𝑖` 0.339185989 -0.940719334
2 S+

2(2,0) -0.216977793 -0.059191831
2 S−

2(2,0) 0.072325931 -0.102961500
2 S+

2(1,1) -0.258557455 0.368076331
2 S−

2(1,1) -0.258557455 -0.368076331
2 S+

2(0,2) 0.072325931 0.102961500
2 S−

2(0,2) -0.216977793 0.059191831

3 S+
3(3,0) 0.068036138 0.047162997

3 S−
3(3,0) -0.045160062 -0.016282923

3 S+
3(2,1) 0.259415349 -0.130475661

3 S−
3(2,1) -0.022283986 0.239186527

3 S+
3(1,2) -0.022283986 -0.239186527

3 S−
3(1,2) 0.259415349 0.130475661

3 S+
3(0,3) -0.045160062 -0.016282923

3 S−
3(0,3) 0.068036138 -0.047162997

A𝑚 = I + T𝑚 +O≥𝑚+1, specifically the polynomial T𝑚 of only 𝑚th order terms, is chosen such

that the 𝑚th order terms S𝑚 of the map M𝑚−1 are simplified or even eliminated.

Effects on the higher orders of M𝑚 due to the 𝑚th order transformation can only be considered

by adjusting the terms of order higher than 𝑚 of A𝑚 , namely O≥𝑚+1. In other words, finding T𝑚 is

essential to the DA normal form algorithm, while the termsO≥𝑚+1 can be chosen freely, e.g., to make

the transformation symplectic by choosing A𝑚 = exp(𝐿T𝑚 ) or to avoid higher order resonances.

Usually, the symplectic transformation is chosen since the calculation of the transformation A𝑚 and

its inverse are straightforward.
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The flow operator 𝐿T𝑚 = (T +
𝑚 𝜕𝑞 + T −

𝑚 𝜕𝑝) in the exponential behaves in the following way:

exp
(
𝐿T𝑚

)
I =

(
𝐿0
T𝑚 + 𝐿1

T𝑚 + 1
2
𝐿2
T𝑚 +O>(𝑚+1)

)
I

=

(
1 + (T +

𝑚 𝜕𝑞 + T −
𝑚 𝜕𝑝) +

1
2
𝐿T𝑚 (T +

𝑚 𝜕𝑞 + T −
𝑚 𝜕𝑝) +O>(𝑚+1)

)
(𝑞, 𝑝)𝑇

= I + T𝑚 + 1
2
𝐿T𝑚T𝑚 +O>(𝑚+1) . (3.17)

Accordingly, the inverse is given by

A−1
𝑚 = exp

(
−𝐿T𝑚

)
= I − T𝑚 + 1

2
𝐿T𝑚T𝑚 −O>(𝑚+1) . (3.18)

In the example case of the centrifugal governor, we investigate the DA normal form algorithm

up to order three, which means for 𝑚 = 3:

A3 = exp
(
𝐿T3

)
I =3 I + T3 (3.19)

A−1
3 = exp

(
−𝐿T3

)
I =3 I − T3. (3.20)

For the second order transformation it is necessary to consider the third order terms O3, since they

influence the third order terms of M2:

A2 = exp
(
𝐿T2

)
I =3 I + T2 +O3 (3.21)

A−1
2 = exp

(
−𝐿T2

)
I =3 I − T2 +O3 (3.22)

with

O3 =
1
2
𝐿T𝑚T𝑚 =

1
2
(T +

2 𝜕𝑞 + T −
2 𝜕𝑝)T2. (3.23)

As introduced in Sec. 2.1, the notation ‘=𝑚’indicates that the quantities on both sides are equal

up to expansion order 𝑚.

In order to determine T𝑚 , we analyze the 𝑚th order transformation and only look at terms up to

order 𝑚 [14, Eq. (7.62)]:

A𝑚 ◦M𝑚−1 ◦A−1
𝑚 =𝑚 (I + T𝑚) ◦ (R + S𝑚) ◦ (I − T𝑚)

=𝑚 (I + T𝑚) ◦ (R −R ◦ T𝑚 + S𝑚)

=𝑚 R + S𝑚 + [T𝑚 ,R] . (3.24)
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Various terms with orders higher than 𝑚 are ignored in the equations above. The goal is to

choose T𝑚 such that the commutator [T𝑚 ,R] = T𝑚 ◦R −R ◦ T𝑚 = −S𝑚 to simplify M𝑚 , i.e. the

result of Eq. (3.24). The polynomials in the upper and lower component of T𝑚 can be express as

T ±
𝑚 (𝑞, 𝑝) =

∑︁
𝑚=𝑘++𝑘−
𝑘±∈N0

T ±
𝑚(𝑘+,𝑘−)𝑞

𝑘+ 𝑝𝑘− . (3.25)

Accordingly, the commutator C𝑚 = [T𝑚 ,R] yields

C±𝑚 (𝑞, 𝑝) =
∑︁

𝑚=𝑘++𝑘−
𝑘±∈N0

T ±
𝑚(𝑘+,𝑘−)

(
𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖`

)
𝑞𝑘+ 𝑝𝑘− . (3.26)

A term in S𝑚 can only be removed if and only if the corresponding term in the commutator C𝑚

is not zero. Terms of the commutator are zero, whenever the condition

𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖` = 0 (3.27)

is satisfied, which is the case for 𝑘+ − 𝑘− = ±1. This (Eq. (3.27)) is the key condition of the DA

normal form algorithm, since it determines the surviving nonlinear terms S𝑚 . All other terms that

do not satisfy the condition are eliminated by choosing the coefficients of T𝑚 as follows

T ±
𝑚(𝑘+,𝑘−) =

−𝑆±
𝑚(𝑘+,𝑘−)

𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖`
. (3.28)

Specifically, this means that the terms S+
𝑚(𝑘,𝑘−1) and S−

𝑚(𝑘−1,𝑘) always survive for all uneven orders

𝑚 with 𝑚 = 𝑘 + 𝑘 − 1 = 2𝑘 − 1.

3.3.3.2 Explicit Second Order Nonlinear Transformation

The polynomial T𝑚 from Eq. (3.25) for 𝑚 = 2 yields

T2 (𝑞, 𝑝) =
(
T ±

2 |2, 0
)
𝑞2 +

(
T ±

2 |1, 1
)
𝑞𝑝 +

(
T ±

2 |0, 2
)
𝑝2

=
©«
T +

2(2,0)

T −
2(2,0)

ª®®¬ 𝑞2 +
©«
T +

2(1,1)

T −
2(1,1)

ª®®¬ 𝑞𝑝 +
©«
T +

2(0,2)

T −
2(0,2)

ª®®¬ 𝑝2. (3.29)
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The commutator C2 = [T2,R] = T2 ◦R −R ◦ T2 of the second order nonlinear transformation

has only nonzero terms with

C2 (𝑞, 𝑝) = [T2,R] (𝑞, 𝑝) = (T2 ◦R −R ◦ T2) (𝑞, 𝑝)

=

(
T ±

2 |2, 0
)
𝑒2𝑖`𝑞2 +

(
T ±

2 |1, 1
)
𝑞𝑝 +

(
T ±

2 |0, 2
)
𝑒−2𝑖`𝑝2 − 𝑒±𝑖`T ±

2 (𝑞, 𝑝)

=
©«
T +

2(2,0)

(
𝑒2𝑖` − 𝑒𝑖`

)
T −

2(2,0)

(
𝑒2𝑖` − 𝑒−𝑖`

)ª®®¬ 𝑞2 +
©«
−𝑒𝑖`T +

2(1,1)

−𝑒−𝑖`T −
2(1,1)

ª®®¬ 𝑞𝑝 +
©«
T +

2(0,2)

(
𝑒−2𝑖` − 𝑒𝑖`

)
T −

2(0,2)

(
𝑒−2𝑖` − 𝑒−𝑖`

)ª®®¬ 𝑝2

(3.30)

eliminating all S2 terms by choosing

T ±
2(𝑘+,𝑘−) =

−𝑆±2(𝑘+,𝑘−)(
𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖`

) , (3.31)

since the condition from Eq. (3.27) is not satisfied:

𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖` ≠ 0 ∀𝑘+, 𝑘− ∈ N0 with 𝑘+ + 𝑘− = 2.

The values of the T ±
2(𝑘+,𝑘−) for the centrifugal governor example are given in Tab. 3.4. The

terms of O3 are calculated via Eq. (3.23) from T2 and are also given in Tab. 3.4 yielding all terms

of the transformation A2 and its inverse A−1
2 from Eq. (3.21) and Eq. (3.22).

Table 3.4: The values of the T ±
2(𝑘+,𝑘−) and O±

3(𝑘+,𝑘−) . Note that T2 and O3 and therefore A2 and
its inverse are real with A+

𝑚(𝑘+,𝑘−) = A−
𝑚(𝑘−,𝑘+) .

O Coeff. Value Coeff. Value
2 T +

2(2,0) -0.195635573 T −
2(2,0) 0.065211858

2 T +
2(1,1) 0.391271145 T −

2(1,1) 0.391271145
2 T +

2(0,2) 0.065211858 T −
2(0,2) -0.195635573

3 O+
3(3,0) 0.051031036 O−

3(3,0) 0
3 O+

3(2,1) -0.034020691 O−
3(2,1) 0.051031036

3 O+
3(1,2) 0.051031036 O−

3(1,2) -0.034020691
3 O+

3(0,3) 0 O−
3(0,3) 0.051031036

46



To study how the second order transformation affects the third order terms S3 of the map M2,

the transformation is considered up to third order:

M2 =3 A2 ◦M1 ◦A−1
2

=3 (I + T2 +O3) ◦ (R + S2 + S3) ◦ (I − T2 +O3)

=3 (I + T2 +O3) ◦
(
R ◦ (I − T2 +O3) + S2 ◦ (I − T2 +O3) + S3 ◦ (I − T2 +O3)

)
=3 (I + T2 +O3) ◦

(
R −R ◦ T2 +R ◦O3 +

︷                 ︸︸                 ︷
S2 + S2→3 +���O≥4 +

︷     ︸︸     ︷
S3 +���O≥4

)
=3 R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3

+ T2 ◦ (R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3) +���O≥4

=3

︷                        ︸︸                        ︷
T2 ◦R +K2→3 +�

��O≥4 +R −R ◦ T2 +R ◦O3 + S2 + S2→3 + S3

=3 R + S2 + [T2 ◦R]︸            ︷︷            ︸
=0

+S3 + S2→3 +K2→3 +R ◦O3︸                                  ︷︷                                  ︸
S3,new

(3.32)

All the crossed-out terms���O≥4 represent terms that do not contribute to the result up to order

three, since they are at least of order four. As a result of the second order transformation, the third

order terms have changed and are summarized by S3,new. They are composed of the third order

terms from after the linear transformation S3 and three new terms: S2→3 =3 S2 ◦ (I − T2) − S2,

K2→3 =3 T2 ◦ (R −R ◦ T2 + S2) − T2 ◦R and R ◦O3. While the last one is self-explanatory,

the first two are not intuitively understood. In Sec. 3.3.3.4 these terms are calculated more explicitly,

however, we recommend this section only for the very intrigued reader and encourage everyone else

to skip it to follow the steps in the normal form algorithm.

The result of the second order transformation M2 = R + S3,new for the example case of the

centrifugal governor is given in Tab. 3.5.
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Table 3.5: New coefficients of third order of M2 after the second order transformation. Note that
the first order terms remain unchanged and that the second order terms are all eliminated by the
second order transformation. Interestingly, the second order transformation caused some terms of
the third order to disappear in this specific case, this is not a general property of the second order
transformation. The emphasized terms are surviving the third order transformation as explained in
the following subsection.

O Coeff. Real Part Imaginary Part
3 S+

3,new(3,0) 0.061270641 0.073920008
3 S−

3,new(3,0) 0 0
3 S+

3,new(2,1) 0.470359667 -0.169592994
3 S−

3,new(2,1) 0 0.288035295
3 S+

3,new(1,2) 0 -0.288035295
3 S−

3,new(1,2) 0.470359667 0.169592994
3 S+

3,new(0,3) 0 0
3 S−

3,new(0,3) 0.061270641 -0.073920008

3.3.3.3 Explicit Third Order Nonlinear Transformation

The third order transformation follows the same scheme as above (see Eq. (3.24)) only that the

commutator C3 = [T3 ◦R] has terms that are zero

C3 =
©«
T +

3(3,0)

(
𝑒3𝑖` − 𝑒𝑖`

)
T −

3(3,0)

(
𝑒3𝑖` − 𝑒−𝑖`

)ª®®¬ 𝑞3 +
©«

0

T −
3(2,1)

(
𝑒𝑖` − 𝑒−𝑖`

)ª®®¬ 𝑞2𝑝

+
©«
T +

3(1,2)

(
𝑒−𝑖` − 𝑒𝑖`

)
0

ª®®¬ 𝑞𝑝2 +
©«
T +

3(0,3)

(
𝑒−3𝑖` − 𝑒𝑖`

)
T −

3(0,3)

(
𝑒−3𝑖` − 𝑒−𝑖`

)ª®®¬ 𝑝3, (3.33)

with C+3(2,1) = C−3(1,2) = 0. This means that the terms S+
3,new(2,1) and S−

3,new(1,2) cannot be

eliminated. All the other terms are eliminated by choosing

T ±
3(𝑘+,𝑘−) =

−𝑆±3,new(𝑘+,𝑘−)(
𝑒𝑖`(𝑘+−𝑘−) − 𝑒±𝑖`

) for 𝑘+ − 𝑘− ≠ ±1. (3.34)

The values of T ±
3(𝑘+,𝑘−) for the centrifugal governor example are given in Tab. 3.6.
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Table 3.6: The values of the T ±
3(𝑘+,𝑘−) . Note that T +

3(𝑘+,𝑘−) = T −
3(𝑘−,𝑘+) .

O Coeff. Value Coeff. Value
3 T +

3(3,0) 0.051031036 T −
3(3,0) 0

3 T +
3(2,1) 0 T −

3(2,1) -0.153093109
3 T +

3(1,2) -0.153093109 T −
3(1,2) 0

3 T +
3(0,3) 0 T −

3(0,3) 0.051031036

After the third order transformation the resulting map is of the following form

M3 =
©«
𝑒𝑖` 0

0 𝑒−𝑖`

ª®®¬
©«
𝑞3

𝑝3

ª®®¬︸                ︷︷                ︸
R

+
©«
S+

3,new(2,1)

0

ª®®¬ 𝑞2
3𝑝3 +

©«
0

S−
3,new(1,2)

ª®®¬ 𝑞3𝑝
2
3︸                                               ︷︷                                               ︸

S3,transformed

=
©«

(
𝑒𝑖` + S+

3,new(2,1)𝑞3𝑝3
)
𝑞3(

𝑒−𝑖` + S−
3,new(1,2)𝑞3𝑝3

)
𝑝3

ª®®¬ =
©«
𝑓 + (𝑞3𝑝3) 𝑞3

𝑓 − (𝑞3𝑝3) 𝑝3

ª®®¬ . (3.35)

The corresponding values for the coefficients can be found in Tab. 3.3 for the linear terms and

in Tab. 3.5 for the third order terms. The complex conjugate property of the map M+
3 = M−

3 is

maintained.

While all nonlinear transformations follow the same structure, there is a fundamental difference

between even and odd order transformation steps. For even order transformations there are

no regularly surviving terms as shown for the second order transformation. For uneven order

transformations, there are some terms of a special structure that do survive as shown for third order

transformation. Higher even and odd order transformations will behave in the same way, which is

why we will stop the process of the detailed walk-through here, after the third order transformation.

In principle, the calculation of the transformations can be continued up to arbitrary order. With

each transformation, the higher order terms are change and in the end only the terms S+
𝑚(𝑘,𝑘−1) and

S−
𝑚(𝑘−1,𝑘) of uneven orders survive. Hence, the components M±

𝑚 can also be factorize into the

𝑓 ± (𝑞𝑚𝑝𝑚) notation (see Eq. (3.35)) for higher orders.
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3.3.3.4 The Effect of the Second Order Transformation on Third Order Terms

The following calculation investigates the term S2→3 as was previously done in [86] and was added

here for sake of completeness.

S2→3 =3 S2 ◦ (I − T2) − S2

=3 S2(2,0)
(
𝑞 − T +

2

)2
+ S2(0,2)

(
𝑝 − T −

2

)2
+ S2(1,1)

(
𝑞 − T +

2

) (
𝑝 − T −

2

)
− S2

=3
((((((((((((((((((((

S2(2,0)𝑞
2 + S2(1,1)𝑞𝑝 + S2(0,2) 𝑝

2 − S2︸                                               ︷︷                                               ︸
=0

+
((((((((((((((((((((((((

S2(2,0)
(
T +

2

)2
+ S2(1,1)T +

2 T −
2 + S2(0,2)

(
T −

2

)2︸                                                         ︷︷                                                         ︸
≥O4

− 2S2(2,0)T +
2 𝑞 − S2(1,1)

(
T +

2 𝑝 + T −
2 𝑞

)
− 2S2(0,2)T −

2 𝑝 (3.36)

As derived in the beginning of Sec. 3.3.3.3, the surviving parts of S2→3 after the third order

transformation are S+
2→3(2,1) and its complex conjugate counterpart S−

2→3(1,2):

S+
2→3(2,1) = −2S+

2(2,0)T
+

2(1,1) − S+
2(1,1)

(
T +

2(2,0) + T −
2(1,1)

)
− 2S+

2(0,2)T
−

2(2,0)

=
2S+

2(2,0)S
+
2(1,1)

1 − 𝑒𝑖`
+
S+

2(1,1)S
+
2(2,0)

𝑒2𝑖` − 𝑒𝑖`
+
S+

2(1,1)S
−
2(1,1)

1 − 𝑒−𝑖`
+
S+

2(0,2)S
−
2(2,0)

𝑒2𝑖` − 𝑒−𝑖`
(3.37)

This illustrates the complexity of these terms since every single term from S2 is relevant for

them. Each term of S2 is again dependent on the terms of U2. The relation is given by the linear

transformation S2 = A1 ◦ U2 ◦A−1
1 . In principle, one can extend the calculation above to express

S+
2→3(2,1) in terms of U2 and the Twiss parameters as done in [86]. The main insight however is

that due to the significant influence of lower order transformation on higher order terms it is almost

impossible to determine a priory which terms are the relevant ones for characteristics of the normal

form.

In the following calculation we are investigating the term K2→3, which was not previously
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investigated in [86].

K2→3 = T2 ◦ (R −R ◦ T2 + S2) − T2 ◦R

= T2 ◦ (R −K2) − T2 ◦R

=3 T2(2,0)
(
𝑒𝑖`𝑞 −K+

2

)2
+ T2(0,2)

(
𝑒−𝑖`𝑝 −K−

2

)2

+ T2(1,1)
(
𝑒𝑖`𝑞 −K+

2

) (
𝑒−𝑖`𝑝 −K−

2

)
− T2 ◦R

=3
((((((((((((((((((((((((((

T2(2,0)𝑒
2𝑖`𝑞2 + T2(1,1)𝑞𝑝 + T2(0,2)𝑒

−2𝑖`𝑝2 − T2 ◦R︸                                                                  ︷︷                                                                  ︸
=0

+
(((((((((((((((((((((((

T2(2,0)
(
K+

2

)2
+ T2(1,1)K+

2K
−
2 + T2(0,2)

(
K−

2

)2︸                                                        ︷︷                                                        ︸
≥O4

− 2T2(2,0)K+
2𝑒

𝑖`𝑞 − T2(1,1)
(
K+

2𝑒
−𝑖`𝑝 +K−

2 𝑒
𝑖`𝑞

)
− 2T2(0,2)K−

2 𝑒
−𝑖`𝑝 (3.38)

where

K2 = R ◦ T2 − S2 → K±
2 = 𝑒±𝑖`T ±

2 − S±
2 (3.39)

so

K2→3 =3 2T2(2,0)S+
2 𝑒

𝑖`𝑞 + T2(1,1)
(
S+

2 𝑒
−𝑖`𝑝 + S−

2 𝑒
𝑖`𝑞

)
+ 2T2(0,2)S−

2 𝑒
−𝑖`𝑝

− 2T2(2,0)T +
2 𝑒2𝑖`𝑞 − T2(1,1)

(
T +

2 𝑝 + T −
2 𝑞

)
− 2T2(0,2)T −

2 𝑒−2𝑖`𝑝 (3.40)

The surviving terms of S2→3 after the third order transformation are K+
2→3(2,1) and its complex

conjugate counterpart K−
2→3(1,2)

K+
2→3(2,1) = 2T +

2(2,0)S
+
2(1,1)𝑒

𝑖` + T +
2(1,1)

(
S+

2(2,0)𝑒
−𝑖` + S−

2(1,1)𝑒
𝑖`

)
+ 2T +

2(0,2)S
−
2(2,0)𝑒

−𝑖` − 2T +
2(2,0)T

+
2(1,1)𝑒

2𝑖`

− T +
2(1,1)

(
T +

2(2,0) + T −
2(1,1)

)
− 2T +

2(0,2)T
−

2(2,0)𝑒
−2𝑖`

=
−2S+

2(2,0)S
+
2(1,1)

𝑒𝑖` − 1
−
S+

2(1,1)
1 − 𝑒𝑖`

(
S+

2(2,0)𝑒
−𝑖` + S−

2(1,1)𝑒
𝑖`

)
+

2S+
2(0,2)S

−
2(2,0)

𝑒2𝑖` − 𝑒−𝑖`

+
S+

2(1,1)

(
2S+

2(2,0) + S−
2(1,1)

)
2 (cos ` − 1) −

S+
2(1,1)S

+
2(2,0)

2𝑒2𝑖` − 𝑒𝑖` − 𝑒3𝑖` −
2S+

2(0,2)S
−
2(2,0)

2𝑒2𝑖` − 𝑒−𝑖` − 𝑒5𝑖` (3.41)
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Also for K+
2→3(2,1) and K−

2→3(1,2) the intertwine dependency on all terms of S2 becomes apparent

highlighting the complex relation between lower order and higher order terms.

3.3.4 Transformation back to Real Space Normal Form

Since the original map M0 only operates in real space, the normal form map MNF should also only

operate in real space. This is why the current map M𝑚 , where 𝑚 is the order of last transformation,

is transformed to a real normal form basis (𝑞NF, 𝑝NF) composed of the real and imaginary parts of

the current complex conjugate basis (𝑞𝑚 , 𝑝𝑚). Based on [14, Eq. (7.58) and (7.59) and (7.67)] the

bases are related as follows

𝑞NF =
𝑞𝑚 + 𝑝𝑚

2
and 𝑝NF =

𝑞𝑚 − 𝑝𝑚

2𝑖
, (3.42)

and

𝑞𝑚 = 𝑞NF + 𝑖 𝑝NF and 𝑝𝑚 = 𝑞NF − 𝑖 𝑝NF with (3.43)

𝑞𝑚𝑝𝑚 = 𝑞2
NF + 𝑝2

NF = 𝑟2
NF. (3.44)

The associated transfer matrix below to the real normal form basis is obtained from the equations

above.

Areal =
1
2

©«
1 1

−𝑖 𝑖

ª®®¬ =
©«
(𝑞NF |𝑞𝑚) (𝑞NF |𝑝𝑚)

(𝑝NF |𝑞𝑚) (𝑝NF |𝑝𝑚)

ª®®¬ (3.45)

The inverse relation is given accordingly:

A−1
real =

©«
1 𝑖

1 −𝑖

ª®®¬ =
©«
(𝑞𝑚 |𝑞NF) (𝑞𝑚 |𝑝NF)

(𝑝𝑚 |𝑞NF) (𝑝𝑚 |𝑝NF)

ª®®¬ . (3.46)
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The transformation back to the real space (into normal form space) yields

MNF = Areal ◦M𝑚 ◦A−1
real =

1
2

©«
1 1

−𝑖 𝑖

ª®®¬ ·
©«
𝑓 +

(
𝑟2
NF

)
(𝑞NF + 𝑖 𝑝NF)

𝑓 −
(
𝑟2
NF

)
(𝑞NF − 𝑖 𝑝NF)

ª®®¬
=

©«
1
2
(
𝑓 + + 𝑓 +

)
𝑡+ + 𝑖

2
(
𝑓 + − 𝑓 +

)
𝑡−

−𝑖
2

(
𝑓 + − 𝑓 +

)
𝑡+ + 1

2
(
𝑓 + + 𝑓 +

)
𝑡−

ª®®¬
=

©«
Re

(
𝑓 +

(
𝑟2
NF

))
−Im

(
𝑓 +

(
𝑟2
NF

))
Im

(
𝑓 +

(
𝑟2
NF

))
Re

(
𝑓 +

(
𝑟2
NF

)) ª®®¬ ·
©«
𝑞NF

𝑝NF

ª®®¬ . (3.47)

For the example of the centrifugal governor up to order three the normal form is

MNF =
©«
cos ` + 1

2Re
(
S+

3,new(2,1)

)
𝑟2
NF − sin ` − 1

2 Im
(
S+

3,new(2,1)

)
𝑟2
NF

sin ` + 1
2 Im

(
S+

3,new(2,1)

)
𝑟2
NF cos ` + 1

2Re
(
S+

3,new(2,1)

)
𝑟2
NF

ª®®¬ ·
©«
𝑞NF

𝑝NF

ª®®¬ . (3.48)

The Tab. 3.7 below yields the values for the normal form map of our example case.

Table 3.7: The normal form map MNF up to order three. The component M+
NF is on the left,

M−
NF on the right.

O Coeff. Value Coeff. Value
1 M+

NF(1,0) 0.339185989 M−
NF(1,0) 0.940719334

1 M+
NF(0,1) -0.940719334 M−

NF(0,1) 0.339185989

3 M+
NF(3,0) 0.470359667 M−

NF(3,0) -0.169592994
3 M+

NF(2,1) 0.169592994 M−
NF(2,1) 0.470359667

3 M+
NF(1,2) 0.470359667 M−

NF(1,2) -0.169592994
3 M+

NF(0,3) 0.169592994 M−
NF(0,3) 0.470359667

The normal form transformation from M0 to MNF can be obtained by the combination of all

the single transformations yielding

MNF = Areal ◦A𝑚 ◦A𝑚−1 ◦ ... ◦A1 ◦AFP︸                                           ︷︷                                           ︸
A

◦M0

◦A−1
FP ◦A−1

1 ◦ ... ◦A−1
𝑚−1 ◦A

−1
𝑚 ◦A−1

real︸                                              ︷︷                                              ︸
A−1

. (3.49)
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Table 3.8: The normal form transformation A up to order three. The component A+ is on the left,
A− on the right.

O Coeff. Value Coeff. Value
1 A+

1(1,0) 1.106681920 A−
1(1,0) 0

1 A+
1(0,1) 0 A−

1(0,1) -0.903602004

2 A+
2(2,0) 0.319471552 A−

2(2,0) 0
2 A+

2(1,1) 0 A−
2(1,1) 0.521694860

2 A+
2(0,2) 0.425962069 A−

2(0,2) 0

3 A+
3(3,0) -0.046111747 A−

3(3,0) 0
3 A+

3(2,1) 0 A−
3(2,1) -0.414150918

3 A+
3(1,2) -0.399635138 A−

3(1,2) 0
3 A+

3(0,3) 0 A−
3(0,3) 0.025100056

The values of the coefficients of the full normal form transformation A are given in Tab. 3.8.

Writing the complex conjugate functions 𝑓 ± from the equations above (particularly Eq. (3.47))

in a complex notation as 𝑓 ±
(
𝑟2
NF

)
= 𝑒

±𝑖Λ
(
𝑟2NF

)
illustrates circular behavior of the normal form:

MNF =
©«
cos

(
Λ

(
𝑟2
NF

))
− sin

(
Λ

(
𝑟2
NF

))
sin

(
Λ

(
𝑟2
NF

))
cos

(
Λ

(
𝑟2
NF

)) ª®®¬ ·
©«
𝑞NF

𝑝NF

ª®®¬ . (3.50)

It shows that the normal form MNF consists of circular curves in phase space with only amplitude

depended angle advancements Λ
(
𝑟2
NF

)
.

3.3.5 Invariant Normal Form Radius

The squared normal form radius 𝑟2
NF is related to the original coordinates (𝑞0, 𝑝0) by the normal

form transformation A, where

𝑟2
NF (𝑞0, 𝑝0) =

(
𝑞2

NF (𝑞0, 𝑝0) + 𝑝2
NF (𝑞0, 𝑝0)

)
=

(
A2
+ +A2

−
)
(𝑞0, 𝑝0) . (3.51)

Explicitly calculating the squared normal form radius with the normal form transformation A up
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to order three from Tab. 3.8 yields

𝑟2
NF =3 1.224745𝑞2

0 + 0.816497𝑝2
0 + 0.707107𝑞3

0 (3.52)

≈
√︂

3
2
𝑞2

0 +
√︂

2
3
𝑝2

0 +
1
√

2
𝑞3

0 (3.53)

=3
2
√

2
√

3

(
𝐸

(𝜋
3
+ 𝑞0, 𝑝0

)
− 𝐸

(𝜋
3
, 0

))
. (3.54)

This direct relationship between the energy 𝐸 , as an invariant or constant of motion, and the squared

normal form radius up to order three confirms that the normal form radius constitutes a constant of

motion up to calculation order.

The invariant of motion is a family of functions that remain constant for all phase space states

(𝑞, 𝑝) along their phase space motion. In particular, if 𝐼 (𝑞, 𝑝) is an invariant of motion, then so

is 𝐼2(𝑞, 𝑝) or any other function 𝑓 (𝐼), which is defined by the resulting values of 𝐼. Furthermore,

𝐼 (𝑄(𝑞, 𝑝), 𝑃(𝑞, 𝑝)) is also an invariant if (𝑄, 𝑃) belong to the same phase space curve as (𝑞, 𝑝).

Transfer maps can yield such relations (𝑄(𝑞, 𝑝), 𝑃(𝑞, 𝑝)), since they can represent how a phase

space final state (𝑄, 𝑃) depends on the phase space initial state (𝑞, 𝑝).

Accordingly, the energy 𝐸 and the normal form radius 𝑟2
NF are both functions of the same family

and related by the transformations explained in the paragraph above. Up to order three, this relation

includes a shift by a constant and scaling, but the relation might reveal itself to be more complex

than this with higher orders.

3.3.6 Angle Advancement, Tune and Tune Shifts

In the beam physics terminology, the angle advancements Λ
(
𝑟2
NF

)
are scaled to the interval [0, 1]

instead of [0, 2𝜋] and referred to as the tune and amplitude dependent tune shifts [14]. The angle

advancement can be calculated from the normal form map via

Λ

(
𝑟2
NF = 𝑞2

NF, 𝑝NF = 0
)
= arccos

©«
M+

NF

���
𝑝NF=0

𝑞NF

ª®®®¬ = arccos
(
Re

(
𝑓 +

(
𝑟2
NF

)))
. (3.55)
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For the centrifugal governor example up to order three, the angle advancement is given by

Λ

(
𝑟2
NF = 𝑞2

NF

)
= arccos

(
cos ` + 1

2
Re

(
S+

3,new(2,1)

)
𝑟2
NF

)
= ` −

Re
(
S+

3,new(2,1)

)
2 sin `

𝑟2
NF. (3.56)

Note that ` is the eigenvalue phase of the original linear part. Accordingly, the tune a is `/2𝜋.

For the centrifugal governor, the tune and tune shifts are

Λ

(
𝑟2
NF

)
2𝜋

= a

(
𝑟2
NF

)
= 0.1949242 − 0.07957747𝑟2

NF (3.57)

With the expression of 𝑟2
NF in terms of the original coordinates (𝑞0, 𝑝0) from Eq. (3.52) the

tune and tune shifts are evaluated to

a (𝑞0, 𝑝0) = 0.1949242 − 0.0974621𝑞2
0 − 0.0649747𝑝2

0 − 0.05626977𝑞3
0. (3.58)

This yields a key insight into the centrifugal governor behavior for 𝜔 =
√

2. We already know

that the centrifugal governor is rotating at
√

2
2𝜋 ≈ 0.225 revolutions per 𝑇0 for 𝜔 =

√
2. The tune of

about 0.195 tells us that the centrifugal governor arms oscillate at a frequency of about 0.195 + 𝑐

oscillations per 𝑇0 around their equilibrium position. The negative tune shifts additionally show that

this frequency is decreasing for increasing amplitude of oscillation.

Since the map can only compare initial and final state of the oscillation after the integration

time of 1 𝑇0 we only know how much the oscillation cycle has advanced over this period, but not

how many additional full oscillations 𝑐 have been completed in the meantime. By doing the same

process as above for the centrifugal governor with 𝜔 =
√

2 for a Poincaré map after time 𝑡 = 2𝜋√
2
, i.e.

one full centrifugal governor revolution, yields

a (𝑞0, 𝑝0) = 0.8660254 − 0.4330127𝑞2
0 − 0.2886751𝑝2

0 − 0.25000000𝑞3
0, (3.59)

which is exactly a factor of 2𝜋√
2

larger than the tunes from Eq. (3.57). This means that 𝑐 must be zero

and we did not miss any full oscillations during the integration up to 𝑡 = 1.
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From Eq. (3.57) we can directly calculate the period of oscillation from normal form 𝑇NF, which

is just 1/a (𝑞0, 𝑝0).

To compare the calculated normal form period 𝑇NF to the actual period of oscillation, we overlay

the oscillatory plot from Fig. 3.4 with the calculated periods (see Fig. 3.6). The centrifugal governor
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0 10 20 30 40 50 60 70 80 90

tim
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Figure 3.6: Comparison between the calculated period with normal form methods 𝑇NF for
calculation order ten (O10) and calculation order three (O3) to the actual period of oscillation given
by the oscillatory behavior of the centrifugal governor arms for 𝜔 =

√
2.

arms are initiated with multiple angle offsets with 𝑝𝜙 = 0 relative to their equilibrium angle at

𝜙0 = 60°. If the normal form calculation of the period is correct, the calculated period will agree

with the time when the equilibrium governor arms reach their initial position amplitude after one

actual period of oscillation.

The higher the amplitude of oscillation, the more relevant are higher order effects. Accordingly,

the accuracy drops with larger amplitudes. The order three calculation performs well between

35°(𝛿𝜙 = −25°) and 75°(𝛿𝜙 = +15°), while the order ten calculation can extend an accurate

description over the range from 35°(𝛿𝜙 = −35°) to 85°(𝛿𝜙 = +25°).

The normal form algorithm can also be performed with parameters, e.g., depending on changes

to 𝜔. In Tab. 3.9 result for the amplitude and parameter 𝛿𝜔 dependent tunes shifts are listed. It
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shows that the 𝛿𝜔 dependent tune shifts are positive, which means that an increase in 𝜔 increases

the oscillation frequency of centrifugal governor arms. This is related to the deeper potential well.

Table 3.9: Tune and coefficients of amplitude and parameter 𝛿𝜔 dependent tune shifts for
centrifugal governor with 𝜔0 =

√
2.

Exponents Exponents
Coefficient 𝑞0 𝑝0 𝛿𝜔 Coefficient 𝑞0 𝑝0 𝛿𝜔

0.1949242003 0 0 0 -0.0562697698 3 0 0
0.3355884937 0 0 1 -0.0307638305 2 0 1

-0.0974621002 2 0 0 0.1741334861 1 1 1
-0.0649747334 0 2 0 0.1123973696 0 2 1
0.1591549431 1 0 1 -0.0435458248 1 0 2

-0.5753522001 0 0 2 -0.0142179396 0 1 2
0.0866936204 0 0 3

This knowledge about the dependency of the tunes on parameter shifts can help by the selection

of a suitable 𝜔, e.g., to avoid resonances between the governors revolution frequency and the

oscillation frequency of the arms. While such a resonance is irrelevant in this simplified example it

might be critical if the governor is part of a more complex system.

3.4 Visualization of the Different Order Normal Forms and Conclusion

In this chapter, we considered the system of a centrifugal governor with a fixed rotation frequency

of 𝜔 =
√

2 and analyzed it using the DA normal form algorithm.

To visualize the effect of the different steps in the DA normal form algorithm, Fig. 3.7 shows

phase space tracking pictures for incomplete normal form maps. Given the tenth order Poincaré map

which describes the behavior of the centrifugal governor for 𝜔 =
√

2, these incomplete normal form

maps stopped the normal form transformations at an order 𝑛 < 10 such that the resulting incomplete

normal form map is only normalized up to order 𝑛. There is no practical use for these incomplete

normal form maps other than showing the progress of the normal form algorithm, since to make use

of the normal form properties completion of the normal form transformation to the full order of

the map is required. The phase space behavior in the full order normal form with its rotationally

invariant property was previously shown in Fig. 3.5.
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a) b)

c) d)

Figure 3.7: Phase space tracking of incomplete normal form maps of order ten of the centrifugal
governor arms with a fixed rotation frequency of 𝜔 =

√
2. The original map (a), only linear normal

form transformation (b), and only normal form transformations up to order two (c) and three (d),
respectively.

The difference between a) and b) in Fig. 3.7 shows the effect of the linear transformation, which

scales the variables to create circles close to the expansion point. The nonlinear distortions for larger

amplitudes are still present. With the second and third order transformation, these distortions are

removed in the normal form.
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As a result of the DA normal form algorithm, we were able to produce invariants of motion up

to calculation order. Specifically, we could show how the squared normal form radius is directly

related to the energy 𝐸 up to calculation order, which is a constant of motion for this system.

The normal form algorithm also provided transformations from the original coordinates to the

normal form coordinates, which were used to relate the phase space amplitudes to the normal form

invariant.

Finally, the normal form produced the period of oscillation of the centrifugal governor arms

around their equilibrium angle depending on the amplitude of oscillation. Only for very large

amplitudes, the limited calculation order was not able to capture all the relevant high order effects to

accurately describe the period of oscillation for these amplitudes.
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CHAPTER 4

BOUNDED MOTION PROBLEM

This chapter contains large parts of my paper Bounded motion design in the Earth zonal problem using

differential algebra based normal form methods published in Celestial Mechanics and Dynamical

Astronomy, Vol. 132, 14 (2020) [88]. The paper was authored by Roberto Armellin, Martin Berz,

and me.

Given the detailed understanding of the DA normal form algorithm from Sec. 2.3 and Chapter 3,

we present its application in a new technique for the calculation of entire continuous sets of orbits,

which remain in long term relative bounded motion under zonal gravitational perturbation. We will

see that the application of the DA normal form algorithm in this particular case is only possible

due to a well-chosen Poincaré surface for the Poincaré return map (Sec. 2.2), which captures the

critical phase space behavior at the right space-time instance, which requires a combination of

dimension-reducing phase space projections.

4.1 Introduction to Bounded Motion

The term ‘bounded motion’ is used in the field of astrodynamics to describe a special orbital

flight pattern of two objects (usually man-made satellites), where the two objects remain in close

proximity to each other over an extended period of time. Both objects are on orbits around a common

central gravitational body like a planet, moon, asteroid, or star, and their relative distance is bounded.

In practice, bounded motion finds application in cluster flight [24] and formation flying [1]

missions, which can offer many advantages compared to single spacecraft missions. From the

scientific standpoint, they enable measurements of unprecedented spatial and temporal correlation,

but they also have economic advantages such as allowing for redundancies within the spacecraft

group, a distribution of the payload, and the adaptability of the mission by exchanging modules of

the group. Missions such as PRISMA [26], GRACE [58], and TerraSAR-X and TanDEM-X [27]

demonstrated the practicability of formation flying and stimulated further research in the field.
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Moving from an ideal unperturbed system with elliptical Kepler orbits to the realistic mission

case by considering perturbations to the dynamics makes it not trivial to find bounded motion orbits.

The dominating perturbation is often due to the oblateness of the central body and the associated

zonal perturbation from the second zonal harmonic coefficient 𝐽2 of the gravitational potential. This

zonal perturbation introduces a drift in the right ascension of the ascending node (RAAN) ΔΩ, the

argument of periapsis, and the mean anomaly. The drift in each of the quantities is oscillating at

different frequencies, which drastically increases the complexity of the bounded motion problem.

Additional non-zonal gravitational perturbations break the rotational symmetry of the system and

the regular oscillations in each of the quantities mentioned above, which complicates the problem

even more.

To minimize the extent of formation-keeping maneuvers with control strategies during a mission,

it is of great interest to the astrodynamical community to find ‘naturally’ bounded motion orbits for

models considering as many perturbations as possible, which leave only the unmodeled perturbations

to be corrected by control maneuvers. In this section of the dissertation and in [88], we present

a method that allows for the design of long term relative bounded motion considering a zonal

gravitational model using normal form methods. Since [88] contains an extensive literature review

of previous approaches, only contributions directly linked to our technique for the zonal problem

will be mentioned below.

The pioneering work by Broucke [23] on families of two dimensional quasi-periodic invariant

tori around stable periodic orbits of the Ruth-reduced axially symmetric system was used by Koon et

al. [40] in combination with Poincaré section techniques to study the 𝐽2 problem. While this method

improved first order approaches, long term bounded motion was still not achieved by placing orbits

on the center manifold. Xu et al. [90] pointed out that long term bounded motion in the zonally

perturbed system could only be achieved when the RAAN drift ΔΩ and nodal period 𝑇𝑑 are on

average the same for each of the bounded modules (see Sec. 4.2.5). These constraints are weaker

than the constraints originally derived by Martinusi and Gurfil [57].

In [5], a fully numerical technique based on stroboscopic maps was used to obtain entire families
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of quasi-periodic orbits producing bounded relative motion about a periodic one. This method was

then used to study both bounded motion about asteroids [4] and in low Earth, medium Earth, and

geostationary orbits [6]. Numerical approaches yield bounded relative orbits with arbitrary size

over very long periods of time (or infinite time in theory). However, they require complex and

time-consuming algorithms.

In [35], a compromise between the analytic and numerical technique was presented based on the

use of DA. DA techniques were used to expand to high order the mapping between two consecutive

equatorial crossings (i.e., Poincaré maps). This enabled the study of the motion of a spacecraft for

many revolutions by the fast evaluation of Taylor polynomials. The problem of designing bounded

motion orbits was then reduced to the solution of two nonlinear polynomial equations, namely

constraining the mean nodal period 𝑇𝑑 and drift of the right ascension of the ascending node ΔΩ.

The derived method showed an accuracy comparable with that of fully numerical methods but with

a reduced complexity due to the introduced polynomial approximations. The main drawback of

this technique consisted of the calculation of the mean 𝑇𝑑 and ΔΩ using numerical averaging over

thousands of nodal crossings. This process resulted in the computationally intensive part of the

algorithm and was also responsible for accuracy degradation in case of very large separations.

The advantage of our approach is that it overcomes this limitation when calculating bounded

motion orbits under zonal perturbation by the introduction of DA based normal form (DANF)

methods. In particular, the high-order DANF algorithm is used to determine a change of expansion

variables of the Poincaré map into normal form space, in which the phase space behavior is

circular and can be easily parameterized by action-angle coordinates (Fig. 4.3). The action-angle

representation of the normal form coordinates is then used to parameterize the original phase space

coordinates of the Poincaré return map. The original map is averaged over a full phase space

revolution by a path integral along the angle parameterization, yielding the Taylor expansion of

the averaged bounded motion quantities 𝑇𝑑 and ΔΩ, for which the bounded motion conditions are

straightforwardly imposed. Sets of highly accurate bounded orbits are obtained in the full zonal

problem, extending over several thousand kilometers and valid for decades. This method avoids the
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numerical averaging introduced in [35]. The superiority in terms of elegance, computational time,

and accuracy of the new algorithm will be demonstrated using similar test cases to those presented

in [35] and [6].

Before introducing our approach from [88], we start with some basics on the orbital motion

under gravitational perturbation. Later we will show our results for the full zonal problem [88].

4.2 Understanding Orbital Motion Under Gravitational Perturbation

We consider the orbital motion around a single central body of mass, where the motion is only

determined by the gravitational potential of the central body. Perturbations due to atmospheric drag,

solar radiation pressure, or the gravitational field of other space bodies are ignored. We also ignore

parabola and hyperbola orbits, which escape the gravitational potential due to their large enough

kinetic energy.

4.2.1 The Perturbed Gravitational Potential

Any gravitational potential 𝑈 can be expressed in terms of spherical harmonics 𝑌𝑙,𝑚 and the

corresponding coefficients 𝑘𝑙,𝑚:

𝑈 (𝑟, \, 𝜙) = −`

𝑟

(
1 +

∞∑︁
𝑙=1

𝑙∑︁
𝑚=−𝑙

𝑘𝑙,𝑚

(
𝑅0
𝑟

) 𝑙
𝑌𝑙,𝑚 (\, 𝜙)

)
, (4.1)

where (𝑟, \, 𝜙) are spherical coordinates with the origin at the center of mass and where ` is the

product of the gravitational constant and the mass of the central body. The coefficients of the 𝑌𝑙,𝑚

are often split into 𝑘𝑙,𝑚 · 𝑅𝑙0 to make them independent of the size 𝑅0 of the central body.

The orientation of the coordinate system is usually chosen such that 𝑧 (\ = 0) aligns with the

dominating symmetry axis of the central body. The plane perpendicular to 𝑧, i.e. the 𝑥𝑦 plane or

\ = 𝜋
2 plane, is referred to as the equatorial plane or plane of reference.

The spherical harmonics can be grouped into three categories. Zonal terms (𝑚 = 0) are

independent of the longitude 𝜙 creating zones in the vertical/latitudinal direction. Sectional terms

(𝑚 = 𝑙) on the other hand are independent of the latitude \ creating sections longitudinally. Tesseral
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terms (0 < 𝑚 < 𝑙) dependent on both 𝜙 and \ creating a chessboard pattern on the sphere. Each

of these terms is considered a gravitational perturbation to the spherically symmetric potential

𝑈0 = − `
𝑟 , which only depends on the distance 𝑟.

The gravitational potentials of many rotating central bodies are dominated by their low order

zonal terms, in particular, 𝑌2,0, since centrifugal effects of the rotation often cause a zonally

dependent mass distribution with more mass at the equator and less mass at the poles compared

to the sphere. Considering only the effects of zonal perturbations is also referred to as the zonal

problem and is going to be the basis of our analysis. The axial symmetry conserves the angular

momentum component along the symmetry axis and simplifies the potential significantly as the

spherical harmonics 𝑌𝑙,𝑚 reduce to the ordinary Legendre polynomials 𝑃𝑙 , with

𝑈 (𝑟, \) = −`

𝑟

(
1 +

∞∑︁
𝑙=1

𝐽𝑙

(
𝑅0
𝑟

) 𝑙
𝑃𝑙 (cos \)

)
. (4.2)

4.2.2 The Equations of Motion

To calculate the behavior of an object in the perturbed gravitational field, we derive the equations

of motion, which describe the dynamics as a set of mathematical functions. To be consistent

with previous approaches and [88], we will use cylindrical coordinates. The starting point of the

derivation is the Lagrangian

𝐿 =
1
2

(
¤𝜌2 + ¤𝑧2 + 𝜌2 ¤𝜙2

)
−𝑈 (𝜌, 𝑧, 𝜙) (4.3)

of the system in cylindrical coordinates (𝜌, 𝑧, 𝜙), where 𝜌 is the distance in the equatorial plane

such that 𝑟 =
√︁
𝜌2 + 𝑧2 yields the total distance between the orbiting object and the center of mass.

The potential takes the following form in cylindrical coordinates

𝑈 (𝜌, 𝑧, 𝜙) = −`

𝑟

[
1 +

∞∑︁
𝑙=1

𝑙∑︁
𝑚=0

(
𝑅0
𝑟

) 𝑙
𝑃𝑙,𝑚

( 𝑧
𝑟

) (
𝐶𝑙,𝑚 cos (𝑚𝜙) + 𝑆𝑙,𝑚 sin (𝑚𝜙)

) ]
, (4.4)

where 𝑃𝑙,𝑚 are the associated Legendre polynomials.

For the zonal problem (𝑚 = 0), the 𝑃𝑙,𝑚 reduce to the ordinary Legendre polynomials 𝑃𝑙 . The

coefficients 𝐶𝑙,0 of the zonal problem are often denoted by 𝐽𝑙 .
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The canonical momenta
(
𝑣𝜌, 𝑣𝑧, 𝑣𝜙

)
to the position variables (𝜌, 𝑧, 𝜙) are given by

𝑣𝜌 =
𝜕𝐿

𝜕 ¤𝜌 = ¤𝜌 𝑣𝑧 =
𝜕𝐿

𝜕 ¤𝑧 = ¤𝑧 𝑣𝜙 =
𝜕𝐿

𝜕 ¤𝜙
= 𝜌2 ¤𝜙 � H𝑧, (4.5)

where H𝑧 is the angular momentum component along the symmetry axis 𝑧 and the canonical

momentum to the angle 𝜙. From the Lagrange-Euler equations it follows that ¤H𝑧 = −𝜕𝑈
𝜕𝜙

, which is

zero for the zonal problem due to the axial symmetry making H𝑧 a constant of motion.

Using the Legendre transformation, the Hamiltonian

𝐻 =
1
2

(
𝑣2
𝜌 + 𝑣2

𝑧 +
H2

𝑧

𝜌2

)
+𝑈 (𝜌, 𝑧, 𝜙) (4.6)

is obtained. Due to the time independence of the system (d𝑡𝐻 = 0), the Hamiltonian is equivalent

to the energy 𝐸 , which is a constant of motion.

The equations of motion are derived from the Hamiltonian via the Hamilton equations

¤𝜌 = 𝑣𝜌 ¤𝑧 = 𝑣𝑧 ¤𝜙 =
H𝑧

𝜌2 (4.7)

¤𝑣𝜌 =
H2

𝑧

𝜌3 − 𝑑𝑈

𝑑𝜌
¤𝑣𝑧 = −𝑑𝑈

𝑑𝑧
¤H𝑧 = −𝑑𝑈

𝑑𝜙
. (4.8)

The time evolution X (𝑡) of the state X = (𝑟, 𝑣𝑟 , 𝑧, 𝑣𝑧, 𝜙,H𝑧)𝑇 of a spacecraft is determined by

integrating the system of ODE’s ¤X = 𝑓 (X ) from above. The orbit O of the spacecraft is described

by the set of all states X (𝑡).

4.2.3 The Kepler Orbit

Before we investigate the orbital behavior under perturbation, it is advisable to understand the

unperturbed system with the spherically symmetric gravitational potential 𝑈0. The orbiting motion

of an object in the unperturbed potential takes the Keplerian form of a closed ellipse, which makes

the motion two dimensional. The plane in which the ellipse lies is called the orbital plane.

The traditional orbital elements (𝑎, 𝑒, 𝑖,Ω, 𝜔, a(𝑡)), also called Keplerian elements, characterize

the position and orbit of the object using the elliptical shape as well as the equatorial plane of the

central body as a reference. The variables 𝑎 and 𝑒 define the size (semi-major axis) and shape
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(eccentricity) of the ellipse, respectively. To describe the orientation of the orbital plane with respect

to the central body, the reference direction 𝑥 within the equatorial plane is defined. Except for

orbits within the equatorial plane, the elliptical orbit intersects with the equatorial plane in two

places. The intersection in the 𝑧 direction (from south to north) is called the ascending node �.

The angle between the equatorial plane and the orbital plane is called the inclination 𝑖. The angle

between the reference direction 𝑥 and the ascending node within the equatorial plane is the longitude

or right ascension of the ascending node (RAAN) Ω. The argument of periapsis 𝜔 describes the

orientation of the ellipse within the orbital plane as the angle between the ascending node and the

periapsis (closest point of the ellipse to the origin). The true anomaly a(𝑡) yields the position of the

object along the ellipse as the angle between the periapsis and the object. The time between two

consecutive ascending nodes is called the nodal period 𝑇𝑑 , with 𝑇𝑑 = 𝑡 (�𝑛+1) − 𝑡 (�𝑛).

4.2.4 Orbits Under Gravitational Perturbation

The elliptical orbits deform under gravitational perturbations such that the orbits no longer close

after a revolution around the central body.

The description of perturbed orbits using Keplerian elements has to be carefully considered, since

the four elements (𝑎, 𝑒, 𝜔, a) are based on the assumption of an elliptical orbit in an unperturbed

system. The elements 𝑖 and Ω, on the other hand, only describe the orientation of the orbital

plane, determined by position and velocity vectors of the orbiting object, but make no assumptions

about the shape of the orbit. In practice, the Keplerian elements are calculated at each point in

time assuming the orbit is an ellipse in an unperturbed system while propagating the object in the

perturbed system.

This representation is particularly helpful when the gravitational potential is only slightly

perturbed. It shows how the unperturbed elliptical orbit is influenced by the perturbations at each

point in time. In Fig. 4.1, the orbital elements of a low Earth orbit (O2 from Sec. 4.4.1) under zonal

perturbation are shown. As a reference, the orbit is also initiated with the same starting conditions

but propagated considering only the spherically symmetrical part of the Earth gravitational field.

67



0

𝜋

2𝜋

0

𝜋

2𝜋

0 50 100 150 200
time [days]

1.137
1.138
1.139
1.14

1.141

𝑎
[𝑅

0]

0.112
0.114
0.116

𝑒

1.7238
1.7239
1.724

𝑖
[r

ad
]

0
0.001
0.002

Ω
[r

ad
] perturbed

unperturbed

3.11
3.12
3.13
3.14

0 50 100 150 200

𝜔
[r

ad
]

time [min]

0

𝜋

2𝜋

0

𝜋

2𝜋

0 50 100 150 200
time [days]

1.137
1.138
1.139
1.14

1.141

𝑎
[𝑅

0]

0.112
0.114
0.116

𝑒

1.7238
1.7239
1.724

𝑖
[r

ad
]

0
0.001
0.002

Ω
[r

ad
] perturbed

unperturbed

3.11
3.12
3.13
3.14

0 50 100 150 200

𝜔
[r

ad
]

time [min]

Figure 4.1: The behavior of the Keplerian elements of a low Earth orbit under zonal gravitational
perturbations up to 𝐽15 (purple) and as a regular Kepler orbit in the unperturbed gravitational field
(green) over time. Left and right plots show different time scales of the behavior.

Compared to the unperturbed motion, the behavior of the Keplerian elements under zonal

perturbation is quite complex. There are multiple oscillations happening at different frequencies.

On the short time scale (left plots in Fig. 4.1) there is the semi-periodic behavior associated with one

orbital revolution with a nodal period of roughly 103 min. As already mentioned in the introduction,

the zonal perturbation introduces a drift of the orbital plane, which is indicated by the increasing Ω

in Fig. 4.1. The corresponding long term behavior suggests that the orbital plane is rotating around

the symmetry axis in about 365 days. However, as we will discover in Sec. 4.4.1 and in particular in

Fig. 4.4 neither the nodal period 𝑇𝑑 nor the drift in the ascending node are constant, but they are

also oscillating. The nodal period 𝑇𝑑 , the RAAN-drift ΔΩ, and the long term behavior of 𝑎, 𝑒, and 𝑖

are oscillating at the frequency of the rotation of the argument of periapsis 𝜔, which has a period of

roughly 129 days.
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4.2.5 The Bounded Motion Conditions by Xu et al.

Considering that each orbit is individually influenced by the gravitational perturbations determining

its shape and orbital period, bounded motion conditions link two orbits in space-time.

Xu et al. [90] showed that the conditions for bounded motion between two orbits O1 and O2

require the following conditions to be met:

𝑇𝑑 (O1) = 𝑇𝑑 (O2) (4.9)

ΔΩ (O1) = ΔΩ (O2) . (4.10)

In other words, any two orbits are in sync, if both, their average nodal period 𝑇𝑑 and their average

drift of the ascending node ΔΩ, are the same.

The time related condition is linked to the space related condition by the space-time event at the

ascending node, where the object passes through the equatorial plane from south to north. The time

difference between two consecutive ascending nodes is the nodal period 𝑇𝑑 . The angular difference

between two consecutive ascending nodes is denoted by ΔΩ, also referred to as the RAAN-drift. It

is defined by

ΔΩ = 𝜙 (�𝑛+1) − 𝜙 (�𝑛) − 2𝜋sgn (H𝑧) , (4.11)

where −2𝜋sgn (H𝑧) ensures that ΔΩ is the shortest angular distance between the two consecutive

ascending nodes.

Under zonal perturbation, the nodal period 𝑇𝑑 and the RAAN-drift ΔΩ show regular oscillatory

behavior (see Fig. 4.4), making their average values constants of motion. The basic goal of our

approach is finding a way of cleverly calculating those average values and relating them to the

constants of motion H𝑧 and 𝐸 . Given the relation, H𝑧 and 𝐸 can be chosen such that the bounded

motion conditions are satisfied and the associated orbits are bound.

4.2.6 The Fixed Point Orbit

Under zonal perturbation, there are special orbits for which the nodal period 𝑇𝑑 and the RAAN-drift

ΔΩ are constant. The associated reduced state Z = (𝜌, 𝑣𝜌, 𝑧 = 0, 𝑣𝑧) at the ascending nodes remains
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unchanged, which is why these orbits are called fixed point orbits. The orbits are also known as

quasi-circular orbits, which originates from the idea of having the elliptical reference shape of the

orbit rotate within the orbital plane under zonal perturbation. Given that 𝑟 = 𝜌 is constant at the

ascending node for those orbits would suggest that the reference shape is a circle. The Keplerian

elements of such a quasi-circular orbit (see Fig. 4.2) show however that 𝑒 oscillates around a value
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Figure 4.2: Keplerian elements of a quasi-circular low Earth orbit under Earth’s zonal gravitational
perturbation.

slightly greater than zero, which is the reason for the word ‘quasi’. More insightful is the idea

that the perturbations influence the orbit just right to yield periodic behavior after just one orbital

revolution around the central body.

Compared to the Keplerian elements of non-quasi-circular orbits like the one shown in Fig. 4.1,

the orbital behavior of the quasi-circular orbit is a lot more regular. Its nodal period 𝑇𝑑 and ascending

node drift ΔΩ are constant and not oscillating as Fig. 4.4 reveals. Since the long term oscillation has

no amplitude, the entire dynamics of a quasi-circular orbit are already captured by the time scale of

minutes shown in Fig. 4.2.

For our approach, these fixed point orbits serve as a reference for entire families of orbits which

all share the same average nodal period 𝑇𝑑 and the same average RAAN-drift ΔΩ. Our method
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calculates a manifold in (𝜌, 𝑣𝜌, 𝑧, 𝑣𝑧,H𝑧, 𝐸) around the fixed point, where the manifold is defined

such that any two points on the manifold satisfy the bounded motion condition.

In the fully gravitationally perturbed system the axial symmetry vanishes, which introduces a

𝜙 dependence and results in H𝑧 no longer being a constant of motion. Accordingly, fixed point

orbits in the fully gravitationally perturbed systems must have a fixed point property in the full

state X = (𝜌, 𝑣𝜌, 𝑧 = 0, 𝑣𝑧, 𝜙,H𝑧). We will discuss fixed point orbits in the fully perturbed system

and the possibilities of creating bounded motion manifolds around them in more detail later in this

chapter, but first, we will present the method and results from [88], where manifolds of bounded

motion orbits for the zonal problem are calculated.

4.3 Method of Bounded Motion Design Under Zonal Perturbation [88]

The goal is to generate a Poincaré return map P that describes the dynamics of the system by

characterizing how a state (Xini, 𝑡 = 0) ∈ O within a Poincaré surface S returns to S. Defining a

suitable Poincaré surface is the first step in generating the map. Secondly, a reference orbit with

fixed point properties has to be identified to ensure that the expansion point of the map returns

to itself. The Poincaré return map is then calculated as an expansion around the reference orbit

before being averaged using DA normal form methods. This yields the average nodal period 𝑇𝑑 and

average ascending node drift ΔΩ as a function of the system parameters and expansion variables

around the reference orbit. Using DA inversion methods, the system parameters can be determined

such that the bounded motion conditions are met.

4.3.1 The Poincaré Surface Space

The bounded motion conditions are defined regarding the ascending node of two orbits. To be

able to enforce the bounded motion condition on our map, we choose the set of ascending nodes

(𝑧 = 0, 𝑣𝑧 ≥ 0) as the Poincaré surface. The Poincaré surface S� can be divided into subsurfaces

S�,H𝑧,𝐸
for specific angular momentum components H𝑧 and energies 𝐸 . These surfaces contain

all states with the parameters (H𝑧, 𝐸) that lie in the equatorial plane (𝑧 = 0) and satisfy 𝑣𝑧 > 0. The
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restriction of 𝑣𝑧 to positive values makes the relation between 𝐸 and 𝑣𝑧 (Eq. (4.6)) bijective and

therefore locally invertible in S�,H𝑧,𝐸
, so

S�,H𝑧,𝐸
=

X | 𝑧 = 0, 𝑣𝑧 =

√︄
2 (𝐸 −𝑈 (𝑟)) − 𝑣2

𝑟 −
(
H𝑧

𝑟

)2 . (4.12)

This means that any state X ∈ S�,H𝑧,𝐸
is uniquely determined by (𝑟, 𝑣𝑟 , 𝜙), since 𝑧 = 0 and

𝑣𝑧 (𝑟, 𝑣𝑟 ,H𝑧, 𝐸).

4.3.2 The Fixed Point Orbit

The orbit associated with the fixed point state is called reference orbit. The reference orbit has the

special property that it returns to the same reduced state Z = (𝑟, 𝑣𝑟 , 𝑧, 𝑣𝑧)𝑇 after each revolution

with a constant nodal period 𝑇★
𝑑

and a constant angle advancement in 𝜙, which is also referred to as

the fixed point drift in the ascending node ΔΩ★.

For a certain set of parameters (H𝑧, 𝐸), we use DA inversion techniques iteratively to find the

fixed point orbit. The iteration is initialized with the state

Z0 = (𝑟 = −1/(2𝐸), 𝑣𝑟 = 0, 𝑧 = 0, 𝑣𝑧 (𝑟,H𝑧, 𝐸))𝑇 (4.13)

at its ascending node� (𝑣𝑧 > 0) and the state is expanded in the variables (𝑟, 𝑣𝑟 ). After a full orbit

integration until the next ascending node intersection, the map M is timewise projected onto the

Poincaré surface S�,H𝑧,𝐸
(see Sec. 2.2). The resulting Poincaré map P represents the one turn map

in dependence on variations (𝛿𝑟, 𝛿𝑣𝑟 ) in the variables (𝑟, 𝑣𝑟 ). The difference between the constant

part of the map P and the initial state Z0 in the components 𝑟 and 𝑣𝑟 is denoted by Δ𝑟 and Δ𝑣𝑟 ,

respectively. The Poincaré map without its constant part is indicated by P′. The next initial state Z1

for the iterative process will be given by the evaluation of

©«
Z𝑟,1

Z𝑣𝑟 ,1

ª®®¬ =
©«
P′
𝑟 (𝛿𝑟, 𝛿𝑣𝑟 ) − 𝛿𝑟

P′
𝑣𝑟

(𝛿𝑟, 𝛿𝑣𝑟 ) − 𝛿𝑣𝑟

ª®®¬
−1

(𝛿𝑟 = −Δ𝑟, 𝛿𝑣𝑟 = −Δ𝑣𝑟 ) . (4.14)

The process is repeated until the offset (Δ𝑟,Δ𝑣𝑟 ) is smaller than a threshold value e.g. 1E-14.
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4.3.3 The Calculation of Poincaré Return Map

Given a fixed point state Z★ from Sec. 4.3.2 for the parameter set (H𝑧, 𝐸), the Poincaré return map

P : (S�, 𝑡) → (S�, 𝑡) is calculated as a DA expansion around that reference orbit. In the first

step, the flow M of the fixed point and its neighborhood in S� (expansion in (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) is

obtained by integrating the system of ODE’s from the initial state until the reference/fixed point

orbit is an element of S�,H𝑧,𝐸
again after 𝑇★

𝑑
. In other words, the state is integrated until the orbit

of X 0 intersects with the equatorial plane from south to north again.

While the reference orbit itself is in S�,H𝑧,𝐸
⊂ S� after 𝑇★

𝑑
, the expansion around the reference

orbit is not in S�,H𝑧+𝛿H𝑧,𝐸+𝛿𝐸 ⊂ S� due to changing nodal periods of the orbits within the

expansion. In order to project the flow M after 𝑇★
𝑑

onto the Poincaré surface S�,𝐸+𝛿H𝑧,𝐸+𝛿H𝑧
, a

timewise projection is calculated following Sec. 2.2 and [34]. The flow M is expanded in time to

find the intersection time 𝑡intersec(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) such that

P𝑧 = M𝑧 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸, 𝑡intersec (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) = 0 (4.15)

and P = (M(𝑡intersec), 𝑇★𝑑 + 𝑡intersec) ∈ (S�,H𝑧+𝛿H𝑧,𝐸+𝛿𝐸 , 𝑡) ⊂ (S�, 𝑡).

The time component P𝑇𝑑
of the Poincaré return map yields the dependence of the nodal period

𝑇𝑑 on the system parameters and expansion variables.

4.3.4 The Normal Form Averaging

Given the fixed point Poincaré return map P with

P (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) =

©«

P𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑣𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑧 = 0

P𝑣𝑧 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝜙 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

P𝑇𝑑
(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)

ª®®®®®®®®®®®®®®®¬

(4.16)
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we are using only the first two components (in 𝑟 and 𝑣𝑟 ) of the Poincare map for the calculation

of phase space transformation provided by the DA normal form algorithm, since the motion is

determined by only the (𝑟, 𝑣𝑟 ) phase space and the parameters (H𝑧, 𝐸). The reduced map is denoted

by K = (P𝑟 ,P𝑣𝑟 )𝑇 .

The normal form transformation A(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) (see Eq. (2.28)) and its inverse are used

to transform the map K such that

A ◦K ◦A−1
(
𝑞NF , 𝑝NF , 𝛿H𝑧, 𝛿𝐸

)
= KNF

(
𝑞NF , 𝑝NF , 𝛿H𝑧, 𝛿𝐸

)
(4.17)

is rotational invariant in the normal form phase space coordinates (𝑞NF , 𝑝NF) up to the order

of calculation. In other words, the distorted phase space curves in original phase space coordi-

nates (P𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸),P𝑣𝑟 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸)) are transformed to circles in the normal form

coordinates (𝑄NF (𝑞NF , 𝑝NF , 𝛿H𝑧, 𝛿𝐸), 𝑃NF (𝑞NF , 𝑝NF , 𝛿H𝑧, 𝛿𝐸)) as Fig. 4.3 illustrates.
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Figure 4.3: a) Distorted phase space behavior in the original phase space (𝑞, 𝑝) and b) circular
behavior in the corresponding normal form phase space (𝑞NF , 𝑝NF). In a), the phase space angle
advancement Λ𝑘 and the phase space radius 𝑟𝑖 are not constant by continuously change along each
of the phase space curves. In b), the phase space behavior is rotationally invariant (‘normalized’)
with a constant radius 𝑟NF and a constant but amplitude dependent angle advancement Λ(𝑟NF).

By rewriting the normal form coordinates (𝑞NF , 𝑝NF) in an action-angle representation (𝑟NF ,Λ)

with ©«
𝑞NF

𝑝NF

ª®®¬ = 𝑟NF
©«
cosΛ

sinΛ

ª®®¬ , (4.18)

74



each normal form phase space curve is characterized by the normal form radius (action) 𝑟NF and the

path along each curve is parameterized by the angle Λ. Using the inverse normal form transformation

A−1 (see Eq. (2.29)), the original phase space variables (𝛿𝑟, 𝛿𝑣𝑟 ) of P (and K) are expressed in

terms of the action-angle representation and variations in the system parameters (𝛿H𝑧, 𝛿𝐸):

(𝛿𝑟, 𝛿𝑣𝑟 ) = A−1
(
𝑞NF

(
𝑟NF ,Λ

)
, 𝑝NF

(
𝑟NF ,Λ

)
, 𝛿H𝑧, 𝛿𝐸

)
. (4.19)

The Poincaré map P (𝑟NF ,Λ, 𝛿H𝑧, 𝛿𝐸) is then averaged over a full phase space revolution, by

integrating along the angle Λ:

P
(
𝑟NF , 𝛿H𝑧, 𝛿𝐸

)
=

1
2𝜋

∮
P

(
𝑟NF ,Λ, 𝛿H𝑧, 𝛿𝐸

)
𝑑Λ. (4.20)

The numerical averaging presented in [35] is done in the time domain, which cannot incorporate the

slightly different oscillation frequencies of the relevant quantities 𝑇𝑑 and ΔΩ for the different orbits.

The key advantage of the normal form representation is that the different oscillation frequencies

are captured by the amplitude dependent angle advancement in the normal form. The generalized

parameterization of all normal form phase space curves makes the averaging independent of those

differences in the frequency.

Splitting the integration into subsections minimizes the error of the numerical integration and

considerably improves the quality and accuracy of the averaging. For 𝑛 separate parameterization

©«
𝑞NF

𝑞NF

ª®®¬ = 𝑟NF
©«
cos

(
2𝜋(𝑘−1)

𝑛

)
− sin

(
2𝜋(𝑘−1)

𝑛

)
sin

(
2𝜋(𝑘−1)

𝑛

)
cos

(
2𝜋(𝑘−1)

𝑛

) ª®®¬
©«
cosΛ

sinΛ

ª®®¬ 𝑘 ∈ {1, 2, ..., 𝑛} (4.21)

each section is integrated over the symmetric interval of Λ ∈
[
−𝜋
𝑛 ,

𝜋
𝑛

]
.

The result of the averaging yields every component of P averaged over a full phase space curve.

In particular, it yields the averaged drift in the ascending node ΔΩ

(
𝑟NF , 𝛿H𝑧, 𝛿𝐸

)
and average

nodal period 𝑇𝑑

(
𝑟NF , 𝛿H𝑧, 𝛿𝐸

)
.

For mission design purposes the abstract quantity 𝑟NF is expressed by the original coordinates

(𝛿𝑟, 𝛿𝑣𝑟 ) and the parameters (𝛿H𝑧, 𝛿𝐸) with

𝑟2
NF (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) =

(
𝑞2

NF + 𝑝2
NF

)
(𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) (4.22)
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using the normal form transformation A, which yields how (𝑞NF , 𝑝NF) depend on the original

coordinates (𝛿𝑟, 𝛿𝑣𝑟 ) and the parameters (𝛿H𝑧, 𝛿𝐸).

The average drift in the ascending node ΔΩ (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) and the average nodal period

𝑇𝑑 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) are then projected such that the bounded motion conditions are satisfied, with

ΔΩ★ = ΔΩ (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) , 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) (4.23)

𝑇★
𝑑
= 𝑇𝑑 (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) , 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) . (4.24)

In this process, DA inversion methods are used to find 𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ) and 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 ). The

dependence of H𝑧 and 𝐸 on orbital parameters for bounded motion orbits became apparent already

in [84, 70].

Theoretically, one could have proceeded with the abstract invariant of motion 𝑟NF to satisfy the

bounded motion condition with 𝛿H𝑧 (𝑟NF) and 𝛿𝐸 (𝑟NF). For specific bounded orbits one would

then have chosen a value for 𝑟NF to calculate (𝛿H𝑧, 𝛿𝐸) and afterwards the initial values for (𝑟, 𝑣𝑟 )

by using Eq. (4.19), where Λ can be chosen freely.

4.4 Bounded Motion Results from [88]

We will now apply the normal form methods for bounded motion of low Earth and medium

Earth orbits. For this, we use fixed point orbits of the zonal problem that have previously been

investigated by He et al. [35] for the low Earth orbit (LEO) and Baresi and Scheeres [6] for the

medium Earth orbit (MEO).

As explained above, the fixed point Poincaré maps P are calculated as an expansion in the

variables (𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧, 𝛿𝐸) around the respective fixed point orbit. In the calculation we consider

zonal perturbations up to the 𝐽15-term, since investigations in [35] indicated no considerable

influence of 𝐽𝑘 terms for 𝑘 > 15. We are using maps of 8th order, which provide the best balance of

accuracy and computation time. Additionally, the following dimensionless units are used: distances

are considered in units of the average Earth radius 𝑅0 = 6378.137 km and time is considered in

units of 𝑇0 = 806.811 s such that the gravitational constant assumes the value ` = 1.
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It will be shown that the DANF method provides entire sets of bounded motions that extend far

beyond the realistic/practical scope. Since the approach is based on polynomial expansions, it is

obvious it will have to fail at some point. After presenting the bounded motion results for the LEO

and MEO case, we take a look at the limitations of the DANF method and the resulting sets for very

large distances between orbits.

4.4.1 Bounded Motion in Low Earth Orbit

In a first comparison, we are investigating bounded motion around a pseudo-circular LEO that was

also considered in [35]. The pseudo-circular orbit corresponds to the reduced fixed point state

(𝑟★, 𝑣★𝑟 ) = (1.14016749,−1.05621369E-3) (4.25)

for the parameters (H𝑧, 𝐸) = (−0.16707295,−0.43870527). The orbit has a fixed nodal period

of 𝑇★
𝑑
= 7.64916169 (≈ 103 min) and a constant ascending node drift of ΔΩ★ = 1.22871195E-3

rad (0.0704◦). The vertical position 𝑧 of the Poincaré fixed point orbit are defined by the Poincaré

section (𝑧 = 0) and Eq. (4.12) with 𝑣★𝑧
(
𝑟★, 𝑣★𝑟 ,H𝑧, 𝐸

)
= 0.92518953.

The computation of the Poincaré map took 165 seconds on a Lenovo E470 with an Intel®CoreTM

i5-7200U CPU 2.5GHz. The map confirms the fixed point property of the orbit, since the offset

of the constant part of the map from the initial coordinates is well within the numerical error

of the integration with (Δ𝑟,Δ𝑣𝑟 ,Δ𝑧,Δ𝑣𝑧) = (4E-15, 5E-13,−1E-15,−4E-15). The normal form

transformation of the reduced fixed point Poincaré map K = (P𝑟 ,P𝑣𝑟 )𝑇 is calculated via the DA

normal form algorithm (in 90 milliseconds). The circular phase space behavior in normal form

space is parameterized using the action-angle notation (𝑟NF ,Λ). The phase space parameterization

is transformed back to the original coordinates of the Poincaré map. The Poincaré map is averaged

(in 52 milliseconds) over a full phase space rotation using 8 subsections following the procedure

outlined in Sec. 4.3.4. Afterwards, the variable 𝑟NF is expressed in terms of 𝛿𝑟, 𝛿𝑣𝑟 , 𝛿H𝑧 and 𝛿𝐸

before the variations in the constants of motion (𝛿H𝑧, 𝛿𝐸) are matched dependent on (𝛿𝑟, 𝛿𝑣𝑟 ) such

that the averaged expressions for 𝑇𝑑 and ΔΩ satisfy the bounded motion conditions (Eq. (4.23) and
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Eq. (4.24)).

Considering bounded orbits initiated with the same 𝑣𝑟 as the pseudo-circular orbit (𝛿𝑣𝑟 = 0), the

dependence of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) are provided in Tab. 4.1 below.

Table 4.1: The expansion of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) for relative bounded motion orbits
with an average nodal period 𝑇𝑑 = 7.64916169 (≈103 min) and an average ascending node drift of
ΔΩ = 1.22871195E-3 rad. The expansion is relative to the pseudo-circular LEO from [35].

H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) = 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
− 0.16707295 − 0.43870527
+ 0.32072807 𝛿𝑟2 − 0.31602983E-3 𝛿𝑟2

+ 0.25767948E-3 𝛿𝑟3 − 0.25390482E-6 𝛿𝑟3

− 0.19132824 𝛿𝑟4 − 0.31003174E-3 𝛿𝑟4

+ 0.53296708E-4 𝛿𝑟5 − 0.85361819E-6 𝛿𝑟5

+ 0.12006391E-1 𝛿𝑟6 − 0.32152252E-3 𝛿𝑟6

+ 0.60713391E-3 𝛿𝑟7 − 0.24661573E-5 𝛿𝑟7

− 0.19751494 𝛿𝑟8 − 0.21784073E-3 𝛿𝑟8

To show that the expansion of 𝛿H𝑧 and 𝛿𝐸 provide relative bounded motion orbits, we illustrate

the long term behavior of three LEOs relative to one another. The first orbit is the fixed point/pseudo-

circular orbit and is denoted by O0. The second orbit (O1) is initiated at 𝛿𝑟 = 0.06 with 𝛿𝑣𝑟 = 0.

The third orbit (O2) is initiated at 𝛿𝑟 = 0.13 with 𝛿𝑣𝑟 = 0. The last two both have an initial

longitudinal offset of 𝜙 = 0.5◦ relative to O0. The specific values of the orbits are given in Tab. 4.2.

Table 4.2: The LEOs below are all initiated at 𝑣𝑟,0 = −1.05621369E-3 and 𝑟0 = 1.14016749 + 𝛿𝑟 ,
and have an average nodal period of 𝑇𝑑 = 7.64916169 (≈103 min) and an average ascending node
drift of ΔΩ = 1.22871195E-3 rad. The pseudo-circular LEO from [35] is denoted by O0.

𝛿𝑟 𝛿𝑣𝑟 𝜙 H𝑧 𝐸

O0 0.00 0 0.0◦ -0.16707295 -0.43870527
O1 0.06 (383 km) 0 0.5◦ -0.16592075 -0.43870642
O2 0.13 (829 km) 0 0.5◦ -0.16170668 -0.43871071

In Fig. 4.4 we show that the bounded motion conditions are met: the oscillatory behavior of the

nodal period 𝑇𝑑 and the ascending node drift ΔΩ of the two orbits O1 and O2 average out to the

same value, respectively, which corresponds to the constant nodal period 𝑇★
𝑑

and constant ascending

node drift ΔΩ★ of the fixed point orbit O0.
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Figure 4.4: Oscillatory behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ of the bounded LEOs
O1 and O2 initiated at 𝛿𝑟 = 0.06 and 𝛿𝑟 = 0.13, respectively. Additionally, the constant nodal
period 𝑇★

𝑑
= 7.64916169 and constant ascending node drift of ΔΩ★ = 0.0704◦ of the fixed point

orbit O0 are shown. The periods of oscillation are 1763 orbital revolutions (126 days) for O2, 1810
orbital revolutions (129 days) for O1, and 1823 orbital revolutions (130 days) for 𝛿𝑟 → 0 of O0.
The shown results are generated by numerical integration. The time domain is based on the average
orbital revolution ≈̂ 𝑇★

𝑑
.

The bounded motion is further confirmed by Fig. 4.5, which shows the total distance between

the three LEOs respectively for 14 years. Furthermore, Fig. 4.5 illustrates the relative radial and

along-track distance between the orbit pairs from the perspective of one of the orbits in the pair.

Apart from yielding long term bounded motion, the normal form methods also provide the

average angle advancement Λ in the (𝑟, 𝑣𝑟 ) phase space. This angle advancement is directly linked

to the rotation frequency 𝜔𝑝 of the orbit (and its apsides) within its orbital plane, which causes the

oscillation of 𝑇𝑑 and ΔΩ shown in Fig. 4.4 with 𝜔𝑝 . One (𝑟, 𝑣𝑟 ) phase space rotation corresponds

to one revolution of the orbit (and its apsides) within its orbital plane. Accordingly, the frequency

𝜔𝑝 = Λ/2𝜋 is equivalent to the definition of the tune and the tune shifts a + 𝛿a, which are just

the normalized angle advancement separated into its constant part (the tune a) and its amplitude

dependent part (the tune shifts 𝛿a). The normal form yields the average angle advancement Λ

dependent on (𝑟NF , 𝛿H𝑧, 𝛿𝐸). After normalizing Λ, by division by 2𝜋, and replacing 𝑟NF by

an expression of (𝛿𝑟, 𝛿𝑣𝑟 ) and (𝛿H𝑧, 𝛿𝐸) according to Eq. (4.22), and using the expressions for

(𝛿H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 ), 𝛿𝐸 (𝛿𝑟, 𝛿𝑣𝑟 )) from earlier, the frequency 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 ) is obtained for the bounded
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Figure 4.5: Relative bounded motion of LEOs with an average nodal period of 𝑇𝑑 = 7.64916169
(≈103 min) and an average node drift of ΔΩ = 1.22871195E-3 rad for 14 years. The total relative
distance between the orbits is shown in the left plot and the right plot shows the relative radial and
along-track distance between orbit pairs from the perspective of one of the orbits in the pair. The
oscillation in the relative distance between O2 and O1 is caused by the rotating orbital orientation
of the orbits at different frequencies.

motion orbits around the fixed point LEO. The coefficients of 𝜔𝑝 for 𝛿𝑣𝑟 = 0 are given in Tab. 4.3

below.

Table 4.3: Expansion of 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) of relative bounded motion LEOs with an average nodal
period 𝑇𝑑 = 7.64916169 (≈103 min) and an average node drift of ΔΩ = 1.22871195E-3 rad. The
expansion is relative to the pseudo-circular LEO from [35].

𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 0.54868728E-3
+ 0.10803872E-2 𝛿𝑟2

+ 0.86800515E-6 𝛿𝑟3

+ 0.10552068E-2 𝛿𝑟4

+ 0.29106874E-5 𝛿𝑟5

− 0.76284414E-3 𝛿𝑟6

+ 0.39324207E-5 𝛿𝑟7

− 0.35077526E-1 𝛿𝑟8

Accordingly, the periods of the oscillations of the nodal periods 𝑇𝑑 and the ascending node
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drifts ΔΩ in Fig. 4.4 (in units of orbital revolutions) are just the inverse of the frequencies

𝜔𝑝 (𝛿𝑟 = 0.06) = 5.52590498E-4 and 𝜔𝑝 (𝛿𝑟 = 0.13) = 5.67242676E-4. These frequencies also

help explain the oscillation of the total relative distance range between O1 � O2 over 13.3 years in

Fig. 4.5.

While O1 shows repetitive behavior after 1809.7 orbital revolutions (129.3 days), the behavior of

O2 is repetitive after 1762.9 orbital revolutions (125.9 days). Accordingly, the two orbits will be in

and out of sync regarding their orbital orientation, while maintaining bounded due to the matching

average nodal period and ascending node drift. Specifically, the two orbits will be back in sync after

about 68170 orbital revolutions (4869 days/13.3 years) as Fig. 4.5 illustrates, since O1 will have

turned 37.7 times while O2 will have turn exactly once less, namely, 36.7 times, bringing them both

back into the same orbital orientation to one other before moving apart again.

In conclusion, our first comparison showed the superiority of the normal form methods,

particularly, compared to the iterative map evaluation method in [35], where numerical adjustments

to the method were required to provide long term relative bounded motion for 𝛿𝑟 = 0.11.

In Sec. 4.4.3 we will show that the DANF method even provides hypothetical long term bounded

motion up to 𝛿𝑟 = 0.3, which covers all realistic cases until 𝛿𝑟 = 0.14 and further hypothetical

(non-practical) cases with altitudes below the Earth’s surface.

In the next comparison, we are going to investigate bounded motion much farther from the

Earth’s surface. Accordingly, we expect a larger theoretical and practical bounded motion range

from the DANF method, due to a weaker influence of the zonal perturbations.

4.4.2 Bounded Motion in Medium Earth Orbit

In this comparison, we are considering a medium Earth orbit (MEO) from [6, p. 11] ini-

tiated at 𝑟 = 26562.58 km, 𝑣𝑟 = −9.05E-4 km/s and 𝑣𝑧 = 3.18 km/s. In the units of

𝑅0 = 6378.137 km and 𝑇0 = 806.811 s, the zonal problem with 𝐽2 to 𝐽15 yields a fixed

point orbit at (𝑟★, 𝑣★𝑟 ) = (4.17198963,−1.14150072E-4) and 𝑣★𝑧 = 0.40154964 for the param-

eters (H𝑧, 𝐸) = (1.16863390,−0.11984818). The fixed point orbit has a fixed nodal period
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𝑇★
𝑑
= 53.5395648 (≈12 hours) and constant drift in the ascending node of ΔΩ★ = −3.35410945E-4

rad (-0.0192◦).

The same computer system as in Sec. 4.4.1, took 131 seconds for the computation of the map.

The offset of the integration with (Δ𝑟,Δ𝑣𝑟 ,Δ𝑧,Δ𝑣𝑧) = (−4E-15,−2E-13,−4E-15, 2E-16) is well

within the range of the numerical error of the integration. After the normal form transformation (in

100 milliseconds) and the averaging (in 62 milliseconds) following the same procedure as in 4.4.1,

the dependencies of the constants of motion (H𝑧, 𝐸) on (𝛿𝑟, 𝛿𝑣𝑟 ) were calculated. Below, Tab. 4.4

yields H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0).

Table 4.4: The expansion of H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) for relative bounded motion
MEOs with an average nodal period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node
drift of ΔΩ = −3.35410945E-4 rad. The expansion is relative to the pseudo-circular MEO from [6].

H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) = 𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 1.16863390 − 0.11984818
− 0.16787983 𝛿𝑟2 − 0.11295792E-05 𝛿𝑟2

− 0.57819536E-5 𝛿𝑟3 − 0.38903865E-10 𝛿𝑟3

+ 0.72342680E-2 𝛿𝑟4 − 0.16786161E-07 𝛿𝑟4

+ 0.16208617E-6 𝛿𝑟5 − 0.34176382E-11 𝛿𝑟5

− 0.69493130E-4 𝛿𝑟6 − 0.28279909E-08 𝛿𝑟6

+ 0.11561378E-6 𝛿𝑟7 + 0.27190622E-12 𝛿𝑟7

+ 0.54888817E-4 𝛿𝑟8 − 0.51224108E-10 𝛿𝑟8

To illustrate that the DANF methods also provide bounded motion for this set of parameters, we

consider the long term behavior of three MEOs relative to one another. The first orbit is the fixed

point/pseudo-circular orbit and is denoted by O0. Since 𝑟★ of the fixed point MEO is about four

times the 𝑟★ of the low Earth fixed point orbit from the previous section, the bounded orbits are

initiated at four times the distance compared to the LEO investigation in Sec. 4.4.1. The orbit O1

is initiated at 𝛿𝑟 = 0.24 (1531 km) with 𝛿𝑣𝑟 = 0 and O2 is initiated at 𝛿𝑟 = 0.52 (3317 km) with

𝛿𝑣𝑟 = 0. These relative distances are already at the border or larger than distances that are used

in practice. Again, both orbits have an initial longitudinal offset of 𝜙 = 0.5◦ relative to O0. The

specific values of the orbits are given in Tab. 4.5.

Equivalent to Fig. 4.4 we show that the bounded motion conditions are met for the chosen MEOs
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Table 4.5: The MEOs below are all initiated at 𝑣𝑟,0 = −1.14150072E-4 and 𝑟0 = 4.17198963 + 𝛿𝑟 ,
and have an average nodal period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift
of ΔΩ = −3.35410945E-4 rad. The orbit O0 is the pseudo-circular MEO from [6].

𝛿𝑟 𝛿𝑣𝑟 𝜙 H𝑧 𝐸

O0 0.0 0 0.0◦ 1.16863390 -0.119848175
O1 0.24 (1531 km) 0 0.5◦ 1.15898794 -0.119848240
O2 0.52 (3317 km) 0 0.5◦ 1.123766254 -0.119848482

in Fig. 4.6. The oscillatory behavior of the nodal period 𝑇𝑑 and the ascending node drift ΔΩ of

the two orbits O1 and O2 average out to the same value, respectively, which correspond to the

constant nodal period 𝑇★
𝑑

and constant ascending node drift ΔΩ★ of the fixed point orbit O0. In

contrast to the investigated LEOs, the oscillation period of the bounded motion quantities of the

MEOs increases with increasing 𝛿𝑟. The period of oscillation in the MEO cases is also about two

orders of magnitude longer with periods of 47 and 53 years for O1 and O2, respectively, compared

to the LEOs.
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Figure 4.6: Oscillatory behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ of the bounded MEOs
O1 and O2 initiated at 𝛿𝑟 = 0.24 and 𝛿𝑟 = 0.52, respectively. Additionally, the constant nodal
period 𝑇★

𝑑
= 53.5395648 and constant ascending node drift of ΔΩ★ = −0.0192176316 deg of the

fixed point orbit O0 are shown. The periods of oscillation are 38682 orbital revolutions (52.9 years)
for O2, 34621 orbital revolutions (47.4 years) for O1, and 33671 orbital revolutions (46.1 years) for
𝛿𝑟 → 0 of O0. The shown results are generated by numerical integration. The time domain was
added assuming that on average one orbital revolution ≈̂ 𝑇★

𝑑
.

Using the normal form methods, the rotation frequency 𝜔𝑝 of the orbital orientation within its
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orbital plane is calculated as described in Sec. 4.4.1. The results from the expansion of 𝜔𝑝 confirm

these periods of oscillation with 𝜔𝑝 (0.24) = 2.88842404E-5 and 𝜔𝑝 (0.52) = 2.58516089E-5. The

expansion of 𝜔𝑝 dependent on 𝛿𝑟 is given in Tab. 4.6.

Table 4.6: Expansion of 𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) of relative bounded motion orbits with an average nodal
period of 𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift of ΔΩ = −3.35410945E-4
rad. The expansion is relative to the pseudo-circular MEO from [6].

𝜔𝑝 (𝛿𝑟, 𝛿𝑣𝑟 = 0) =
+ 0.29699500E-04
− 0.14137545E-04 𝛿𝑟2

− 0.48691156E-09 𝛿𝑟3

− 0.22644327E-06 𝛿𝑟4

− 0.43912160E-10 𝛿𝑟5

− 0.10717280E-05 𝛿𝑟6

− 0.10374073E-09 𝛿𝑟7

+ 0.23789772E-05 𝛿𝑟8

Fig. 4.7 shows the long term bounded motion behavior by illustrating the relative total distance

between the orbits and their relative radial and along-track distances. Due to the long oscillation

periods in the bounded motion quantities of 47 and 53 years for O1 and O2, respectively, the

oscillation in the total distance between O1 and O2 is about 456 years and can therefore only be

partially shown. After 456 years the orbital orientation of O1 will have turned 9.6 times and align

again with the orbital orientation of O2, which will have turned 8.6 times.

The ‘breathing’ of the relative distance between the orbits is particularly noticeable for the orbit

pair of O2 and O0. The frequency of the ‘breathing’is 2𝜔𝑝 which is a result of the rotation of the

orbital orientation of the pseudo-elliptical O2 relative to the pseudo-circular O0. Since the orbital

shape of the pseudo-elliptical O2 is approximately symmetric along its semi-major axis, one full

rotation of the orbital orientation corresponds to two breathing cycles.

In conclusion, our methods also provided an entire set of long term relative bounded motion

around the considered fixed point MEO from [6], which was validated far beyond practical relative

distances. In the following section, the limitations of our method are investigated. The investigations

will show that the validity of the sets presented in Sec. 4.4.1 and Sec. 4.4.2 extends over about twice
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Figure 4.7: Relative bounded motion of MEOs from Tab. 4.5 with an average nodal period of
𝑇𝑑 = 53.5395648 (≈ 12 h) and an average ascending node drift of ΔΩ = −3.35410945E-4 rad over
70 years. The total relative distance between the orbits is shown in the left plots and the right plot
shows the relative radial and along-track distance between orbit pairs from the perspective of one of
the orbits in the pair. The ‘breathing’ of the relative total distance between O2 and O0 originates
from the rotating orbital orientation of pseudo-elliptical O2 relative to the pseudo-circular O0. Due
to the very long rotation periods, only the first 70 years of the relative distance oscillation and
radial/along-track behavior between O2 and O1 could be shown.

the already presented distance from their respective fixed point orbits.

4.4.3 Testing the Limitations of the DANF Method

The previous two sections illustrated the validity of the DANF method for all practical relative

distances for bounded motion and beyond. In this section, we move even further away from any

practical relevance of the calculated sets of bounded motion to the limitations of our method. Since

it is based on polynomial expansions, it is obvious it will fail at some point and we want to show

when and how this failing process takes place.

First we pick a number of test orbits from the calculated bounded motion sets (see Tab. 4.7).

In contrast to previous examples, no initial longitudinal offset relative to the respective fixed point

orbits are set.
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Table 4.7: The following orbit parameters are obtained by evaluating H𝑧 (𝛿𝑟, 𝛿𝑣𝑟 = 0) and
𝐸 (𝛿𝑟, 𝛿𝑣𝑟 = 0) from Tab. 4.1 and Tab. 4.4 for various 𝛿𝑟 keeping 𝛿𝑣𝑟 = 0.

Test LEOs Test MEOs
𝛿𝑟 H𝑧 𝐸 𝛿𝑟 H𝑧 𝐸

O0 0.00 -0.16707295 -0.43870527 O0 0.0 1.1686339 -0.11984817
O0.15 0.15 -0.15995246 -0.43871254 O0.6 0.6 1.1091311 -0.11984854
O0.20 0.20 -0.15454760 -0.43871843 O0.7 0.7 1.0881027 -0.11984873
O0.25 0.25 -0.14777078 -0.43872632 O0.8 0.8 1.0641420 -0.11984890
O0.30 0.30 -0.13975416 -0.43873648 O0.9 0.9 1.0373802 -0.11984910
O0.35 0.35 -0.13066556 -0.43874929 O1.0 1.0 1.0079682 -0.11984932
O0.40 0.40 -0.12071669 -0.43876526 O1.1 1.1 0.97607833 -0.11984957

O1.2 1.2 0.94190725 -0.11984984
O1.3 1.3 0.90567972 -0.11985014
O1.4 1.4 0.86765361 -0.11985047

Fig. 4.8 illustrates the behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the chosen orbits

of the LEO bounded motion set. Both quantities show oscillatory behavior centered at or close to

𝑇★
𝑑

and ΔΩ★, respectively. With increasing distance 𝛿𝑟, the influence of higher order oscillations

becomes apparent. The frequency and amplitude of oscillation of the bounded motion quantities

also increase with increasing distance 𝛿𝑟 .
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Figure 4.8: The behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the test orbits from
Tab. 4.7 of the calculated LEO bounded motion set generated by numerical integration. For large
𝛿𝑟 , the influences of higher order oscillations are apparent. The frequency and amplitude of
oscillation increase with increasing 𝛿𝑟 . The amplitude of ΔΩ is particularly sensitive to 𝛿𝑟.
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If the bounded motion conditions are not met or only met approximately, the orbits will start

drifting apart. This effect is illustrated in Fig. 4.9, which shows very slowly diverging behavior of

approximately 2.6 km/year for 𝛿𝑟 = 0.3 (1913 km) and a stronger divergence of approximately 10.6

km/year for 𝛿𝑟 = 0.4 (2551 km) in the left plot. The thickening curves in the radial/along-track

representation of the relative orbit motion are a further indication of divergence. The strength

of divergence in Fig. 4.9 can be directly linked to the size of the offsets in the bounded motion

quantities from 𝑇★
𝑑

and ΔΩ★, shown in Fig. 4.8.
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Figure 4.9: Distance between the orbits in the calculated bounded motion set and O0 is determined
in regular time intervals with numerical integration over more than ten years. The left plot only
shows the upper bound to avoid overlaps. Thin horizontal lines at the initial upper bound emphasize
small changes. The dotted light blue curve (right) originates from an unintended near-resonance
between the chosen time interval for distance evaluations and the orbital behavior. A measurable
increase in relative distances (left) over 10 years for 𝛿𝑟 ≥ 0.3 is supported by thickening curves in
the radial/along-track behavior (right).

From Fig. 4.9 and Fig. 4.8 we conclude that our method and the resulting expansions in H𝑧 and

𝐸 for long term bounded motion of at least 10 years around the fixed point LEO from [35] start

to lose their significant accuracy for 𝛿𝑟 ≥ 0.3 to satisfy the bounded motion conditions with the

required precision. Note that 𝛿𝑟 = 0.3 (1913 km) is already a purely theoretical orbit with altitudes
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of more than 1000 km below the Earth’s surface, which means that our expansions in H𝑧 and 𝐸

provided reliable bounded motion beyond realistic distances (𝛿𝑟 ≤ 0.14) between orbits.

The behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the chosen orbits of the MEO

bounded motion set (from Tab. 4.7) are shown in Fig. 4.10. In contrast to the test LEOs, the

amplitude and period of oscillation of the bounded motion quantities are decreasing with increasing

distance 𝛿𝑟, which causes the almost steady behavior of 𝛿𝑟 = 1.4 over the shown timespan and

generally suppresses higher order oscillations that were seen for the LEOs. While the oscillations of

𝑇𝑑 are approximately centered around 𝑇★
𝑑

(except for O1.4), the center of oscillation is increasingly

diverging from ΔΩ★ to lower ΔΩ for 𝛿𝑟 ≥ 0.8. In other words, the expansions in 𝛿H𝑧 and 𝛿𝐸 start

failing in producing related orbits that satisfy the bounded motion condition.
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Figure 4.10: Behavior of the bounded motion quantities 𝑇𝑑 and ΔΩ for the test orbits from Tab. 4.7
of the calculated MEO bounded motion set generated by numerical integration. In contrast to the
investigated LEOs, the frequency and amplitude of oscillation decrease with increasing 𝛿𝑟 such that
O1.4 appears almost steady. For 𝛿𝑟 ≥ 0.8 the center of oscillation of ΔΩ start to drift to more
negative values and away from ΔΩ★.

The consequence of this offset in the bounded motion condition is diverging behavior between
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the orbits, which can be seen in Fig. 4.11. The upper bound of the total distance between the orbits

starts diverging for those very large distances and the thickening curves in the radial/along-track

representation of the distance of the orbits from the perspective of O0 further indicate this divergence.

Additionally, Fig. 4.11 shows the ‘breathing’ in the total relative distance between the orbits with

2𝜔𝑝 , which is due to the rotating orbital orientation of the orbits relative to the pseudo-circular fixed

point orbit as already mentioned in the section above.
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Figure 4.11: Distance between the orbits in the calculated bounded motion set and O0 is
determined in regular time intervals by numerical integration over more than 70 years. The left plot
only shows the upper bound to avoid overlaps. Thin horizontal lines at the initial upper bound
emphasize small changes. The ‘breathing’ of the total relative distance from the orbital rotation is
clearly visible. Its period increases with increasing 𝛿𝑟 until being unrecognizable due to the strong
divergence for 𝛿𝑟 ≥ 1.4, which is supported by thinker curves in the right plot. The weaker
divergence over the 70-year timespan is already noticeable for 𝛿𝑟 ≥ 0.9. The divergence is caused
by the offset in respective bounded motion quantities (see. Fig. 4.10).

From Fig. 4.11 and Fig. 4.10 we conclude that our method and the resulting expansions in H𝑧

and 𝐸 for long term bounded motion of at least 70 years around the fixed point MEO from [6] start

to lose their significant accuracy for 𝛿𝑟 ≥ 0.9 to satisfy the bounded motion conditions with the

required precision. Interestingly, the very long ‘breathing’ periods for very large distances like

𝛿𝑟 = 1.3 suggested (temporary) bounded motion for the first 70 years when looking at Fig. 4.11,
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while Fig. 4.10 reveals the underlying diverging behavior due to the mismatched bounded motion

conditions.

4.5 Conclusion

The normal form methods presented in this chapter yield parameterized sets of the constants of

motion (H𝑧 (𝛿𝑟), 𝐸 (𝛿𝑟)) for bounded orbits with an average nodal period and average ascending

node drift corresponding to the fixed nodal period and ascending node drift of the reference (fixed

point) orbit. The range of 𝛿𝑟 for which bounded motion orbits can be obtained is dependent on the

closeness to the Earth. The closer to the Earth, the stronger the influence of the zonal perturbation

and the stronger the dynamics of the orbit relatively depend on 𝛿𝑟 .

In comparison to the approach in [35], our method avoided the time-consuming and inaccurate

numerical averaging, by using a normal form based parameterization for the averaging. As a result,

the range of the bounded motion provided by our methods is more than twice as large as the range of

the results in [35]. Additionally, our method does not require a separate calculation for each 𝛿𝑟 , but

rather provides an expansion in (𝛿𝑟, 𝛿𝑣𝑟 ), which covers all orbits up to a certain maximum range

that varies with the altitude of the reference trajectory.

While the method in [6] has the advantage of allowing for the calculation of bounded orbits up

to arbitrary distances 𝛿𝑟, it lacks the ability to provide parameterized sets of bounded motion just

like [35].

The normal form methods are also able to provide parameterized sets of the rotation frequency

of the orbits within their orbital plane. This rotation is due to the zonal perturbations in the

gravitational field of the Earth since there is no rotation of the orbit for the spherically symmetric

case. With increasing distance from the Earth’s center 𝜌, the zonal perturbations 𝐽𝑙 fall off with

𝜌−𝑙−1. Accordingly, it is not surprising that the rotation frequency of the MEOs is so much lower

than the rotation frequency of the LEOs. Similarly, the 𝛿𝑟 dependence of the bounded motion is a

lot less sensitive for the MEOs compared to the LEOs.
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CHAPTER 5

STABILITY ANALYSIS OF MUON G-2 STORAGE RING

This chapter contains parts from my paper Computation and consequences of high order amplitude-

and parameter-dependent tune shifts in storage rings for high precision measurements published

in the International Journal of Modern Physics A, Vol. 34, No. 36, 1942011 (2019) [89]. The

paper was authored by David Tarazona, Martin Berz, and me. The analysis and results from [89] are

presented here and complemented by additional investigations into muon loss mechanisms, which

were partly discussed in [80].

The DA map methods (Sec. 2.2) and DA normal form methods (Sec. 2.3) are used to understand

the oscillations of particles in the storage ring of the muon 𝑔-2 experiment at Fermilab. In contrast

to the previous examples, this case of study considers two phase space dimensions. We chose a

configuration of the ring which was utilized during one of the first data-collecting stages of the

muon 𝑔-2 experiment at Fermilab. For this configuration, the phase space behavior is particularly

interesting due to resonances (Sec. 2.3.2) and how they affect the stability and loss rates of particles.

5.1 Introduction

Nonlinear effects of electric and magnetic field components of storage rings to confine the

particles and bend their trajectory can cause substantial amplitude dependent tune shifts within

the beam. Additionally, tune shifts are often sensitive to variations of system parameters, e.g.,

total particle momentum offsets 𝛿𝑝 relative to the reference momentum of the storage ring. Such

amplitude and parameter dependent tune shifts lead to particles within the beam that oscillate

at different frequencies, which potentially influences the beam’s susceptibility to resonances and

therefore its dynamics and stability. Thus, it is critical for high precision measurements like the

muon 𝑔-2 experiment to analyze and understand these influences.

In this chapter, we investigate the dynamics within the muon 𝑔-2 storage ring, which is the

fundamental component of the muon 𝑔-2 experiment, using Poincaré return maps and DA normal
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form methods. A one-turn Poincaré return map yields the state of particles at a certain azimuthal

location within the ring dependent on their state in the previous turn and on system parameters. The

application of DA normal form methods to such maps allows for the calculations of tune shifts and

quasi-invariants for motion around a (stable) fixed point of the map. Additionally, these maps can be

used to track the phase space behavior stroboscopically. Before explaining the methods and the

results, the following paragraphs will yield a short introduction to the muon 𝑔-2 experiment and its

relevance.

The goal of the muon 𝑔-2 experiment at Fermilab (E989) [3] is the measurement of the anomalous

magnetic dipole moment of the muon

𝑎` ≡
𝑔` − 2

2
, (5.1)

where the 𝑔-factor relates the spin and magnetic moment of a particle. Dirac theory predicts the

factor to be two for charged leptons like the muon [28, 29], but hyperfine structure experiments in

1940 showed that 𝑔 ≠ 2 [62, 63]. The largest radiative correction was introduced by Schwinger in

1948 to explain the difference [71, 72]. Over the years more corrections were explored to gain an

understanding of the deviation (𝑔-2) [2], the name-giver of the experiment.

Today, the most successful theory in particle physics is the standard model (SM). It considers

high order effects including quantum electrodynamics, electro-weak interactions, and quantum

chromodynamics in the calculation of the magnetic dipole moment anomaly of the muon. The

most accurate calculation of the magnetic dipole moment anomaly of the muon using the standard

model 𝑎SM
` reaches a precision of 0.39 ppm [2]. The muon 𝑔-2 experiment E821 conducted at

the Brookhaven National Laboratory (BNL) in 2006 yielded a result with a precision of 0.54 ppm

[32], which differed from the calculation by 3.6 standard deviations. The E989 at Fermilab is the

latest experiment in a series of measurements aimed at pushing the precision of the measured result

even higher to reach a precision of 0.14 ppm and push the discrepancy between measurement and

calculation to more than five standard deviations [33]. If successful, the result would be a very

strong indication that the standard model is unable to describe this anomaly and would call for

adjustments to the model or entire new theories. The first results from the latest measurement
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at E989 [3, 83, 81, 82] were in agreement with the measurement from BNL had a precision of

0.46 ppm. Combined with the result from BNL, this yields an experimental precision of 0.35 ppb

and a discrepancy of 4.2 standard deviations from theory predictions [3]. Expectations are that the

five standard deviations are reached with the next set of results from E989.

The experimental technique can be briefly summarized as follows: A highly spin-polarized

beam of muons1 is created as the decay product of high energy pions. The muons are delivered

by the Muon Campus as part of the accelerator complex at Fermilab [75, 79, 74] and injected into

the muon 𝑔-2 storage ring. During the first revolutions within the storage ring, the muon beam is

prepared to minimize the emittance and limit fluctuations of the total momentum acceptance to

about ±0.5%. The prepared beam is then orbiting in the storage ring with only the vertical magnetic

field and the four electrostatic quadrupole systems (ESQ) acting on it. The constant magnetic field

forces the beam around the ring and causes the spin of the muons to precess. The four ESQ confine

and focus the muons vertically [73]. The muons are decaying while they are orbiting and their

spins are precessing. Their decay products are measured by the calorimeter system [36] around the

beamline in order to determine the spin precession frequency of the muons, which is then used to

calculate the muon anomalous magnetic moment [32].

Understanding the behavior of the prepared muon beam in the storage ring is particularly

important to identify and address problems. One issue is muon loss, which decreases the number of

detected muons. The loss of muons introduces a systematic bias for the average polarization of the

remaining particles, which will influence the overall result of the measurement.

In [89], we published an analysis focused on tune shifts, which is the basis of subsequent

investigations into the relevance of resonances in muon loss mechanisms.

Accordingly, the following description of the methods draws from [89]. The tune shift analysis

from [89] will be presented and complemented by additional investigation regarding period-3 fixed

point structures and their relevance in muon loss mechanisms, which was partly presented in [80].

We are going to start with the introduction from [89] into how the Poincaré maps for the storage

1Anti-muons are dubbed as muons throughout as customary in the muon 𝑔-2 collaboration.
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ring are generated and the concept of closed orbits. Afterward, we will be discussing results

regarding the relevance of the momentum dependent fixed point of the maps, momentum and

amplitude dependent tune shifts, and the presence of period-3 fixed point structures.

5.2 Storage Ring Simulation Using Poincaré Maps

A storage ring is composed of various particle optical elements, each of which can be simulated in

COSY INFINITY [53, 20], mostly by a multipole expansion of the involved fields or corresponding

potentials. For each particle optical element, there is a hypothetical ideal orbit for which it is

calibrated, usually along the center of the element [14]. The ideal orbit is often characterized by a

predetermined set of system parameters ®[0, for example, a specific total reference momentum of the

particles. If the element is simulated as ideal, namely without perturbations, the actual trajectory

of a particle initiated on the ideal orbit when entering the element (at ®𝑧0) follows the ideal orbit

throughout the element. However, with perturbations like imperfections in the associated fields of

the element, a particle initiated at ®𝑧0 might follow a trajectory different from the ideal orbit. Hence,

the ideal orbit describes the actual trajectory of a particle initiated at ®𝑧0 in the unperturbed case.

To analyze how an element influences the transverse phase space behavior around the ideal orbit,

Poincaré maps (see Sec. 2.2) are used. The Poincaré surfaces correspond to the vertical storage

ring cross section perpendicular to the optical axis at azimuthal locations before (S𝑖) and after the

element (S 𝑓 ). The Poincaré map P is expanded around the ideal orbit and expresses how the relative

phase space state ®𝑧 𝑓 ∈ S 𝑓 after the particle optical element depends on variations in ®[ and on the

relative phase space state ®𝑧𝑖 ∈ S𝑖 before the element, with ®𝑧 𝑓 = P (®𝑧𝑖, ®[). The phase space states

relative to the ideal orbit ®𝑧 consist of the horizontal (𝑞1, 𝑝1) = (𝑥, 𝑎) and vertical (𝑞2, 𝑝2) = (𝑦, 𝑏)

phase space components within the Poincaré surface S. For unperturbed elements, the Poincaré map

P is origin preserving, with P (®0, ®0) = ®0, since the trajectory follows the ideal orbit.

The transverse phase space behavior after a full revolution in the storage ring is given by the

Poincaré return map M, which is generated by composing the individual Poincaré maps P𝑖 of the

individual storage ring elements according to the storage ring setup (M = P𝑘 ◦P𝑘−1 ◦ ... ◦P2 ◦P1)
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such that the ideal orbits connect.

For the simulation of the muon 𝑔-2 storage ring, a detailed nonlinear model [78] of the storage

ring particle optical elements has been set up using COSY INFINITY. The simulation considers the

magnetic field that guides the beam around the storage ring and the four-fold symmetric electrostatic

quadrupole system [73] (ESQ), which focuses the beam vertically. Additionally, perturbations due to

the ESQ fringe fields and nonlinearities of the main field, or imperfections in the vertical magnetic

field can be taken into account based on experimental data. Superimposing both perturbations when

fringe fields are accounted for has been unsuccessful so far due to technical limitations.

The model represents the magnetic field inhomogeneities by fitting 2D magnetic multipoles

up to fifth order to measurement data of the magnetic field within the muon 𝑔-2 storage ring (see

[82, 78] for details). The ESQ [73] is considered by the corresponding electrostatic potential as a

2D multipole expansion up to tenth order to accurately model the nonlinearities of the system up

to the significant contribution of the 20th-pole. The fringe fields of the ESQ – the fall-off of the

electric field at the edges of the ESQ components – are simulated based on numerical calculations

performed with the code COULOMB [85].

The generated Poincaré return maps are expanded in the horizontal (𝑥, 𝑎) and vertical (𝑦, 𝑏)

phase space coordinates relative to the ideal orbit. Additionally, the maps are expanded in relative

offset 𝛿𝑝 = Δ𝑝/𝑝0 with respect to the initial reference momentum 𝑝0 to represent particles within

the momentum acceptance range of about ±0.5% of the E989 storage ring. The relative change 𝛿𝑝

corresponds to the change of the system parameter ®[.

To distinguish the influences of various elements of the storage ring and their perturbations, we

simulated different configurations of the components as shown in [89]. Specifically, the influence of

perturbations due to ESQ fringe fields and influences from imperfections in the vertical magnetic

field are treated separately. We also considered the system for two ESQ voltages, namely 18.3 kV

and 20.4 kV. In this chapter of the thesis, however, we will only consider an ESQ voltage of 18.3 kV,

since it offers the most interesting nonlinear dynamics and is a set-point used during the first data

collection of the muon g-2 experiment. We are also only considering the map with the magnetic
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field imperfections since investigations in [89] indicated that it is the dominating perturbation and

therefore yields the most realistic results. The main insights from [89] regarding the other cases will

still be mentioned at the appropriate places in the text below.

5.3 The Closed Orbit

Closed orbits return to themselves after each storage ring revolution, which makes them fixed

points of the Poincaré return maps. There are also low period closed orbits that return to themselves

after a few turns 𝑛. These orbits correspond to low period fixed point structures in the 𝑛-turn

Poincaré return map. While there are also unstable fixed points, which are discussed later, we will

first focus on the properties of the stables ones.

The closed orbit is a reference for the associated particles since they oscillate around it with

the closed orbit representing an equilibrium state. Accordingly, the closed orbit is sometimes also

referred to as the reference orbit. In the stroboscopic view of the Poincaré return maps, the fixed

point mimics an equilibrium point of the oscillatory phase space behavior around it. Using the DA

normal form algorithm (see Sec. 2.3) on an origin preserving Poincaré return map, the transverse

oscillation frequencies around the fixed point can be calculated. In the rest of this section, we will

focus on how these closed orbits and their associated fixed points in the Poincaré return maps are

determined.

5.3.1 The Closed Orbit Under Perturbation

If all components are simulated to be unperturbed, then the Poincaré return map is a composition

of origin preserving Poincaré maps and hence also origin preserving. However, if the simulation

considers perturbations, the actual trajectory of the expansion point may be distorted from the ideal

orbit and hence not a closed orbit. Accordingly, the expansion point of the associated Poincaré

return map may not be a fixed point and the map may not be origin preserving.

However, if the perturbation is sufficiently small, a fixed point ®𝑧FP will continue to exist.

Parameterizing the strength of the perturbation with ®[, the origin preserving fixed point map

96



of the unperturbed system is given by M (®𝑧, ®[ = 0). To analyze the preservation of the param-

eter dependent fixed point, an extended map N (®𝑧, ®[) = (M(®𝑧, ®[) − ®𝑧, ®[) is defined [14]. If

det(Jac(N (®𝑧, ®[))) |(®𝑧,®[)=(®0,®0) ≠ 0 then, according to the inverse function theorem, an inverse of

the map N exists for a neighborhood D around the evaluation point (®0, ®0) of the Jacobian. The

parameter dependent fixed point ®𝑧FP( ®[) of M and hence the closed orbit of the system exists as

long as (0, ®[) is within the neighborhood for which invertibility has been asserted. If this is the

case and the inverse N−1 around (®0, ®0) is given, then the parameter dependent fixed point can be

calculated via

(®𝑧FP( ®[), ®[) = N−1
(
®0, ®[

)
. (5.2)

Expanding the map around the parameter dependent fixed point yields the origin preserving Poincaré

return map under perturbations in the system parameters.

The perturbation due to imperfections in the magnetic field distorts particles from the ideal

orbit of the E989 storage ring. Accordingly, the Poincaré return map from the composition of the

individual particle optical elements is not origin preserving. Using the method above, the fixed point

of the map – the phase space coordinates of the closed orbit at the azimuthal location of the map – is

calculated and the map is expanded around it. The result is an origin preserving fixed point map.

Calculating the fixed point for Poincaré return maps at multiple azimuthal locations of the ring

indicates the form of the closed orbit (see Fig. 5.1).

The collimator locations are highlighted because they are of particular relevance for muon losses.

They constitute the narrowest part around the storage region restricting the muons to amplitudes of

𝑟 =
√︁
𝑥2 + 𝑦2 < 45 mm = 𝑟0 relative to the center of the ring, i.e. the ideal orbit. Muons hitting a

collimator during data taking for the measurement are known as lost muons.

While the radial motion of the closed orbit along the storage ring is close to sinusoidal, the

vertical phase space motion is disturbed into more complex behavior. In the 𝑥𝑦 projection, distorted

elliptical motion around the ideal orbit along the center of the ring is indicated. All these deviations

from the ideal orbit are triggered by the weak coupling of radial and vertical motion due to ppm-level

imperfections of the skew quadrupole magnetic field. The form of the closed orbit is determined by
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Figure 5.1: The fixed points of Poincaré return maps from various azimuthal locations around the
ring indicate the behavior of the closed orbit (for 𝛿𝑝 = 0). The projections of the four dimensional
fixed points into subspaces illustrate the influence of the magnetic field perturbations on the closed
orbit around the ring. The results from the five collimator locations (C1-C5) are highlighted with
red color.

the distribution of such magnetic field imperfections as well as the fields and voltage of the ESQ.

The closed orbit we found here and showed in Fig. 5.1 is considering a particle with no

momentum offset (𝛿𝑝 = 0). Following the argumentation above the closed orbit continues to exist

with perturbations in 𝛿𝑝 as will be investigated in the next section.
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5.3.2 The Momentum Dependence of the Closed Orbit

The closed orbit additionally depends on system parameters like the momentum offset of the particles.

Just like for the magnetic field perturbation, Eq. (5.2) is used to calculate the parameter dependent

fixed point of the origin preserving Poincaré return map, where the parameter is the momentum

offset 𝛿𝑝. The phase space coordinates of the momentum dependent fixed point at the collimator

locations in the ring are shown in Fig. 5.2.
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Figure 5.2: Changes of the closed orbits due to relative changes 𝛿𝑝 in the total initial momentum.
The plots illustrate absolute coordinates with respect to the ideal orbit at the center of the ring for
the five collimator locations (C1-C5).

The primary effect from the momentum offset comes from the interaction of the charged particles
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with the unperturbed part of the vertical magnetic field. The Lorentz force, which determines the

orbit radius, is directly proportional to the momentum of the particle. This behavior is clearly visible

in the horizontal components of Fig. 5.2. The radial position of the parameter dependent fixed point

𝑥PDFP changes linearly at about 79 mm/% with the momentum offset at all collimator locations.

The associated dependence of the horizontal momentum 𝑎PDFP incorporates the changing radial

orientation of the momentum dependent closed orbit with respect to the Poincaré surface and the

different orientations at the various collimator locations.

The vertical components 𝑦PDFP and 𝑏PDFP of the closed orbit are mostly dependent on the

azimuthal location of the map and change only slightly with a momentum offset.

5.3.3 The Relevance of Closed Orbits

The momentum dependent closed orbits correspond to fixed points in the Poincaré return maps.

Particles that are not on a closed orbit oscillate around the momentum dependent closed orbit

corresponding to their specific momentum offset. In the stroboscopic view of the Poincaré return

maps, this corresponds to stroboscopic oscillatory behavior around the fixed point in both phase

spaces as Fig. 5.3 indicates. The amplitudes of these transverse oscillations are determined by the

phase space position of the particle and the momentum dependent fixed point.

Particles with the same oscillation amplitudes but different momentum offsets will follow roughly

the same motion, but at different locations in phase space. On the other hand, particles at the same

phase space location may follow entirely different orbital motion depending on their corresponding

momentum dependent fixed point. In summary, the phase space motion of a particle is characterized

by its momentum dependent fixed point, its amplitudes of oscillation, and its oscillation frequencies,

which are addressed in detail in Sec. 5.4.

The collimators restrict the maximum amplitudes of oscillation around the associated momentum

dependent fixed points. The viable phase space region for particles decreases with increasing

momentum offset (see Fig. 5.4). The closeness of the reference closed orbit to the collimators

increases the risk of muon loss. While particles with low momentum offset are only at risk of getting
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Figure 5.3: Phase space behavior of four particles in different phase space regions with various
amplitudes and momentum offsets. Particle 4 (yellow) hits the collimator and is lost. The
momentum dependent radial position 𝑥 of the particles is particularly prominent. The individual
particles are characterized by the parameter set

(
𝑥amp, 𝑦amp, 𝛿𝑝

)
with (6 mm, 12 mm,−0.39%) for

particle 1 (P1), (12 mm, 6 mm,−0.39%) for particle 2 (P2), (27 mm, 16 mm, +0.13%) for particle
3 (P3), and (6 mm, 25 mm, +0.39%) for particle 4 (P4).

lost when they have relatively large oscillation amplitudes, particles with a large momentum offset

may already be lost with seemingly small amplitudes of oscillation.

Figure 5.4: Schematic illustration of viable 𝑥𝑦 region around a momentum dependent fixed point.

Since the semi-major and semi-minor axis of the distorted elliptical phase space behavior are

not necessarily aligned with the position and momentum axis and vary for each particle, there is no

straightforward definition of the amplitude of oscillation. The DA normal form algorithm takes care

of this by transforming the distorted ellipses in phase space to circles such that the amplitudes of
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oscillation are just the radii of the circles – the normal form radii. We will investigate the relationship

between the original phase space coordinates and the normal form radii more closely later on and

also use its advantages, but for now, we want to focus on practically relatable quantities in the

original phase space, rather than abstract quantities like the normal form radius.

Given a particle with distorted elliptical phase space behavior and its corresponding momentum

dependent fixed point ®𝑧PDFP(𝛿𝑝), we define the oscillation amplitudes 𝑥amp and 𝑦amp independently

from each other. In the radial phase space 𝑥amp = |𝑥0 − 𝑥PDFP(𝛿𝑝) | for 𝑎0 = 𝑎PDFP(𝛿𝑝) and

𝑦amp = |𝑦0 − 𝑦PDFP(𝛿𝑝) | for 𝑏0 = 𝑏PDFP(𝛿𝑝) in the vertical phase space.

5.4 Tune analysis

The following tune analysis investigates the oscillation frequency around the reference closed

orbits depending on the momentum offset and the amplitude of oscillation. The tunes shall shed

light on average loss times and the involvement of resonances.

5.4.1 Tunes of the Momentum Dependent Closed Orbit

Given the parameter dependent fixed point map representing the phase space behavior around the

momentum dependent closed orbit of the muon 𝑔-2 storage ring model, the diagonalization in the

DA normal form algorithm is used to determine the tunes of the momentum dependent closed orbit.

The calculated tunes of the closed orbit (for 𝛿𝑝 = 0) differ only very slightly depending

on the azimuthal location of the Poincaré return map yielding a𝑥 = 0.944462633(8 ± 3) and

a𝑦 = 0.330814444(7 ± 6), which is expected since they all describe the linear motion around same

closed orbit. The proximity of the vertical tune a𝑦 to the low 1/3-resonance will be investigated

more closely later. The radial tune a𝑥 is even closer to a higher order resonance namely the

17/18-resonance. Without loss of generality, we will use the Poincaré return map at collimator C3

for our further map investigations.

The Fig. 5.5 illustrates the momentum dependence of the tunes over the momentum offset

range of 𝛿𝑝 ∈ [−0.5%, 0.5%] and indicates the linear dependence (chromaticities) b𝑖 as a reference.
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For |𝛿𝑝 | < 0.25% the momentum dependence of both tunes is predominantly linear with b𝑥 =

0.942
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Figure 5.5: Vertical and horizontal tune dependence in the model of the muon 𝑔-2 storage ring of
E989 on relative offsets 𝛿𝑝 from the reference momentum 𝑝0.

−0.131999346 and b𝑦 = 0.389753993. For |𝛿𝑝 | > 0.33% however, the tunes are dominated by an

order eight dependence on relative momentum offsets 𝛿𝑝. This eighth order dependence results from

the strong ninth order terms in the original map, which are linear in the phase space components

and of order eight in the momentum dependence, representing the earlier mentioned significant

influence of the 20th-pole of the ESQ potential.

Interestingly, the linear coefficient and the eighth order coefficient of the vertical momentum

dependent tune shifts are both larger by a factor of three and opposite in sign compared to their

radial counterparts. Additionally, the momentum dependent vertical tune shifts away from the

1/3-resonance.

The investigation in [89] indicated a strong influence of the ESQ voltage on the linear motion

around the respective expansion points and therefore the tunes. The momentum dependence of the

tunes – the momentum dependent tune shifts – however is only slightly changed by the ESQ voltage

(see [89] for more details).
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5.4.2 The Amplitude Dependent Tune Shifts

The DA normal form algorithm provides the transformation ANF from the original phase space

coordinates (𝑥, 𝑎) and (𝑦, 𝑏) to rotationally invariant normal form coordinates (𝑞NF,1, 𝑝NF,1) and

(𝑞NF,2, 𝑝NF,2). The amplitude and parameter dependent tune shifts a𝑖 (𝑟NF,1, 𝑟NF,2, 𝛿𝑝) can be

extracted from the normal form map, where the amplitudes are given by the normal form radii

𝑟NF,𝑖 =
√︃
𝑞2

NF,i + 𝑝2
NF,i.

This full description of the tunes and their dependence on phase space amplitudes and momentum

offsets is extremely powerful. However, the abstract normal form radii are not as practically useful

as the previously defined oscillation amplitudes 𝑥amp and 𝑦amp in original phase space coordinates.

To address this, Fig. 5.6 illustrates the dependence of the tunes on the radial phase space amplitude

𝑥amp and the dependence on the vertical phase space amplitude 𝑦amp, separately. This is done by

calculating the corresponding normal form coordinates and normal form radii and using those for

the tune evaluation.

The amplitude dependence is never linear but always appears as even orders. Investigations

in [89] indicated that amplitude dependent tune shifts, just like momentum dependent tune shifts,

are only weakly influenced by the ESQ voltages and the field perturbations. Similar to the purely

momentum dependent tune shifts, the sign of the momentum offset seems to only play a minor role

compared to the magnitude of the offset.

The radial amplitude dependence of the tunes is relatively well behaved. Again, there is the

dominating eighth order dependence related to the strong ninth order nonlinear terms resulting from

the 20th-pole of the ESQ potential, which shifts the tunes of the radial phase space up and tunes of

the vertical phase space down with increasing radial amplitude and magnitude of the momentum

offset.

The vertical amplitude dependence however is more complex as it varies strongly with the

magnitude of the momentum offset. Regarding the vertical tune, this is particularly critical due to the

crossing of the 1/3-resonance tune for some vertical amplitude and momentum offset combinations.

Such low resonances can have a major influence on the dynamics of particles which is why we will
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Figure 5.6: Amplitude dependent tune shifts in the model of the muon 𝑔-2 storage ring of E989.
The black line indicates the amplitude dependent tune shifts for 𝛿𝑝 = 0, while the other lines have a
momentum offset specified by their color. For the left plots regarding the radial amplitude
dependence, the vertical amplitude relative to the momentum dependent fixed point is set to zero and
vice versa for the plots regarding the vertical amplitude dependence on the right. The lines end when
the total 𝑥𝑦 amplitude of the particle relative to the ideal orbit reaches the collimator at 𝑟0 = 45 mm.

closely investigate these cases later.

Even though the purely momentum dependent tune shifts (𝑥amp = 0, 𝑦amp = 0) and the tune

shifts purely dependent on the vertical amplitude (𝑥amp = 0, 𝛿𝑝 = 0) shift in the same direction –

up for radial tunes and down for vertical tunes – there are opposing cross-terms, which depend both

on the vertical amplitude and the momentum offset that trigger this nontrivial tune shift behavior.

105



In Fig. 5.7 to Fig. 5.9 the combined effects of simultaneous radial and vertical amplitudes on

the tune shifts are illustrated for selected momentum offsets. The behavior for the intermediate

momentum offsets may be interpolated from the given plots. Again, the sign of the momentum

offset has only a minor influence on the form of the tune shifts compared to its magnitude.

Note that Fig. 5.7 to Fig. 5.9 only illustrates tunes for phase space states within the viable phase

space around the corresponding momentum dependent fixed point. Accordingly, not all lines extend

over the full 45 mm range of 𝑦amp and some lines for large 𝑥amp are not shown, since their total 𝑥𝑦

amplitude of the particle relative to the ideal orbit reaches the collimator at 𝑟0 = 45 mm.

The combined effects in Fig. 5.7 to Fig. 5.9 emphasize the strong nonlinear character of the

tune dependencies, which was already indicated in Fig. 5.6. The wave-like structure illustrates how

different order terms dominate at different vertical amplitudes 𝑦amp depending on both, the radial

amplitude 𝑥amp and the momentum offset 𝛿𝑝. Additionally, for almost every momentum offset there

are combinations of oscillation amplitudes for which the vertical 1/3-resonance tune is crossed.

Investigations in [89] did not show this strong nonlinear behavior of the combined effects on the

tune shifts in such clarity.
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Figure 5.7: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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Figure 5.8: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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Figure 5.9: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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5.4.3 The Tune Footprint

The tune footprint visualizes the projection of a beam distribution into tune space. The COSY

INFINITY based model [78] of the muon 𝑔-2 storage ring is used to generate the realistic beam

distribution from orbit tracking of the muon beam until it is circulating in the storage ring, prepared

for data analysis. In particular, the model considers the imperfect injection process, which attempts

to align the injected beam with the ideal orbit of the storage ring as well as possible. The model also

considers the mispowered ESQ components to imitate the preparation mechanism during the first

turns of the beam in the storage ring at E989. Further details of the tracking model and on how a

distribution is obtained are elaborated in [77, 78].

The variables (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) relative to the ideal orbit are illustrated in Fig. 5.10 as projections

into the (𝑥, 𝑎), (𝑦, 𝑏), and (𝑥, 𝑦) subspaces.

The beam distribution tends towards higher total momenta in the range of 𝛿𝑝 ∈ [−0.2%, 0.4%]

while overall staying well within the momentum acceptance range of ±0.5%. The spread of the

vertical momentum component 𝑏 is about a factor two to three smaller than its horizontal counterpart

𝑎. The position space (𝑥𝑦) is filled up to the limitations due to the collimators.

The distributions of the horizontal and vertical tunes are illustrated by the tune footprint in

Fig. 5.11, where the vertical tunes of the particle distribution are plotted against their horizontal tunes

as previously done in [49]. The tune footprint of the tenth order calculation is overlaid by the result

of an eighth order calculation to emphasize the influence of the strong ninth order nonlinearities

of the map caused by the 20th-pole of the ESQ potential. The tune footprint of the tenth order

calculation is five to 6 times larger in each dimension than its eighth order counterpart.

Additionally, particles in different momentum offset ranges are highlighted to illustrate the

behavior of this specific group. The tune footprint can be segmented into three groups characterized

by their momentum offset which generates a tune footprint in the shape of a ‘T’.

The tune footprint for the other ESQ voltages in [89] has a similar distribution for the order eight

and order ten calculations, respectively. While the reference tunes are mainly determined by the

ESQ voltage, the relative tune shifts behave very similarly. If the ESQ voltage were to place the
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Figure 5.10: Projections of the distribution of the variables (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) in the realistic beam
simulation at the azimuthal ring location of the central kicker.

reference tunes very close to a resonance line, we expect the tune distribution and tune shifts to

behave differently.

Fig. 5.11 shows that the vertical 1/3-resonance tune can not only be reached hypothetically for

the apparent case of a nominal set-point away from resonances. A substantial part of particles is

close to or on this low order resonance. The overlaid eighth order calculation shows that this is

triggered by the strong ninth order nonlinearities of the map caused by the 20th-pole of the ESQ

potential. The segmentation with regard to the momentum offset of the particles into subgroups

additionally shows that the vertical 1/3-resonance tune is crossed in each of those groups. The

resonance point (17/18, 1/3) is also covered and surrounded by many particles and might have a
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Figure 5.11: The tune footprint of a realistic beam distribution at the azimuthal ring location of the
central kicker. The tune footprint from the 10th order calculation is colored according to the
momentum offset of the individual particles. The black lines correspond to resonance conditions.
In a) the 8th order calculation (green) is overlaid to illustrate the drastic influence of the strong ninth
order nonlinearities of the map caused by the 20th-pole of the ESQ potential. In b) the particles
with a momentum offset −0.3% < 𝛿𝑝 < 0.1% are overlaid in green. In c) the particles with a
momentum offset 0.1% < 𝛿𝑝 < 0.28% are overlaid in green. In d) the particles with a momentum
offset 0.28% < 𝛿𝑝 < 0.5% are overlaid in green.

particularly strong impact.
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5.5 Stability and Loss Mechanisms

Muons are lost when they hit structural parts of the storage ring and lose the energy necessary

to remain within the storage region during data taking. Collimators, which are inserted at various

azimuthal locations in the ring (see Fig. 5.1), constitute the narrowest part around the storage region.

They restrict the muons to amplitudes of 𝑟 =
√︁
𝑥2 + 𝑦2 < 45 mm = 𝑟0 relative to the ideal orbit.

Our previous analysis is very helpful for gaining a general understanding of certain properties

of the system, e.g. the momentum dependence of the reference orbit, and the momentum and

amplitude dependent shifts in the oscillation frequency of orbits around their repetitive reference orbit.

This analysis showed that the vertical 1/3-resonance tune is relevant for various combinations of

amplitudes and momentum offsets. However, only tracking analysis can yield the actual phase space

behavior of lost particles and particles involved with the vertical 1/3-resonance tune. Additionally,

we saw that the radial tune is very close to the high order 17/18-resonance, which will also look at

more closely.

For the tracking analysis, we use both one-turn maps as well as sectional maps. The one-turn

Poincaré return map yields the state of a muon at the azimuthal location of the central kicker (K2)

dependent on its state in the previous turn. Sectional maps transfer the state of a muon to the

azimuthal location of the collimators. Accordingly, the muons are not tracked continuously, but

stroboscopically at specific azimuthal locations e.g. at the respective collimator locations.

There are two common approaches for tracking analysis. For a general understanding of the

phase space dynamics of the storage ring, one could track a particle distribution, which is evenly

distributed in all phase space dimensions and over momentum offset range. However, the implication

from such an analysis for the actual muon beam might be limited, since the actual muon beam is not

evenly distributed. Accordingly, we track the realistic particle distribution of 37738 particles from

Sec. 5.4.3.

The particle distribution is given after turn 200 at K2, which is about 30 `s after injection when

data taking begins. During this initial 30 `s after injection, the quadrupole system is still ramping up

and scraping techniques are deployed for the final preparation of the beam [81]. The beam is tracked
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for additional 4500 turns (670 `s), while determining and documenting various orbit parameters

that shall be analyzed in detail below.

5.5.1 The Normal Form Defect of Tracked Particles

As explained in Sec. 2.4, the normal form defect yields the inaccuracies in the normal form, i.e.,

how much the pseudo-invariants (the normal form radii) vary per turn. Using tracking simulations,

one can evaluate a related quantity that we will call the long term normal form defect. It yields the

difference between the maximum and the minimum normal form radius of a single particle orbit over

many turns during long term tracking. It is therefore able to detect instabilities on a large time scale.

In Fig. 5.12 the particles are grouped by the maximum per turn normal form defect they

encountered during the 4500 turns of tracking. The rate of particles getting lost is strongly correlated
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Figure 5.12: Relation between losses and the normal form defect.

with the size of the maximum normal form defect they encountered. There are no losses for particles

with a maximum normal form defect smaller than 2−11, which are more than 91% of particles. For

larger normal form defects, the loss rate increases significantly with 100% of particles getting lost

that encounter a maximum normal form defect larger than 2−7. This confirms that the size of the
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per turn normal form defect is a good indication for losses, in the sense that the larger the per turn

normal form defect the more likely the particle gets lost.

The right side of Fig. 5.12 illustrates the ratio of the long term normal form defect to the

maximum per turn normal form defect of a particle. Considering that the long term normal form

defect over 4500 turns is only a factor of eight to 16 larger than the maximum per turn normal form

defect for particles that are not lost illustrates the overestimating implications for Nekhoroshev-type

stability estimates (see Sec. 2.4) based on the per turn normal form defect for this particular map.

On the other hand, the ratio is much more shifted to higher factors for lost particles, indicating loss

overestimation for lost particles with Nekhoroshev-type stability estimates.

In Fig. 5.13 the relevance of the resonances – especially low order resonances like the vertical

1/3-resonance tune – on the long term normal form defect becomes obvious. Since the tunes are

dependent on the normal form radii, a larger long term normal form defect automatically corresponds

to a larger tune range of a particle.
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Figure 5.13: The plots show the long term normal form defect dependent on the calculated tune
range of each particle. The dots are the minimum calculated tune of each particle while tracking.
Red dots indicate that the respective particle is lost over the 4500 tracking turns. The gray lines show
the calculated tune range of each particle. The left plot illustrates the radial long term normal form
defect with respect to the radial tune and the 17/18 resonance (green line). The right plot shows the
vertical long normal form defect with respect to the vertical tune and the 1/3 resonance (green line).

In the plot of the vertical tune against the vertical long term normal form defect, there is a ‘spike

’ facing roughly 45◦ away from the resonance line. In Fig. 5.14, the tune range of these ‘spike ’
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particles is analyzed to determine a resonance as a potential trigger of the increasing normal form

defect. The analysis indicates that the 10th order 6a𝑥 + 4a𝑦 = 7 resonance might be the cause of
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Figure 5.14: The tune range of the particles forming the spike in Fig. 5.13 are shown on the left.
The right plot shows the normal form defect of the particles depends on their closeness to the
6a𝑥 + 4a𝑦 = 7 resonance (green line).

this spike, but it remains unknown why the normal form defect increases along this resonance with

increasing distance from the 1/3-resonance.

The normal form radii are the oscillation amplitudes in the high order normalized, linearly

decoupled phase space. They are closely related to the oscillation amplitudes in the respective

phase spaces relative to the momentum dependent closed orbit. The strong variation in the normal

form radii (the large long term normal form defect) of some orbits indicates that the corresponding

oscillation amplitude of those orbits around their respective reference orbits is also not constant. To

investigate this more closely, the following section investigates the orbits of all lost particles.

5.5.2 Lost Muon Studies

In this section, we track and investigate all muons of the distribution from Sec. 5.4.3 that are lost

at collimator C3 and/or C4 over the 4500 turns. In Fig. 5.15 to Fig. 5.29, 15 out of the 259 lost

particles are picked to illustrate the different phase space behaviors observed for lost particles.

One striking property that many of the lost muons share is the appearance of threefold-symmetry

patterns in the vertical phase space projections. The calculated tunes of these lost particles are all
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crossing or proceed very close to the vertical 1/3-resonance. These threefold-symmetry patterns

often include significant modulations in the vertical oscillation amplitude, which is additionally

shown by the changing overall normal form radius 𝑟NF =

√︃
𝑟2
NF,1 + 𝑟2

NF,2 and the variations in the

calculated tunes. While there are many patterns, there are two that stick out, namely, the island

pattern (see for example Fig. 5.17) and the shuriken pattern (see for example Fig. 5.23). In Sec. 5.5.3,

we will understand how all these patterns are related to period-3 fixed point structures.

The patterns come in stable, semi-stable, and unstable forms. This tendency to unstable behavior

is often associated with a large radial amplitude and/or a closeness to the (a𝑥 , a𝑦) = (17/18, 1/3)

resonance point. The ‘fuzzyness’ of the vertical phase space pattern in (𝑦, 𝑏) compared to the

pattern in the corresponding normal form phase space (𝑞NF,2, 𝑝NF,2) is related to the radial phase

space motion. Due to the weak coupling between the radial and vertical phase space from the

imperfections in the magnetic field, large amplitudes in (𝑥, 𝑎) notably affect the motion in (𝑦, 𝑏),

which does not happen in the decoupled normal form phase space. This ‘fuzzyness’ might also

trigger the jumping between different patterns for orbits, which are close to the border between two

patterns (see Fig. 5.31). More thoughts on this also in Sec. 5.5.3.

Another property that many lost particles share is a significant momentum offset, which radially

shifts their respective reference orbit closer to the boundaries of the collimator. The dependence of

the radial position of the reference orbit on the momentum offset decreases the maximum survivable

size of those rectangular shapes in 𝑥𝑦 space significantly as previously discussed in Sec. 5.3.3 and

illustrated in Fig. 5.4.

Last but not least, there are also particles like the one shown in Fig. 5.15, which get lost simply

because of their constant but large oscillation amplitudes in the radial and/or vertical direction.

However, it is not always obvious to distinguish them from particles that are under the influence of a

period-3 fixed point structure like the particle in Fig. 5.16.

Fig. 5.15 to Fig. 5.29 also indicate that the 𝑥𝑦 pattern of lost particles often only barely touches

the collimator boundary. For these cases, it may take many revolutions for both oscillations, in the

radial and vertical direction, to reach their maximum simultaneously [76].
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Figure 5.15: The radial and vertical phase space behavior indicates that this particle (𝛿𝑝 = 0.015%) oscillates at constant amplitudes
around its momentum dependent reference orbit. The overall normal form radius is constant and confirms this. Accordingly, the tune
footprint of the particle is a single dot. This is a trivial large amplitude loss.
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Figure 5.16: The vertical phase space behavior of this particle (𝛿𝑝 = 0.196%) has a slight triangular deformation. The overall normal
form radius indicates a modulated amplitude and the spread out tune footprint starts right after the vertical 1/3-resonance line. Despite
slight influence of the resonance, the rather elliptical phase space behavior makes this a trivial large amplitude loss.
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Figure 5.17: This particle (𝛿𝑝 = −0.088%) is caught around a period-3 fixed point structure in the vertical phase space, which is related to
the vertical 1/3-resonance. We refer to these structures as islands and the loss mechanisms is called island related loss.
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Figure 5.18: This particle (𝛿𝑝 = −0.015%) forms large islands around a period-3 fixed point structure in the vertical phase space, which is
associated with a major modulation of the oscillation amplitude.
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Figure 5.19: This particle (𝛿𝑝 = −0.127%) jumps between the islands. The large radial amplitude and/or the closeness to the (17/18, 1/3)
resonance point might have triggered the jump. This is an example of moderate unstable behavior around a period-3 fixed point structure.
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Figure 5.20: This particle (𝛿𝑝 = 0.024%) shows a different kind of moderate unstable behavior around a period-3 fixed point structure,
where the island size varies. The particle has both, a large radial amplitude and the closeness to the (17/18, 1/3) resonance point.
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Figure 5.21: This particle (𝛿𝑝 = 0.140%) forms a shuriken like shape in the vertical phase space. In this pattern there are two period-3
fixed point structures involved indicated by the double crossing of the vertical 1/3 resonance line.
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Figure 5.22: This particle (𝛿𝑝 = 0.196%) illustrates moderate unstable behavior in a shuriken pattern. The radial amplitude is not
particularly large, but the resonance point (17/18, 1/3) is very close, which might be the trigger of the unsuitability.
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Figure 5.23: This particle (𝛿𝑝 = 0.242%) illustrates a shuriken pattern, where the two period-3 fixed point structures are more obvious.
The muon experiences a major modulation in the vertical oscillation amplitude and performs a double crossing of the vertical 1/3
resonance line.
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Figure 5.24: This particle (𝛿𝑝 = −0.096%) shows a shuriken pattern with unstable tendencies. The large radial amplitude and/or the
closeness to the radial 17/18 resonance line might be the trigger for the instability.
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Figure 5.25: This particle (𝛿𝑝 = −0.159%) shows a shuriken pattern with a moderate instability. The two period-3 fixed point structures
are so close together that the particle gets temporarily caught around the inner one of them in an island pattern.
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Figure 5.26: This particle (𝛿𝑝 = 0.181%) shows the pattern of a very blunt shuriken. The vertical amplitude oscillation is only moderate
and illustrates there can be almost regular behavior between two period-3 fixed point structures.
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Figure 5.27: This particle (𝛿𝑝 = 0.106%) is characterized by a very large vertical amplitude, which is additionally modulated by the
shuriken pattern. Its one of the very few particles for which the orbit considerably overlaps with the collimator boundary.
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Figure 5.28: This particle (𝛿𝑝 = 0.118%) shows strong instabilities caused by a combination of a very large vertical amplitude in
combination with a period-3 fixed point structure, which occasionally captures the orbit in an island pattern.
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Figure 5.29: This particle (𝛿𝑝 = 0.010%) diverges due to its unstable orbit. The approach of the unstable fixed point with such a with the
large vertical amplitude are likely the trigger of the divergence.
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5.5.3 Period-3 Fixed Point Structures

There are period-3 fixed point structures in the vertical phase space as the particle in Fig. 5.17

suggests. The period-3 fixed points are a property of the vertical projection of the stroboscopic muon

tracking. They are associated with the vertical 1/3-resonance, which is particularly relevant due to

the strong eight order nonlinear tune shifts from the strong ninth order nonlinear field contributions

of the 20th order multipole of the potential from the electrostatic quadrupole system [73].

The period-3 fixed point structure corresponds to an orbit, which vertically oscillates around its

momentum dependent reference orbit with a period of exactly three turns, i.e. a vertical betatron

tune of 1/3. However, such an orbit is not necessarily a closed orbit, which closes after three turns,

because while the vertical behavior might be exactly resonant after three turns, the radial behavior is

not.

There are attractive fixed points and repulsive fixed points within the period-3 fixed point

structures. Accordingly, the term ‘period-3 fixed points’ describes a set of 6 fixed points at the same

amplitude in 𝑦𝑏, where every other fixed point is attractive. The positions of the period-3 fixed

points in the vertical phase space depend on the momentum offset 𝛿𝑝 and the radial phase space

(due to coupling). Attractive fixed points ‘capture’ particles in their reach, creating island patterns

(see Fig. 5.30). The unstable fixed points push the particles away. They are at those blank spaces

between any two islands.

The inner red orbit and the adjacent blue island orbit in Fig. 5.30 illustrate how abruptly the

vertical phase space behavior changes around these period-3 fixed point structures. The muon

initiated on the inner red orbit exhibits an oscillation with constant amplitude. The muon initiated

at a slightly larger amplitude on the blue orbit initially seems to follow a similar elliptical orbit

with constant amplitude as the red particle before it gets pushed back and outwards by the unstable

fixed point, which drastically increases the vertical amplitude of the particle. In the case shown in

Fig. 5.30, the attraction of the stable fixed point is strong enough to keep the particle in an island

orbit. In Fig. 5.29, on the other hand, the particle can not remain on a bounded orbit and diverges.

It is also not uncommon for two period-3 fixed point structures to be present simultaneously
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Figure 5.30: Stroboscopic tracking in the vertical phase space illustrating orbit behavior with a
single period-3 fixed point structure present. The orbits only differ in their vertical phase space
behavior – they all have the same momentum offset of 𝛿𝑝 = 0.126 % and are at the momentum
dependent equilibrium point in radial phase space (𝑥 = 10.64 mm, 𝑎 = 0.045 mrad) and therefore
have no radial oscillation amplitude. The blue orbits indicate the island patterns around the
attractive fixed points in the middle of the islands. The red orbits are right at the edge before being
caught around the fixed points. The three repulsive fixed points are in the space between the two red
orbits, where the islands almost touch.

in the vertical phase space. The structures are oriented similarly, only having their attractive and

repulsive fixed points switched, such that an attractive fixed point of structure with the larger

amplitude is ‘above’ a repulsive fixed point of the structure with the lower amplitude. In Fig. 5.31

a phase space region with two period-3 fixed point structures for orbits with 𝛿𝑝 = 0.339 % are

shown. The different plots illustrate how the relative position and interaction of the two period-3

fixed point structures change with different oscillation amplitudes in the radial phase space. The

two period-3 fixed point structures can be well separated, yielding the known island patterns with

‘regular ’ orbits in between. However, the structures can also move into each other such that some

orbits are caught between the two period-3 fixed point structures and follow the shape of a threefold
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Figure 5.31: Stroboscopic tracking in the vertical phase space illustrating orbit behavior with two
period-3 fixed point structures present. The orbits in each plot only differ in their vertical phase
space behavior. All orbits have the same momentum offset of 𝛿𝑝 = 0.339 %. The four plots differ
by their radial amplitude around the momentum dependent equilibrium point in radial phase space
at (𝑥 = 27.7 mm, 𝑎 = 0.144 mrad). The radial amplitudes are: a) 𝑥amp = 6 mm, b) 𝑥amp = 4.8 mm,
c) 𝑥amp = 4 mm, d) 𝑥amp = 1 mm. The blue orbits indicate the island patterns around the attractive
fixed points. The red orbits are right at the edge before being caught around the period-3 fixed
points. The green orbits are caught around both period-3 fixed point structures. The gray orbits in
d) emphasize that half of the fixed points from c) have indeed been annihilated.

shuriken around the two island patterns. When the two period-3 fixed point structures come even

closer, the opposite fixed points of the two period-3 fixed point structures can annihilate each other,

resulting in triangular patterns with rounded corners.

While the period-3 fixed point structures often lead to a significant vertical amplitude modulation,
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many of them are well within the boundary of the collimators like the examples shown in Fig. 5.30

and Fig. 5.31. So, the involvement of a particle in a period-3 fixed point structure or two does

not necessarily mean that it is lost, but the additional modulation of the vertical amplitude surely

increases the general risk of getting lost.

All orbit patterns shown in Fig. 5.15 to Fig. 5.29 can be found in a similar form either in Fig. 5.30

or Fig. 5.31. In other words, we fully understand what is causing the different types of patterns. The

major difference for some particles is the stability of their pattern. The phase space regions chosen

in Fig. 5.30 and Fig. 5.31 are stable and do not share the characteristics of unstable orbits which are

large radial amplitudes and/or closeness to the 17/18 resonance point.

5.5.4 Muon Loss Rates from Simulation

We have seen what different phase space tracking patterns can arise due to period-3 fixed point

structures. We also saw that these structures can be responsible for losses due to the modulation of

the oscillation amplitude in the vertical phase space. To get a more general understanding of how

prominent these patterns are among the entire distribution and how common they are among lost

particles, we need a mechanism to characterize these patterns in a way that can be automatically

detected.

The various degrees of instabilities, especially among particles involved with period-3 fixed

point structures make a generalized categorization difficult. There is no obvious distinction between

certain unstable islands and certain shuriken patterns, and also no clear distinction between very

blunt shuriken patterns and very triangularly deformed elliptical patterns. Accordingly, we only make

two distinctions. First, we distinguish between particles involved with the vertical 1/3-resonance

and particles that are not. Among the particles that are involved with the vertical 1/3-resonance, we

make a further distinction between pure island patterns and everything else. A pure island pattern is

a (non-across-jumping) island pattern. Fig. 5.19 shows an across-jumping island structure, where

the orbit jumps from one fixed point island to another. In comparison, Fig. 5.20 shows an island

pattern that is also unstable but remains on the island around the fixed points.
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For reference, we will call particles involved with the vertical 1/3-resonance ‘period-3 parti-

cles’and all the others ‘regular particles’. Of the period-3 particles, we will only give a special name

to the ‘island particles’, because the period-3 non-island particles are a very diverse group, which is

not easily described by a single word without mischaracterizing at least some of its elements.

Since the transition between patterns is continuous as the gray orbits in Fig 5.31d illustrates, the

category of period-3 particles and the category non-period-3 particles might have elements that are

almost identical.

To make those distinctions, we start by explaining how period-3 particles are identified. We

consider the vertical phase space in polar coordinates and look at the phase space behavior in steps of

three. The first three vertical phase space angles during tracking are denoted by 𝜙1,0, 𝜙2,0 and 𝜙3,0,

and the next three angles are denoted by 𝜙1,1, 𝜙2,1 and 𝜙3,1, and so forth. Additionally, we define

the angle advances Δ𝜙𝑖,𝑛 = 𝜙𝑖,𝑛 − 𝜙𝑖,𝑛−1. To avoid ambiguity in the value for the angles, we require

that value for 𝜙𝑖,𝑛 is chosen such that 𝜙𝑖,𝑛 ∈
[
𝜙𝑖,𝑛−1 − 𝜋, 𝜙𝑖,𝑛−1 + 𝜋

]
. If there is a sign change from

Δ𝜙𝑖,𝑛−1 to Δ𝜙𝑖,𝑛−1 for all three angle advances, then the 1/3-resonance tune was crossed and we

categorize the particle as period-3 particle.

To identify island particles, we use the definitions from above and additionally introduce the

range D𝑖,0 =
[
𝜙𝑖,0, 𝜙𝑖,0

]
of the angles for each of the three potential island locations. With every

iteration step the ranges of the angles are updated to

D𝑖,𝑛 =
[
D𝑖,𝑛−1,LB,D𝑖,𝑛−1,UB

]
=

[
min

(
𝜙𝑖,𝑛−1,D𝑖,𝑛−1,LB

)
,max

(
𝜙𝑖,𝑛−1,D𝑖,𝑛−1,UB)

) ]
. (5.3)

The abbreviations ‘LB’ and ‘UB’ denote the lower and upper bound of the domain respectively.

Note that the rule to avoid ambiguity in the value for the angles from above also applies here. All

particles for which the total range over the three potential island domains after the 4500 tracking

turns is less than a full revolution (2𝜋) are considered island particles. In other words, island

particles satisfy
3∑︁
𝑖=1

|D𝑖,1500 | < 2𝜋. (5.4)
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With these recognition mechanisms implemented, we were able characterize all particles and

determine their proportion as presented in Tab. 5.1. Period-3 particles are over-represented among

Table 5.1: Percentages of different characterization groups. Read as follows: 𝑥 % of Base particles
have the property Property. All particles that hit a collimator during the 4500 turns of tracking are
considered lost.

XXXXXXXXXXXXProperty
Base All Lost Period-3 Island

Lost 0.686% 100% 7.44% 22.2%
Period-3 7.06% 76.4% 100% 100%
Island 1.00% 32.4% 14.2% 100%

lost particles by a factor of almost eleven compared to their appearance in the entire distribution.

For island particles, this discrepancy is even more drastic with a factor of 32. Accordingly, period-3

particles and island particles, in particular, are more prone to be lost. But by far not every period-3

particle or island particle is lost. More than 87% of island particles and more than 92% of period-3

particles survive the 4500 turns. As Fig. 5.30 illustrates, sometimes the amplitude of these period-3

structures is so low that the additional modulation of the amplitude is not enough to be critical.

While island particles make up only 1/7 of period-3 particles, they are responsible for almost

half the losses associated with period-3 particles. This is particularly surprising because the island

particle category excludes most unstable patterns by definition (exceptions are moderate instabilities

that do not contravene the recognition criteria like the particle shown in Fig. 5.20). On the other

hand, period-3 particles cover a wide range of patterns some of which barely show a modulation of

the vertical amplitude as the example of the gray orbits in Fig. 5.31d shows.

To understand how the losses occur over time, we plot the accumulative loss ratio over the 4500

turns in Fig. 5.32. Island loss is the fastest growing loss over the first 1000 turns before settling

almost asymptotically. This is explained by different modulation frequencies around the period-3

fixed point structures. The closer to the stable fixed point, the faster the modulation, and the closer

to the unstable fixed points the slower the modulation. Accordingly, the island modulation is on

average faster than the shuriken modulation.

138



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30 100 250 400 550 700

1000 2000 3000 4000
a)

0

0.1

0.2

0.3

0.4

0.5

30 100 250 400 550 700

1000 2000 3000 4000
b)

cu
m

m
ul

at
iv

e
lo

ss
es

[%
]

time since injection [`s]

turn

non period-3
period-3

islands
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30 100 250 400 550 700

1000 2000 3000 4000

cu
m

m
ul

at
iv

e
lo

ss
es

[%
]

time since injection [`s]

turn

non period-3
period-3

islands
period-3 without islands

0

0.1

0.2

0.3

0.4

0.5

30 100 250 400 550 700

1000 2000 3000 4000

Figure 5.32: a) Shows how the muon loss ratio is composed of particles with constant oscillation
amplitudes (purple) and particles involved with resonances (green). Of the particles involved with
resonances (green), the fraction caught in islands structures is indicated by the blue stripe pattern.
In b) the loss ratio over time is shown for each subgroup of lost particles to better understand which
losses drive to overall loss from plot a). The tracking starts after the initial 30 `s of scraping when
data taking is initiated.

5.6 Conclusion

The Poincaré return map description of the storage ring model of the muon 𝑔-2 experiment

[77] and its analysis with DA normal form methods yielded many insightful characteristics of the

system. We gained an understanding of the form of the closed orbit within the storage ring as well

as details on how it changes with an offset in the momentum 𝛿𝑝. Considering that particles oscillate

around their corresponding reference orbit, which is the closed orbit of their momentum offset, the

radial shift of the closed orbit with momentum offset is particularly critical. This shift brings the

equilibrium state of the radial oscillation closer to the collimator boundary, which increases the risk

of getting lost.

The tune analysis provided a detailed understanding of how the oscillation frequencies of
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particles dependent on their momentum offset and their amplitudes relative to their respective

reference orbit. This analysis showed that particles over the entire momentum offset range could

cross the vertical 1/3-resonance frequency for certain vertical and radial amplitude combinations.

The strong ninth order nonlinearities of the map caused by the 20th-pole of the ESQ potential

have a significant effect on amplitude and parameter dependent tune shifts. This property manifests

itself in the dominating eighth order dependencies in the amplitude and momentum dependent tune

shifts and the drastic change in the tune footprint for calculations of order 𝑚 > 8, which include the

ninth order terms of the original map.

Further tracking analysis revealed period-3 fixed point structures in the vertical phase space.

They are associated with the vertical 1/3-resonance tune and cause significant vertical amplitude

modulations to the particles that are caught around them. We were able to connect all vertical phase

space patterns of lost particles with patterns that arise around one or two of these period-3 fixed

point structures. Additionally, instabilities caused by large radial amplitudes and/or closeness to

the (17/18) resonance point significantly mixed multiple of the known orbit patterns. This only

allowed for a limited automatic recognition of patterns, which in turn revealed valuable insights

about the effect of these period-3 fixed point structures on the loss rates of muons in the storage

ring. Particles associated with period-3 fixed point structures are at an eleven-fold to 32-fold risk of

getting lost, compared to particles not crossing the vertical 1/3-resonance frequency.
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CHAPTER 6

VERIFYING CALCULATIONS USING TAYLOR MODELS

In this chapter, we take steps towards making the methods presented above fully self-verified. Since

many aspects that have to be carefully considered for a rigorous transfer to the verified world lay

beyond the scope of this thesis, this chapter will only yield a discussion of the basic principles

behind some of them. However, the aspect of verified global optimization and its application to the

normal form defect for verified stability estimates will be analyzed in greater detail.

To introduce the concept of verified global optimization using Taylor Models, we apply it

to two example optimization problems. First, in Sec. 6.1, we run a Taylor Model based global

optimization in different operating modes on the generalized Rosenbrock function, as it is one of the

most commonly used examples to test global optimization algorithms. In Sec. 6.2, we discuss the

optimization problem of finding minimum energy configurations of particles that have their pairwise

interaction energy modeled by the Lennard-Jones potential. It is one of the simplest examples to

explain, yet arbitrarily complex to solve depending on the number of particles in the configuration

and the dimensionality of the configuration.

In Sec. 6.3, we will discuss the intricacies of verifying the methods from the applications from

Chapter 4 and Chapter 5 for a verified stability analysis of those dynamical systems. In particular,

we will take a detailed look at the normal form defect and use the gained understanding of verified

global optimization from Sec. 6.1 and Sec. 6.2 to analyze its application to the normal form defect

of the simulated phase space behavior in the muon 𝑔-2 storage ring.
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6.1 The Rosenbrock Optimization Problem

6.1.1 The Rosenbrock Function

The Rosenbrock function

𝑓 (𝑥, 𝑦) = (𝑎 − 𝑥)2 + 𝑏

(
𝑦 − 𝑥2

)2
(6.1)

was introduced by Howard H. Rosenbrock in 1960 [69]. It is a non-convex function that is

commonly used as a test problem for global optimization algorithms. The parameters are usually

set to (𝑎, 𝑏) = (1, 100), and so we will use those parameters here as well. Fig. 6.1 illustrates the

Rosenbrock function for those parameters.
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Figure 6.1: The Rosenbrock function with (𝑎, 𝑏) = (1, 100).

It is also referred to as Rosenbrock’s valley function or Rosenbrock’s banana function for

obvious reasons. The Rosenbrock function is characterized by a very deep valley, the floor of which

constitutes a very shallow valley. This shallowness is one of the aspects that challenges global

optimizers.
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There are various multidimensional generalizations of the Rosenbrock function to compare more

advance global optimization algorithms. In this work, we will use the following generalized form

𝑓𝑛D (®𝑥) =
𝑛−1∑︁
𝑖=1

[
100

(
𝑥𝑖+1 − 𝑥2

𝑖

)2
+ (1 − 𝑥𝑖)2

]
, (6.2)

where 𝑛 ≥ 2 is the dimension and 𝑥𝑖 are the optimization variables. Note that this generalized

definition is consistent for the definition of the 2D Rosenbrock function from above and also

retains the difficulties of the original problem of steep valley with a shallow valley floor, but with

a complexity that increases with 𝑛. Unless specified otherwise, we will refer to the generalized

Rosenbrock function as the Rosenbrock function or the objective function of the optimization.

The Rosenbrock function is a composition of quadratic expressions. None of the individual

terms in the sum can be negative. Accordingly, a global minimum would be reached if all individual

terms of the sum are zero. The (1 − 𝑥𝑖)2 terms are only zero for 𝑥𝑖 = 1, which also yields zero for

the remaining terms. Accordingly, ®𝑥★ = (1, 1, ..., 1) is the single global minimum of the Rosenbrock

function for which every term is zero and therefore the overall objective function is zero.

In Fig. 6.2, the Rosenbrock function is illustrated in multiple 2D projections around its minimum

at ®𝑥★. In other words, all 𝑥𝑖 are set to one except for the variables shown in the projection.

The dependency problem of the Rosenbrock function is rather mild. For the first variable 𝑥1, the

following dependent terms appear

100
(
𝑥2 − 𝑥2

1

)2
+ (1 − 𝑥1)2 (6.3)

For any of the variables 𝑥𝑖 with 1 < 𝑖 < 𝑛, there is one additional dependent term with

100
(
𝑥𝑖+1 − 𝑥2

𝑖

)2
+ (1 − 𝑥𝑖)2 + 100

(
𝑥𝑖 − 𝑥2

𝑖−1

)2
(6.4)

However, there is no dependency problem with regard to the last variable 𝑥𝑛 as it only appears in the

term

100
(
𝑥𝑛 − 𝑥2

𝑛−1

)2
(6.5)

Because of the double squares, the Rosenbrock function is always a fourth order polynomial.
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Figure 6.2: Projections of the multidimensional generalizations of the Rosenbrock function
(Eq. (6.2)) into 2D-subspaces around minimum at ®𝑥 = (1, 1, ..., 1), i.e., all variables are equal one
except for the ones shown in the respective plot.

6.1.2 Global Optimization Using COSY-GO

The global optimization is performed using COSY-GO [55, 56]. In the most advanced setting

(QFB/LDB), the algorithm uses both of the advanced Taylor Model based bounding methods, namely,

the quadratic fast bounder (QFB) and the linear dominated bounder (LDB), which were mentioned

in Sec. 2.6 and were introduced in [56]. Additionally, COSY-GO also uses naive Taylor Model

bounding and interval evaluations (IN). For comparisons, COSY-GO offers to run an optimization

with some of the advanced methods disabled. By ranking the bounding methods in the order: QFB,
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LDB, naive TM, and IN, the operating mode is denoted by its highest ranking bounding method,

e.g., the running mode LDB indicates that LDB, naive TM, and IN are used but not QFB.

Because the global minimum is already known, we are just interested in the algorithm’s

performance to narrow down the domain of the minimum and its value. Accordingly, we can choose

an arbitrary search domain for the optimization that includes ®𝑥★. We will investigate the Rosenbrock

function over the domain [−1.5, 1.5]𝑛.

For the optimization, we evaluate the objective function the way it is written in Eq. (6.2) and not

expanded out in a single second, third, and fourth order polynomials. In particular, the optimization

is performed with no additional knowledge about the derivatives of the objective function.

In Fig. 6.3, the performance of the algorithm on the 2D Rosenbrock function is visualized in

the form of its splitting pattern. It shows the individual boxes analyzed by in the various operation

modes. All calculations are performed with fourth order Taylor Models except for the interval

evaluation, which does not use TM.

The significant differences in the splitting patterns are the number of splits, and the way boxes

are split. For the operating mode in naive TM and IN, boxes are always split in half. With LDB and

QFB, the boxes are split as the respective method sees fit. Especially close to the minimum this

avoids the cluster effect [38, 30]. In Fig. 6.4, the boxing close to the minimum is illustrated, which

clearly shows the cluster effect.

Another advantage of the Taylor Model based approach is the avoidance of the dependency

problem. However, due to the simplicity of the 2D Rosenbrock function and its weak dependency

problem, the advantages of the Taylor Model based methods are not so prominent relative to the IN

evaluations. For more complex higher dimensional comparisons, a visualization of the boxing is

not easily possible. However, to still visually emphasize the advantages of the TM operations over

intervals, we artificially increase the dependency problem in the objective function by modifying it

to 𝑓 = 𝑓2D − 𝑓2D + 𝑓2D. In Fig. 6.5, the QFB/LDB methods using fourth order Taylor Models are

compared to the interval method for the modified objective function.

Even though the fourth order TM representation of the modified objective function only differs
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Figure 6.3: Global optimization of the 2D Rosenbrock function using COSY-GO in different
operation modes with fourth order Taylor Models for all modes except interval evaluations (IN).

from the TM representation of the unmodified objective function by a slightly larger remainder

bound, the behavior and efficiency of the algorithm changes more for the modified objective function

than one would initially expect. This is due to the fact that the algorithm also performs intermediate

steps with lower order Taylor Models, which are quicker to evaluate but less accurate. Those lower

order evaluations are more sensitive to the dependency problem, which explains the affect of those

intermediate steps on the splitting decisions.

Next, we analyze the performance of COSY-GO for the optimization of the higher dimensional

Rosenbrock functions without the artificially added dependency problem. The search domain of the
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Figure 6.4: No cluster effect for the COSY-GO operating mode QFB/LDB, but a significant cluster
effect for the IN evaluation.

optimization is always set to [−1.5, 1.5]𝑛. Accordingly, the search volume increases exponentially

with the dimension of the objective function.

We require that boxes with a side length 𝑠 < 1E-6 are not split as a stopping condition of the

algorithm. Ideally, the optimizer reduces the search volume by at least a factor of 3,000,000𝑛. In

the most advanced setting (QFB/LDB), which requires a minimum Taylor Model order of two,

COSY-GO manages to reduce the search domain to a single box with a side length 𝑠 < 1E-6 for

every dimension 𝑛 that we tested.

Fig. 6.6 illustrates how the performances of COSY-GO in the evaluation of the generalized
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Figure 6.5: Splitting comparison between fourth order Taylor Model approach with QFB/LDB
enabled and interval evaluation using the example of the modified 2D Rosenbrock function.

Rosenbrock function from Eq. (6.2) varies for different Taylor Model orders.
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Figure 6.6: Time consumption and number of steps in the optimization of the regular 𝑛 dimensional
Rosenbrock function from Eq. (6.2) at various orders with COSY-GO and QFB/LDB enabled.

The second order calculation outperforms the higher order calculations in both aspects, regarding

the speed and the number of required steps. This is rather unusual because even though the time

per step increases with higher orders, the number of required steps usually shirks due to the tighter

bounding of higher order calculations. However, in special cases like this one, the higher order
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Taylor Models do not bound tighter than the lower order ones.

If we analyze the Rosenbrock function with the artificially increased dependency problem, the

second order calculation behaves as one would expected, namely requiring more steps than its higher

order counter parts (see Fig. 6.7).
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Figure 6.7: Time consumption and number of steps in the optimization of the 𝑛 dimensional
Rosenbrock function with an additional artificial dependency problem 𝑓 = 𝑓𝑛D − 𝑓𝑛D + 𝑓𝑛D at
various orders with COSY-GO and QFB/LDB enabled.

For all calculations, the global minimum of the generalized Rosenbrock function could be

bound to [−1E306, 2E-27]. The optimization variables of all calculations are contained in

[0.999999998, 1.000000002]𝑛, which is a box of side length 4E-9 and hence almost three orders of

magnitude smaller than the minimum split size. This is because QFB and LDB are not bound to

splitting boxes in half, but they can decrease their size as far as their rigorous methods allow them to.

In summary, the example cases of the Rosenbrock functions illustrated that Taylor Model based

global optimizers, and COSY-GO in particular, can handle high dimensional objective functions

very efficiently. The QFB and LDB avoid the cluster effect, while the Taylor Model evaluation

significantly decreases the dependency problem. For the 𝑛 = 15 dimensional Rosenbrock function,

a reduction of the search volume by a factor of more than 4E157 was accomplished in 84017 steps

and less than 36 seconds (see Fig. 6.6) on an Intel®CoreTM i5-7200U CPU 2.5GHz.
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6.2 The Lennard-Jones Potential Problem

In this section, the capabilities of a Taylor Model based verified global optimizer (see Sec. 2.6)

are demonstrated on the example of finding minimum energy configurations of particles when the

well-known Lennard-Jones potential models their pairwise interactions.

This problem is particularly interesting and challenging for global optimization because the

objective function is non-convex, highly nonlinear, and potentially high dimensional depending on

the number of particles 𝑘 considered. Accordingly, the dimensionality and hence the complexity of

the optimization problem can be increased as desired by simply increasing the number of particles.

A further prominent aspect of the system is the enormous dependency problem that comes

from the fact that every particle interacts with every other particle – changing the position of a

single particle of a 𝑘-particle configuration changes 𝑘 − 1 interactions and their contributions to the

objective function. Furthermore, the function values become exceedingly large when two particles

get too close to each other, while the actual resulting local minima are often very shallow, a situation

that is reminiscent of the Rosenbrock function and its shallow valley with rapidly rising function

values outside the valley.

The complexity of the objective function makes not only the optimization process itself

challenging, but also finding appropriate variables and a rigorous initial search domain that is

guaranteed to contain all global solutions. For a fully rigorous global optimization, the infinite

search space must be analyzed unless one can prove that certain regions can be excluded because

they cannot contain the minimum. Accordingly, mathematical arguments are required to reduce the

infinite search space to a finite search domain box for the verified global optimizer. We will present

arguments and methods that define a rigorous but sufficiently tight and finite initial search domain

box while being very transparent. Additionally, we will propose ideas about even more involved

methods that might yield an even tighter initial search domain.
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6.2.1 The Lennard-Jones Potential

The 12-6 Lennard-Jones potential

𝑈LJ (𝑟) = 4𝑈0

[(𝜎
𝑟

)12
−

(𝜎
𝑟

)6
]

(6.6)

was proposed by Lennard-Jones in 1931 [44] as a specific version of the more general 𝑟−𝑎-𝑟−𝑏 type

potentials he proposed in 1925 [43]. The potential is used as a simplified model to describe the

interaction between two electrically neutral atoms or molecules with a distance 𝑟 > 0 between them.

The 𝑟−12 term models the strong repulsion of particles at very small distances. The attraction for

moderate distances, which quickly decreases with larger distances, is modeled by the 𝑟−6 term. The

parameter 𝑈0 scales the depth of the potential well, which is related to the strength of the interaction

between the two particles. The Van-der-Waals radius 𝜎 is also referred to as the particle size and

indicates where the sign of the potential changes. It represents the distance at which the potential

assumes the same value as for the configuration where the two particles are infinitely far away from

each other.

The potential assumes its single minimum at the equilibrium distance of 𝑟★ =
6√2𝜎. For

distances smaller than the equilibrium distance, the potential is strictly monotonically decreasing,

and for distances larger than the equilibrium distance, the potential strictly monotonically increasing.

The values 𝜎 and 𝑈0 depend on the particles involved in the modeled pairwise interaction. For

our analysis, we will only consider one sort of particle corresponding to only one set of values for 𝜎

and 𝑈0. To simplify the potential, we consider distances 𝑟 and 𝜎 in units of the equilibrium distance
6√2𝜎, and energy in units of 𝑈0. Additionally, we are will offset the Lennard-Jones potential by one

so that its single minimum 𝑈★
LJ has an energy of zero at the equilibrium distance 𝑟★ equal one. As

a result, we are defining the pairwise interaction energy of two identical particles with a distance

𝑟 > 0 between them as

𝑈LJ (𝑟) = 1 + 𝑟−12 − 2𝑟−6. (6.7)

In Fig. 6.8, the single pairwise interaction potential between two identical particles from Eq. (6.7)

is visualized. Note the shallowness of the potential and the large range of function values.
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Figure 6.8: The Lennard-Jones potential for a pairwise interaction between two particles. For
distances larger than the equilibrium distance 𝑟★ equal one, the potential quickly approaches its
asymptotic value of one.

6.2.2 Configurations of Particles

Consider a configuration S𝑘 of 𝑘 identical particles that have their pairwise interaction modeled by

the Lennard-Jones potential from Eq. (6.7). The overall interaction potential𝑈𝑘 of that configuration

is given by

𝑈𝑘 =

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝑈LJ
(
𝑟𝑖 𝑗

)
, (6.8)

the sum of all pairwise interaction potentials 𝑈LJ, where 𝑟𝑖 𝑗 = 𝑟 𝑗𝑖 is the distance between the

particles 𝑝𝑖 and 𝑝 𝑗 .

The number of pairwise interactions 𝑛pairs =
𝑘 (𝑘−1)

2 increases with the square of the number

of particles. The global minimum of the overall interaction potential 𝑈★
𝑘

corresponds to a lowest

energy state of the configuration. Those minimum energy states are of practical importance for the

formation of molecules, assuming nature is sufficiently described by this model and finds the lowest

energy when assembling molecules instead of just a local minimum.

Additionally, it is interesting to analyze the lowest energy states under an external constraint that

limits the spatial dimensionality 𝑛dim of the configuration. To indicate this constraint, we denote the

152



overall interaction potential with 𝑈𝑘,𝑛dim and its global minimum with 𝑈★
𝑘,𝑛dim

. The corresponding

configurations are denoted by S𝑘,𝑛dim and S★
𝑘,𝑛dim

, respectively.

6.2.3 The Lennard-Jones Optimization Problem and its Challanges

The goal of the Lennard-Jones optimization problem is the following: Given 𝑘 identical particles

with their pairwise interaction modeled by the Lennard-Jones potential from Eq. (6.7) and the

dimension of the configuration space 𝑛dim (one, two, or three spatial dimensions), find the global

minimum of the overall interaction energy (Eq. (6.8)) and the corresponding optimal configurations

in the 𝑛dim configuration space.

This optimization problem is trivial for two particles (𝑘 = 2) because its only a single Lennard-

Jones interaction for which the minimum is known and discussed in Sec. 6.2.1. Furthermore, the

optimization problem is also trivial when 𝑘 ≤ 𝑛dim + 1, since obvious configurations exist where

every single pairwise interaction potential of the 𝑛pairs pairwise Lennard-Jones interactions is at

its minimum 𝑈★
LJ = 0. In other words, all distances between all particles are optimal with 𝑟★

𝑖 𝑗
= 1.

In particular, the configuration 𝑆★
𝑘,𝑛dim≥𝑘−1 is an equilateral triangle for 𝑘 = 3 and a tetrahedron

for 𝑘 = 4 with 𝑈★
𝑘,𝑛dim≥𝑘−1 = 0. However, the complexity of this optimization problem increases

rapidly with the number of particles 𝑘 due to the strong dependency problem of the ∼ 𝑘2 pairwise

interactions.

To find the minimum energy configurations for such nontrivial cases using a verified global

optimizer, it is critical to gain an understanding of the solution space. This understanding is needed

to describe the potential minimum energy configurations with suitable optimization variables and

limit the associated search domains to a finite solution space that tightly captures all the possible

minimum energy configurations.

In the following sections, various conditions are presented to transparently exclude regions from

the global search domain that cannot include minimum energy configurations. In Sec. 6.2.3.1 we

develop a rigorous upper bound 𝑟UB on the maximum inter-particle distance within the optimal

configuration. This upper bound limits the maximum size of any possible minimum energy
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configuration and hence limits the initial search space. Additionally, Sec. 6.2.3.1 provides an upper

bound 𝑟 ®𝑎,UB on the distance between projections of the particle positions onto an arbitrary axis ®𝑎.

This property of minimum energy configurations is used for the definition of optimization variables

and their associated domain in Sec. 6.2.3.7.

To help the global optimizer identify discardable boxes from the beginning, we present methods

for calculating good initial upper bounds on the global minimum, i.e., the initial cutoff value C. In

Sec. 6.2.3.2, such upper bound configurations are discussed to calculate an initial upper bound on the

global minimum 𝑈𝑘,UB for a configuration of 𝑘 particles. The methods to characterize those upper

bound configurations are based on the optimal configurations of 𝑘 − 1 particles, which we assume to

know from a previous optimization run. In such a fashion, configurations are iteratively developed

with increasing particle number, beginning with the obvious arrangements of 𝑘 + 1 particles in 𝑘

dimensional search space. Some of the methods also use the upper bound on the inter-particle

distance from Sec. 6.2.3.1 for the calculation.

In Sec. 6.2.3.3, a lower bound 𝑟LB on the inter-particle distance in minimum energy configurations

is determined using the upper bound on the minimum energy from Sec. 6.2.3.2. This lower bound

is essential to formally exclude configurations from the search space for which the Lennard-Jones

potential is not defined, namely, configurations for which at least one inter-particle distance is zero.

Sec. 6.2.3.4 describes a way to represent any minimum energy particle configuration in a

coordinate system. However, rotated or mirrored versions of a configuration might have distinct

coordinate representations, which yield multiple equivalent solutions. In Sec. 6.2.3.5, we list the

different versions of equivalent coordinate representations that can occur. Sec. 6.2.3.6 discusses

suppression mechanism to limit the representation of equivalent minimum energy configurations to

ideally only one representative in the search space in order to reduce computational effort.

In Sec. 6.2.3.7, the optimization variables are defined based on the general coordinate system

description of minimum energy configurations. Additionally, bounds are placed on those optimization

variables based on the bounds on the inter-particle distances from Sec. 6.2.3.1 and Sec. 6.2.3.3.
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6.2.3.1 The Rigorous Upper Bound on the Maximum Distance

Considering any configuration S𝑘 of 𝑘 particles and the 𝑥 axis in an arbitrary orientation to it,

we number the particles from 1 to 𝑘 by their 𝑥 coordinate from low to high. The numbering of

particles with identical 𝑥 coordinates is irrelevant for the further argumentation. The 𝑥 distance

between particle 𝑝𝑙 and particle 𝑝𝑙+1 is denoted by 𝑣𝑥,𝑙 , which by definition of the arrangement of

the particles satisfies 𝑣𝑥,𝑙 ≥ 0.

We are considering the distances 𝑣𝑥,𝑙 as independent variables instead of the absolute 𝑥 conditions

of the particles. Accordingly, changing 𝑣𝑥,𝑙 moves the entire subconfiguration composed of the

particles 𝑝 𝑗 with 𝑗 ≥ 𝑙 + 1 along the 𝑥 axis, leaving all 𝑣𝑥,𝑖≠𝑙 unchanged.

If 𝑣𝑥,𝑙 > 1 for any 𝑙, all inter-particle distances 𝑟𝑣𝑥,𝑙 that are dependent on 𝑣𝑥,𝑙 are at least of

length 𝑟𝑣𝑥,𝑙 ≥ 𝑣𝑥,𝑙 > 1. By setting 𝑣𝑥,𝑙 = 1, all distances involving 𝑣𝑥,𝑙 are shortened to distances

𝑟𝑣𝑥,𝑙 ≥1, monotonically improving the pairwise interaction potentials of every involved potential

while leaving the uninvolved interaction energies unchanged, which overall monotonically improves

the overall interaction potential (see Fig. 6.9).

𝑥 𝑥
>1 =1

... ...

Figure 6.9: Monotonically improving the overall potential of a configuration for which the projected
distance of two adjacent particles larger than one is.

Accordingly, the overall interaction potential of any configuration S𝑘 of 𝑘 particles can be

improved if there is a 𝑣𝑥,𝑙 > 1 for any orientation of the 𝑥 axis by setting 𝑣𝑥,𝑙 = 1. Thus, the optimal
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configuration must satisfy 𝑣𝑥,𝑙 ≤ 1 = 𝑟𝑥,UB with regard to any orientation of the 𝑥 axis.

By placing the 𝑥 axis along the maximum inter-particle distance 𝑟max of all optimal configuration,

we can conclude that 𝑟max =
∑
𝑙 𝑣𝑥,𝑙 ≤

∑
𝑙 1 = 𝑘 − 1 = 𝑟UB.

This upper bound on the maximum inter-particle distance of the configuration holds for all 𝑛dim

but is only a tight upper bound for 𝑛dim = 1. For higher dimensional configurations, finding such

an upper bound on the maximum inter-particle distance is a lot less trivial. However, using the

maximum inter-particle distance of all minimum energy configuration of 𝑘 particles in 2D can serve

as an upper bound on the maximum inter-particle distance of the minimum energy configuration of

𝑘 particles in 3D.

6.2.3.2 The Rigorous Upper Bound on the Minimum Energy

Any configuration S𝑘,𝑛dim can serve as an upper bound configuration S𝑘,𝑛dim,UB, with the

corresponding potential 𝑈𝑘,𝑛dim = 𝑈𝑘,𝑛dim,UB ≥ 𝑈★
𝑘,𝑛dim

providing an upper bound on the

minimum energy of a 𝑘 particle configuration. The upper bound is used as an initial cutoff value C

for the optimizer. The following approaches use the optimal configuration of 𝑘 − 1 particles to put

tight upper bounds on 𝑈★
𝑘,𝑛dim

. The first approach is specific for 1D configuration, while the second

approach is suitable also for higher dimensional configurations.

1. Given a minimum energy configuration S★
𝑘−1,1D of 𝑘 − 1 particles, mirroring plane the first

half of the configuration onto the second half by placing the mirror either on particle 𝑝(𝑘+1)/2

when 𝑘 is odd, or in the middle between particle 𝑝𝑘/2 and 𝑝𝑘/2+1 when 𝑘 is even. This upper

bound configuration S𝑘,1D,UB of 𝑘 particles will be symmetric, satisfying 𝑟𝑖,𝑖+1 = 𝑟𝑘−𝑖,𝑘+1−𝑖.

2. Consider the minimum energy configuration of 𝑘 − 1 particles fixed in place in a coordinate

system. We now add a 𝑘th particle in a small and simple global optimization on its own, where

only the coordinates of the 𝑘th particle are the optimization variables. From Sec. 6.2.3.1, we

know that when we place an axis in any orientation in the minimum energy configuration, the
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distances between projections onto that axis are less or equal to one. Accordingly, the search

domain for the optimization of the position of the 𝑘th particle is determined by the maximum

and minimum coordinates of the configuration of 𝑘 − 1 particles along each axis, plus a band

of width one around it (see Fig. 6.10).

Figure 6.10: Search domain for the optimization of placing the sixth particle optimally relative to
the fixed optimal configuration of five particles in 2D.

The last approach is particularly powerful for 2D and 3D configurations. It mimics the process of

adding a particle to a given minimum energy configuration similarly to how molecules are sometimes

formed one new element at a time. The first method is very effective for 1D configurations.

6.2.3.3 The Rigorous Lower Bound on the Minimum Distance

Given the optimal 𝑘-particle configuration S★
𝑘

, we denote the pairwise interaction with the largest

(worst) contribution to 𝑈★
𝑘

by 𝑈𝛼𝛽 = 𝑈LJ
(
𝑟𝛼𝛽

)
, where 𝛼 and 𝛽 are the two particles involved in the

interaction. We define the interaction energy of all particles with particle 𝛼 as 𝑈𝛼 =
∑
𝑖≠𝛼𝑈LJ (𝑟𝑖𝛼).

For any possible (𝑘 − 1)-particle subconfiguration S
⊂S★

𝑘
𝑘−1 of S★

𝑘
, the interaction energy 𝑈

(
S
⊂S★

𝑘
𝑘−1

)
will never be better than 𝑈

(
S★
𝑘−1

)
= 𝑈★

𝑘−1, since by definition S★
𝑘−1 is the optimal configuration of
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all (𝑘 − 1)-particle configurations. Considering the potential of the (𝑘 − 1)-particle subconfiguration

of S★
𝑘

that excludes the particle 𝛼 yields

𝑈★
𝑘−1 ≤ 𝑈★

𝑘
−𝑈𝛼 ≤ 𝑈𝑘,UB −𝑈𝛼 ≤ 𝑈𝑘,UB −𝑈𝛼𝛽 . (6.9)

The largest (worst) contribution𝑈𝛼𝛽 is overestimated by𝑈𝑘,UB −𝑈★
𝑘−1 ≥ 𝑈𝛼𝛽. Using the quadratic

equation hidden in the Lennard-Jones potential from Eq. (6.7) yields the inverse

𝑈−1
LJ =


𝑟min =

(
1 +

√
𝑈

)−1
6

𝑟max =

(
1 −

√
𝑈

)−1
6

for 0 ≤ 𝑈

for 0 ≤ 𝑈 ≤ 1
, (6.10)

where 𝑟min is strictly monotonically decreasing with increasing𝑈, and 𝑟max is strictly monotonically

increasing with increasing 𝑈. Accordingly,

𝑟LB = 𝑟min
(
𝑈𝑘,UB −𝑈★

𝑘−1

)
≤ 𝑟min

(
𝑈𝛼𝛽

)
(6.11)

provides a lower bound on the minimum inter-particle distance.

In practice, the exact value of the minimum energy 𝑈★
𝑘−1 is most likely unknown, and we only

have bounds on the minimum energy from the global optimization of the configuration of 𝑘 − 1

particles. For a rigorous calculation of the lower bound on the minimum inter-particle distance, a

lower bound on 𝑈★
𝑘−1 has to be used in Eq. (6.11) to remain verified.

This approach could be further improved by reducing the overestimation of 𝑈𝛼𝛽, e.g., by

considering the minimum size of the potential contribution of all the other interactions 𝑈≠𝛼𝛽

involved in 𝑈𝛼.

6.2.3.4 The Coordinate System

We will use a right-handed coordinate system to define the positions of the particles in the minimum

energy configurations of maximal size. The definition of the placement of the coordinate system

must be general enough to capture all possible minimum energy configurations.

Before we describe the positioning of the coordinate system relative to the configuration, we

define a special subgroup of particles of the configuration that we call ‘outer’ particles. Given
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an axis ®𝑎 relative to the configuration, we consider the perpendicular projections of the particles

positions onto that axis. All particles that have the smallest projected 𝑎 value are called ‘lower outer’

particles of the configuration with respect to ®𝑎, and all particles with the largest projected 𝑎 value

are called ‘higher outer’ particles of the configuration with respect to ®𝑎. Lower outer particles are

higher outer particles with respect to −®𝑎 and vice versa.

We begin by picking two outer particles, denoted 𝑝1 and 𝑝𝑘 , out of the 𝑘 particle configuration

and place the 𝑥′ axis through them. We choose the two particles such that 𝑝1 is a lower outer

particle with respect to the 𝑥′ axis and 𝑝𝑘 is a higher outer particle with respect to the 𝑥′ axis. The

origin of the coordinate system is placed at the position of particle 𝑝1 such that 𝑝𝑘 is at the position

®𝑝𝑘 =

(
𝑥′
𝑘
≥ 0, 0, 0

)
.

The other particles are numbered from 2 to 𝑘 − 1 according to their 𝑥′ coordinate yielding

𝑥′
𝑖
≤ 𝑥′

𝑗
for 𝑖 < 𝑗 . The numbering scheme might be ambiguous for certain configurations that have

two or more particles with the same 𝑥′ position and is addressed in Sec. 6.2.3.6.

Without loss of generality, the 𝑦′ axis is oriented such that an arbitrary particle 𝑝𝑖 with 1 < 𝑖 < 𝑘

lies in the 𝑥′𝑦′ plane and has a non-negative 𝑦′ coordinate. To avoid ambiguity, we chose 𝑖 = 2. The

orientation of the 𝑧′ axis follows from the right hand rule.

Fig. 6.11 illustrates the coordinate system for a configuration of six particles in 2D.

𝑥′

𝑦′

𝑝1

𝑝2

𝑝3

𝑝6𝑝4

𝑝5

Figure 6.11: One possible placement of the coordinate system for a six particle configuration in 2D.
The outer particles are shown in red together with their corresponding axis.

159



6.2.3.5 Equivalent Representations of Minimum Energy Configurations

Every minimum energy configuration can be characterized using the definition of the coordinate

system introduced above. However, rotated and mirrored versions of the same configuration might

have multiple distinct coordinate representations. For the optimization problem, those rotated and

mirrored versions of a configuration are equivalent, because the objective function only depends on

the inter-particle distances and not the position of the particles or the orientation of the configuration.

As a consequence, the optimization algorithm will chase down every single one of those equivalent

configurations and their representations. Ideally, we want to limit the search space such that it only

includes one representative of a group of equivalent configurations.

Before we discuss mechanisms that exclude such redundant representations of equivalent

configurations from the search domain in Sec. 6.2.3.6, we have to clarify what kind of equivalent

configurations arise in our current coordinate representation.

First of all, there is multiple coordinate representations of a configuration that allows for multiple

definitions of the 𝑥′ axis defined by 𝑝1 and 𝑝𝑘 , i.e., any configuration with more than two outer

particles. In other words, these configurations are equivalent by rotation of the configuration relative

to the coordinate system. The six particle configuration in 2D shown in Fig. 6.11 has two outer

particle pairs, which allows for two definitions of 𝑝1 and 𝑝𝑘 for each pair (see Fig. 6.12).

𝑥′
𝑦′

a)
𝑥′

𝑦′

b)

𝑥′ 𝑦′

c)

𝑥′

𝑦′
d)

𝑝1

𝑝2

𝑝3

𝑝4
𝑝5

𝑝6
𝑝3

𝑝1

𝑝6

𝑝2
𝑝5

𝑝4
𝑝6

𝑝5

𝑝4

𝑝3
𝑝2

𝑝1
𝑝4

𝑝6

𝑝1

𝑝5
𝑝2

𝑝3

Figure 6.12: All possible placement of the coordinate system for a six particle configuration in 2D
for different choices of 𝑝1 and 𝑝𝑘 .

A second aspect is the potential ambiguity in the numbering scheme when multiple particles have

the same 𝑥′ coordinate. Each numbering scheme of a configuration yields an additional coordinate

representation.

160



Last but not least, each of those multiple representations also exist for configurations that are

equivalent by mirroring. There are three mirror planes to consider, the 𝑥′𝑦′ plane, the 𝑥′𝑧′ plane and

the 𝑦′𝑧′ plane placed at 𝑥′ = 𝑥′
𝑘
/2. The definition of the 𝑦′ axis such that 𝑝2 lies in the 𝑥′𝑦′ plane

and has a non-negative 𝑦′ coordinate avoids all mirror configurations with respect to the 𝑥′𝑧′ plane

if 𝑦2 ≠ 0 and ®𝑝𝑖∉{1,2,𝑘} ≠ (𝑥′2,−𝑦
′
2, 𝑧

′
2). But, equivalent configurations which are related though

mirroring by the 𝑦′𝑧′ plane placed at 𝑥′ = 𝑥′
𝑘
/2 or the 𝑥′𝑦′ plane are not avoided.

6.2.3.6 Suppression Schemes of Equivalent Configurations

To restrict the number of equivalent representation of the same configuration due to different choices

of 𝑝1 and 𝑝𝑘 , one can limit the search domain to representations where the distance 𝑟1𝑘 is greater or

equal to any other distance 𝑟𝑖 𝑗 of the configuration. We call −−−−→𝑝1𝑝𝑘 the major axis of the configuration.

With this requirement, the coordinate representations shown in Fig. 6.12b) and Fig. 6.12d) are

excluded from the search space.

To avoid mirror configurations with regard to mirror planes defined by the major axis, namely,

the 𝑥′𝑦′ plane, the 𝑥′𝑧′ plane and the 𝑦′𝑧′ plane placed at 𝑥′ = 𝑥′
𝑘
/2, we developed two approaches.

The first approach (1) extends the 𝑦2 ≥ 0 requirement. We only consider configurations

with 𝑧′
𝑗
≥ 0 where 𝑗 ∉ {1, 2, 𝑘}, without loss of generality. Because 𝑝1, 𝑝2, and 𝑝𝑘 are by

definition within the 𝑥′𝑦′ plane, there is a mirror configuration with 𝑧′
𝑗
> 0 for every of the

excluded configuration that has 𝑧′
𝑗
< 0. To avoid ambiguity, we choose 𝑗 = 3. To limiting the

search domain to only one configuration of mirror configurations with regard to the 𝑦′𝑧′ plane

placed at 𝑥′ = 𝑥′
𝑘
/2 are using the property that 𝑝1 and 𝑝𝑘 are mirrored onto each other through

that mirror plane. Accordingly, one can restrict the search domain to configurations for which∑𝑘−1
𝑖=2 𝑈LJ (𝑟1𝑖) ≥

∑𝑘−1
𝑖=2 𝑈LJ (𝑟𝑖𝑘 ) without loss of generality.

The second approach (2) uses the center of mass of the configuration [8]. Instead of requiring

that 𝑦′
𝑖
≥ 0 and 𝑧′

𝑗
≥ 0, we require that the center of mass of the configuration

®𝑝CM =
1
𝑘

𝑘∑︁
𝑖=1

®𝑝𝑖 (6.12)
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satisfies 𝑦′CM ≥ 0, 𝑧′CM ≥ 0, and 𝑥′CM ≥ 𝑥′
𝑘
/2. In other words, without loss of generality, we

only consider coordinate representations of configurations for which the center of mass of the

configuration is within the specified octant out of the eight octants formed by the mirror planes.

The center of mass approach is more appealing because it captures the essence of those mirror

configurations in a single concept, while the first approach is formulated in terms of three seemingly

unrelated conditions. However, it is not clear which of the approaches performs better.

Avoiding an ambiguous numbering scheme is by far the most difficult and least precise because

it requires knowledge about the structure of the minimum energy configuration, which we are trying

to determine in the first place using the optimization. A reasonable assumption is that the minimum

energy configurations tends to comprise some sort of symmetry between particles with regard to the

major axis −−−−→𝑝1𝑝𝑘 . Below we define a new coordinate system with respect to the current one that

addresses the ambiguity in the numbering scheme of those configuration. The goal is to tilt the major

axis with respect to the 𝑥 axis of the new coordinate system such that symmetries in the optimal

configurations with regard to the major axis will not exist with respect to the 𝑥 axis. Accordingly,

the numbering of the particles in the configuration determined by the 𝑥 axis instead of the 𝑥′ axis.

However, depending on the number of particles and the angle of the tilt, another ambiguity in the

numbering scheme might possibly be introduced. In a way, this approach just makes it less likely

to have an ambiguous numbering scheme for an optimal configuration under the assumption that

optimal configurations comprise some symmetries with regard to the major axis.

The new coordinate system is defined as follows. The origin is at 𝑝1. The tilt of the major axis

with respect to the 𝑥 axis is implemented by placing the new coordinate system such that 𝑝𝑘 is at

®𝑝𝑘 =
(
𝑥𝑘 ≥ 0, 𝜖𝑦 ≥ 0, 𝜖𝑧 ≥ 0

)
, where 𝜖𝑦 and 𝜖𝑧 are small. The new 𝑦 axis is within the 𝑥′𝑦′ plane

and the new 𝑧 axis within the 𝑥′𝑧′ plane. In general, the new coordinate system satisfies that for

𝜖𝑦 = 0 and 𝜖𝑧 = 0, the old and the new coordinate system are identical.

The 𝑥′𝑧′ plane in the new coordinates is defined by a normal vector in the 𝑦′ direction with

®𝑛𝑦′ = ®𝑒𝑧 × −−−−→𝑝1𝑝𝑘 = ®𝑒𝑧 × ®𝑝𝑘 = −𝜖𝑦 ®𝑒𝑥 + 𝑥𝑘 ®𝑒𝑦, (6.13)

which points in the 𝑦 direction for 𝜖𝑦 = 0.
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The 𝑥′𝑦′ plane in the new coordinates is defined by a normal vector in the 𝑧′ direction with

®𝑛𝑧′ = −−−−→𝑝1𝑝𝑘 × ®𝑒𝑦 = ®𝑝𝑘 × ®𝑒𝑦 = −𝜖𝑧 ®𝑒𝑥 + 𝑥𝑘 ®𝑒𝑧, (6.14)

which points in the 𝑧 direction for 𝜖𝑧 = 0.

Accordingly, the particle 𝑝2 (of the new numbering scheme) must satisfy the Hesse normal form

0 = ®𝑛 · ®𝑝2 = −𝜖𝑧𝑥2 + 𝑥𝑘 𝑧2 ⇒ 𝑧2 = 𝜖𝑧
𝑥2
𝑥𝑘

, (6.15)

to be in the 𝑥′𝑦′ plane.

The definition of having a coordinate 𝑦′
𝑖
≥ 0, where 𝑖 ∈ {2,CM}, is equivalent to requiring that

the dot product of the corresponding position ®𝑝𝑖 and the normal vector ®𝑛𝑦′ is greater or equal to

zero. Accordingly,

0 ≤ ®𝑝𝑖 · ®𝑛𝑦′ = −𝜖𝑦𝑥𝑖 + 𝑥𝑘 𝑦𝑖 ⇒ 𝑦𝑖 ≥ 𝜖𝑦
𝑥𝑖

𝑥𝑘
. (6.16)

As we would expect, this requirement breaks down to 𝑦𝑖 ≥ 0 for 𝜖𝑦 equal zero.

The definition of having a coordinate 𝑧′
𝑗
≥ 0, where 𝑗 ∈ {3,CM}, is equivalent to requiring that

the dot product of the corresponding position ®𝑝 𝑗 and the normal vector ®𝑛𝑧′ is greater or equal to

zero. Accordingly,

0 ≤ ®𝑝 𝑗 · ®𝑛𝑧′ = −𝜖𝑧𝑥 𝑗 + 𝑥𝑘 𝑧 𝑗 ⇒ 𝑧 𝑗 ≥ 𝜖𝑧
𝑥 𝑗

𝑥𝑘
. (6.17)

As we would expect, this requirement breaks down to 𝑧 𝑗 ≥ 0 for 𝜖𝑧 equal zero.

For the requirement of having 𝑥′CM ≥ 𝑥′
𝑘
/2 is satisfied in the new coordinates if

0 ≤
(
®𝑝CM − ®𝑝𝑘

2

)
· ®𝑝𝑘 . (6.18)

The requirement
∑𝑘−1
𝑖=2 𝑈LJ (𝑟1𝑖) ≥

∑𝑘−1
𝑖=2 𝑈LJ (𝑟𝑖𝑘 ) is independent of the coordinate system and

hence does not have to be adjusted.

Unfortunately, the tilt to avoid ambiguous numbering of symmetry configurations comes at a

cost. For some configurations, the tilt of the major axis will yield 𝑥 coordinates of particles 𝑝𝑖 with

𝑥𝑖 < 0 and/or 𝑥𝑖 > 𝑥𝑘 , which breaks the useful (𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗)-relation for 𝑝1 and/or 𝑝𝑘 (see

Fig. 6.13). However, those particles 𝑝𝑖 that potentially break the relation have to be very close to
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Figure 6.13: Given 𝜖𝑦 = 𝜖𝑧, we consider the projection into the plane spanned by the 𝑥 axis and the
𝑦 axis. The red dotted line illustrates the major axis. The upper bound on the maximum
inter-particle distance 𝑟𝑈𝐵 is the distance between the center of the two circles and their radius.
Hence all particles of the configuration must lie both in the left and right circle simultaneously (the
yellow area). In the left picture, the solution space for a particle contains only 𝑥 coordinates
between the two major axis particles. By tilting the major axis relative to the 𝑥 axis, some areas of
the solution space for the particle now have 𝑥 coordinates outside the range defined by the two major
axis particles (red), as shown in the middle picture. The right picture shows how the lower bound on
the minimum inter-particle distance 𝑟𝐿𝐵 eliminates those critical (red) areas from the solution space,
leaving a solution space that is again only associated with 𝑥 coordinates between the two major axis
particles (yellow).

either 𝑝1 or 𝑝𝑘 for this to happen. Specifically, only particles with a distance 𝑟 < 2
√︃
𝜖2
𝑦 + 𝜖2

𝑧 to 𝑝1

and/or 𝑝𝑘 are affected.

Given a lower bound 𝑟LB on the minimum particle distance from Sec. 6.2.3.3, 𝜖𝑦 and 𝜖𝑧 can be

chosen such that all those problematic configurations are excluded from the solution space. This

way 𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 holds true for all 𝑖, 𝑗 for the remaining configurations in the solution space.

In summary, any configuration in the new coordinate system is defined as follows

I The major axis of the configuration is determined by −−−−→𝑝1𝑝𝑘 , where 𝑝1 is at the origin and 𝑝𝑘

is at
(
𝑥𝑘 > 0, 𝜖𝑦, 𝜖𝑧

)
with any choice of 𝜖𝑦 and 𝜖𝑧 that satisfies

√︃
𝜖2
𝑦 + 𝜖2

𝑧 ≤ 𝑟LB
2 .

II The 𝑥 coordinates of any two particles 𝑝𝑖 and 𝑝 𝑗 satisfy 𝑥𝑖 ≤ 𝑥 𝑗 for 𝑖 < 𝑗 .

III 𝑝2 is at
(
𝑥2, 𝑦2,

𝜖𝑧𝑥2
𝑥𝑘

)
To limit the number of equivalent representations of configurations and their rotated and mirrored

versions we require

𝑟1𝑘 ≥ 𝑟𝑖 𝑗 ∀(𝑖, 𝑗) ≠ (1, 𝑘) (6.19)
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to have the maximum inter-particle distance of the configuration between particle 𝑝1 and 𝑝𝑘 .

Additionally, we enforce either approach (1) with

𝑘−1∑︁
𝑖=2

𝑈LJ (𝑟1𝑖) ≥
𝑘−1∑︁
𝑖=2

𝑈LJ (𝑟𝑖𝑘 ) , (6.20)

𝑦2 ≥ 𝜖𝑦
𝑥2
𝑥𝑘

and (6.21)

𝑧3 ≥ 𝜖𝑧
𝑥2
𝑥𝑘

, (6.22)

or approach (2) with (
®𝑝CM − ®𝑝𝑘

2

)
· ®𝑝𝑘 ≥ 0, (6.23)

𝑦CM ≥ 𝜖𝑦
𝑥CM
𝑥𝑘

and (6.24)

𝑧CM ≥ 𝜖𝑧
𝑥CM
𝑥𝑘

(6.25)

to avoid mirror versions of a configuration and their representation.

Note that for 𝑛dim = 2, only the 𝑥𝑦-plane of the coordinate system is relevant and all 𝑧 related

variables and parameters are zero. For 𝑛dim = 1, the old and new coordinate system are identical

because all 𝑧 and 𝑦 related variables and parameters are zero.

6.2.3.7 Definition and Bounding of the Optimization Variables

To incorporate the ordering of the particles of II in the optimization variables, we define 𝑘 − 1

variables as the 𝑥 distance between any two consecutive numbered particles with 𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0

for 𝑖 ≤ 𝑘 − 1. The variables in 𝑦 and 𝑧 correspond to the 𝑦 and 𝑧 positions of the particles with

𝑣𝑦,𝑖 = 𝑦𝑖 for 2 ≤ 𝑖 ≤ 𝑘 − 1 and 𝑣𝑧,𝑖 = 𝑧𝑖 for 3 ≤ 𝑖 ≤ 𝑘 − 1 such that the distance 𝑟𝑖 𝑗 between any two
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particles 𝑝𝑖 and 𝑝 𝑗 can be reconstructed from the variables as follows:

𝑟2
𝑖 𝑗 =

(
𝑥 𝑗 − 𝑥𝑖

)2 + (
𝑦 𝑗 − 𝑦𝑖

)2 + (
𝑧 𝑗 − 𝑧𝑖

)2 where (6.26)

𝑥 𝑗 − 𝑥𝑖 =

𝑗−1∑︁
𝑛=𝑖

𝑣𝑥,𝑛 for 𝑗 > 𝑖; (6.27)

𝑦1 = 0, 𝑦𝑘 = 𝜖𝑦, and 𝑦𝑖 = 𝑣𝑦,𝑖 for 2 ≤ 𝑖 ≤ 𝑘 − 1; (6.28)

𝑧1 = 0, 𝑧2 =
𝜖𝑧𝑥2
𝑥𝑘

, 𝑧𝑘 = 𝜖𝑧, and 𝑧𝑖 = 𝑣𝑧,𝑖 for 3 ≤ 𝑖 ≤ 𝑘 − 1. (6.29)

Based on Sec. 6.2.3.4 and the bounds on the minimum and maximum inter-particle distances

from Sec. 6.2.3.3 and Sec. 6.2.3.1, respectively, the initial search domain is rigorously defined below.

In Sec. 6.2.3.1, we showed that 𝑣𝑥,𝑖 ∈
[
0, 𝑟𝑥,UB = 1

]
. For 1D, this lower bound on the inter-

particle distance can be directly applied to the variable domain yielding 𝑣𝑥,𝑖 ∈
[
𝑟LB, 𝑟𝑥,UB = 1

]
.

For 𝑛dim > 1 however, this incorporation of the lower bound on the inter-particle distance into the

initial search domain is not possible. The associated problems with configurations that have for

inter-particle distances of length zero, for which the Lennard-Jones potentail is not defined, are

addressed in Sec. 6.2.4.

The variables 𝑣𝑦,𝑖 and 𝑣𝑧,𝑖 are only bound by the maximum inter-particle distance 𝑟UB. Accord-

ingly, the variables can be bound to 𝑣†,𝑖 ∈ [−1, 1]
√

3
2 𝑟UB +

𝜖†
2 with † ∈ {𝑦, 𝑧}. This corresponds to

half the †-offset of the last particle plus and minus the height of an equilateral triangle of side length

𝑟UB.

Assuming we follow the suppression approach (1), the requirement of 𝑦2 ≥ 𝜖𝑦
𝑥2
𝑥𝑘

and 𝑧3 ≥ 𝜖𝑧
𝑥2
𝑥𝑘

can not fully be represented by a fixed initial search domain, because the condition is changing

depending on the variables 𝑥2 and 𝑥𝑘 . But, the search domain box for those variables can still be

decreased to 𝑣𝑦,2 ∈
[
0,

√
3

2 𝑟UB + 𝜖𝑦
2

]
and 𝑣𝑧,3 ∈

[
0,

√
3

2 𝑟UB + 𝜖𝑧
2

]
.

In summary, the initial search domain box B is composed of the domains of the variables, which
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are defined as follows

𝑣𝑥,𝑖 ∈ [𝑟LB, 1] for 1D and 𝑣𝑥,𝑖 ∈ [0, 1] for 2D and 3D (6.30)

𝑣𝑦,2 ∈
[
0,

√
3

2
𝑟UB +

𝜖𝑦

2

]
and 𝑣𝑧,3 ∈

[
0,

√
3

2
𝑟UB + 𝜖𝑧

2

]
(6.31)

𝑣†,𝑖 ∈ [−1, 1]
√

3
2
𝑟UB +

𝜖†
2

for 𝑖 > 2 and † ∈ {𝑦, 𝑧} . (6.32)

The parameters 𝜖𝑦 and 𝜖𝑧 must satisfy
√︃
𝜖2
𝑦 + 𝜖2

𝑧 ≤ 𝑟LB
2 .

In Fig. 6.14, the initial search domains of individual particles in 2D are visualized.

−
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2
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𝑥

𝑦
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𝑝3

𝑝𝑖

𝑝𝑖+1

𝑝𝑘−1

𝑝𝑘

Figure 6.14: Initial search domain of global optimization problem for configuration of 𝑘 particles in
2D. Note that the box width in 𝑥 direction is always one and that the 𝑥 position of particle 𝑝𝑖
determines the starting position in 𝑥 of the domain box of particle 𝑝𝑖+1. Particle 𝑝1 is fixed to the
origin. Particle 𝑝𝑘 has a fixed 𝑦 value of 𝜖𝑦. Accordingly, its domain is just a line and not a box.

To enforce the suppression schemes from Sec. 6.2.3.6 (Eq. (6.19) to Eq. (6.25)), it is possible to

devise penalty functions, or use methods of constrained optimization. Since all the requirements

are of the form 𝑎 ≥ 𝑏, a general penalty function 𝑓pen is defined, which is zero for 𝑎 ≥ 𝑏 and

monotonically increasing with increasing 𝑏 − 𝑎 for 𝑎 < 𝑏.

Note that for 𝑛dim > 1, the domain can not exclude configurations with inter-particle distances

𝑟𝑖 𝑗 < 𝑟LB. The Lennard-Jones interaction potential is already a penalty function for those
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configurations, but the problem is that the Lennard-Jones potential is not defined for 𝑟𝑖 𝑗 = 0. To

address this we define a modified Lennard-Jones potential for those configurations in Sec. 6.2.4.

6.2.4 The Evaluation of the Objective Function

To be fully transparent, we elaborate on the evaluation of the objective function.

The objective function

𝑈𝑘 =

𝑘−1∑︁
𝑖=1

𝑘∑︁
𝑗=𝑖+1

𝑈LJ
(
𝑟𝑖 𝑗

)
, (6.33)

is composed of 𝑛pairs =
𝑘 (𝑘−1)

2 individual Lennard-Jones interactions with

𝑈LJ
(
𝑟𝑖 𝑗

)
= 1 + 𝑟−12

𝑖 𝑗 − 2𝑟−6
𝑖 𝑗 . (6.34)

Since Eq. (6.26) yields only squared distances 𝑟2
𝑖 𝑗

, we implement a Lennard-Jones potential that

takes the squared distance 𝑟2 = 𝑟sqr as its argument with

𝑈LJ,sqr
(
𝑟sqr

)
= 1 + 𝑟−3

sqr
(
𝑟−3
sqr − 2

)
where 𝑟−3

sqr =
1

𝑟sqr · 𝑟2
sqr

. (6.35)

The squared distance 𝑟2
𝑖 𝑗

is evaluated using Eq. (6.26), where 𝑥 𝑗 − 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are calculated

according to Eq. (6.27), Eq. (6.28), and Eq. (6.29), respectively.

For 𝑛dim ≥ 2, the initial search domain includes configurations, for which the distance between

particles is zero. Fig. 6.14 visualizes that any two particles 𝑝𝑖 and 𝑝𝑖+𝑙 in the search domain box

are at the same position if 𝑣𝑥,𝑚 = 0 for all 𝑚 ∈ [𝑖, 𝑖 + 𝑙] and if the vertical variables 𝑣𝑦,𝑖 and 𝑣𝑦,𝑖+𝑙

are identical. Any domain box that contains such a configuration cannot be evaluated, because the

Lennard-Jones potential is not defined for an argument of zero. Accordingly, the global optimizer

can not process such boxes.

We were not able to exclude those configurations from the search domain because they form

high dimensional manifolds within it. However, Sec. 6.2.3.3 showed that all configurations with a

single inter-particle distance below 𝑟LB cannot be a minimum energy configuration. In other words,

any configuration with at least one inter-particle interaction energy of 𝑈LJ(𝑟LB) or larger is not a

minimum energy configuration.
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This means that we can modify the objective function for inter-particle distances smaller than

𝑟LB without changing the optimization problem if this modified Lennard-Jones potential 𝑈‡
LJ,sqr

satisfies [8]

𝑈LJ,sqr,mod
(
𝑟sqr

)
≥ 𝑈LJ,sqr

(
𝑟2
LB

)
∀ 𝑟sqr < 𝑟2

LB. (6.36)

Accordingly, we define the modified Lennard-Jones potential piecewise and compose it of a the

regular Lennard-Jones potential for 𝑟sqr ≥ 𝑟2
LB and the tangential extension at 𝑟2

LB for 𝑟sqr < 𝑟2
LB.

The modified Lennard-Jones potential [8] is then given by

𝑈
‡
LJ,sqr

(
𝑟sqr, 𝑟LB) =

) 
𝑈LJ,sqr

(
𝑟sqr

)
𝑈′

LJ,sqr

(
𝑟2
LB

)
·
(
𝑟sqr − 𝑟2

LB

)
+𝑈LJ,sqr

(
𝑟2
LB

) for 𝑟sqr ≥ 𝑟2
LB

for 𝑟sqr < 𝑟2
LB

(6.37)

where 𝑈′
LJ,sqr is the first derivative of 𝑈LJ,sqr with

𝑈′
LJ,sqr

(
𝑟sqr

)
= 6

(
𝑟2
sqr

)2 (
1 − 𝑟sqr · 𝑟2

sqr
)
. (6.38)

The modified Lennard-Jones potential is visualized in Fig. 6.15.
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Figure 6.15: Piecewise defined modified Lennard-Jones potential.
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6.2.5 Taylor Model Evaluation of Piecewise Defined Functions

Given the continues piece wise defined function

𝑓 (𝑥) =


𝑓≤ (𝑥) for 𝑥 ≤ 𝑥0

𝑓≥ (𝑥) for 𝑥 ≥ 𝑥0
, (6.39)

where each of the pieces is 𝑚 times differentiable in its domain, we want to find a Taylor Model

that tightly captures 𝑓 (𝑥) over the domain D 𝑓 = [𝑎, 𝑏] with 𝑥0 ∈ D 𝑓 . In a first step, we calculate

the Taylor Models for each of the subdomains D≤ = [𝑎, 𝑥0] and D≥ = [𝑥0, 𝑏]. We denote those

two Taylor Models by 𝑓≤,TM,[𝑎,𝑥0] and 𝑓≥,TM,[𝑥0,𝑏] , respectively. Generally, any Taylor Model

𝑓TM,[𝑎,𝑏] =
(
P 𝑓 , 𝜖 𝑓

)
is a verified description of 𝑓 over D 𝑓 , if the Taylor Model 𝑓TM,[𝑎,𝑏] contains

𝑓≤,TM,[𝑎,𝑥0] over D≤ and 𝑓≥,TM,[𝑥0,𝑏] over 𝐷≥ (see Fig. 6.16). In particular, for any P 𝑓 the

𝑎 𝑥0 𝑏

𝑥

𝑓

𝑓≤,TM,[𝑎,𝑥0]
𝑓≥,TM,[𝑥0,𝑏]

𝑓TM,[𝑎,𝑏]

Figure 6.16: Taylor Model description of piecewise defined function.

remainder 𝜖 𝑓 can be adjusted/increased such that this requirement is satisfied. The remainder
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interval is determined by the union of 𝐼D≤ ∪ 𝐼D≥ , where

𝐼D≤ =

���P 𝑓 − 𝑓≤,TM,[𝑎,𝑥0]
���
D≤

and (6.40)

𝐼D≥ =

���P 𝑓 − 𝑓≥,TM,[𝑥0,𝑏]
���
D≥

. (6.41)

The notation |𝑔 |D indicates the bounds of 𝑔 over D.

The challenge in determining 𝑓TM,[𝑎,𝑏] is finding a polynomial P 𝑓 for which the remainder

interval is small. Good candidates for P 𝑓 can be generated by weighted compositions of the

polynomial parts of the two Taylor Models over the two subdomains. However, there are some

intricacies to consider regarding the implementation of this composition, which we will discuss

below.

Without loss of generality, Taylor Models are always expanded around zero over the domain

[−1, 1]. Accordingly, a linear transformation is required to map the Taylor Model domain [−1, 1] to

the domain of interest and vice versa. We denote the variable in the original function domain by

𝑥 ∈ D 𝑓 and the local variable in the Taylor Model domain by 𝑥′ ∈ [−1, 1]. The midpoint and width

of a domain D are denoted by † (D) and 𝑤 (D), respectively, which yields the mapping relation

𝑥 = † (D) + 𝑤 (D)
2

𝑥′ for 𝑥 ∈ D, 𝑥′ ∈ [−1, 1] . (6.42)

With the Taylor Model of the identity denoted by ITM = (𝑥′, 𝜖), we calculate the Taylor Models

for each of the subdomains with

𝑓≤,TM,[𝑎,𝑥0]
(
𝑥′

)
= 𝑓≤

(
† (D≤) +

𝑤 (D≤)
2

ITM

)
and (6.43)

𝑓≥,TM,[𝑥0,𝑏]
(
𝑥′

)
= 𝑓≥

(
† (D≥) +

𝑤 (D≥)
2

ITM

)
. (6.44)

Note that each of the Taylor Models is expanded around the midpoint of the respective domain

and scaled according to the width of the domain. Thus, also the polynomial parts of the TMs are

expanded around † (D≤) and † (D≥), respectively, and the variables are scaled by the receptive

widths of the domains. For the composition of two polynomials, we need to make sure that the

function domains of the two polynomials are identical, i.e., both expanded around the same point
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with the same scaling. In other words, the two polynomials, denoted P≤ (𝑥′) and P≥ (𝑥′), are

expanded around †
(
D 𝑓

)
and scaled by 𝑤

(
D 𝑓

)
, specifically

𝑥′ = 2
𝑥 − †

(
D 𝑓

)
𝑤

(
D 𝑓

) . (6.45)

Since all steps are equivalent for the left and the right side, we will calculate P≤ (𝑥′) with the

note that the calculation of P≥ (𝑥′) can be followed by replacing ≤ with ≥. The critical aspect is the

initial expansion point, where 𝑓≤ is expressed in terms of a local expansion. The later translation in

the polynomial description and the scaling of the variables can be done in any order. The polynomial

expansion of 𝑓≤ around † (D≤) is given by

P≥,† (𝑥) = 𝑓≤ (†(D≤) + 𝑥) . (6.46)

With a linear transformation of P≥,† (𝑥) that transfers the expansion point to †
(
D 𝑓

)
and scales

𝑥 to the width of D 𝑓 , so,

P≥
(
𝑥′

)
= P≥,†

©«†
(
D 𝑓

)
− † (D≥) +

2𝑥

𝑤

(
D 𝑓

) ª®®¬ . (6.47)

6.2.6 The Infinite 1D Equidistant Configuration

Before we investigate minimum energy configurations of 𝑘 particles in 1D, we want to study

the minimum energy state of an infinite one dimensional equidistant configurations. This one

dimensional optimization problem can be solved analytically and potentially yields more insights

into the minimum energy state of finite one dimensional configurations.

Consider infinitely many particles on a line with pairwise Lennard-Jones interaction, where the

distance between any two adjacent particles is a constant value 𝑟 . In order to calculate the distance

𝑟★ for which this configuration reaches its minimum energy state, we solve for

𝑑𝑈 (𝑟)
𝑑𝑟

����
𝑟=𝑟★∈R+

= 0. (6.48)
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The overall potential 𝑈 (𝑟) is the infinite sum of all the individual pairwise Lennard-Jones

interaction potentials, such that the expression above yields

𝑑𝑈 (𝑟)
𝑑𝑟

=
𝑑

𝑑𝑟
lim
𝑁→∞

𝑁∑︁
𝑘=1

(𝑁 − 𝑘)𝑈LJ (𝑘𝑟) = 0 (6.49)

= lim
𝑁→∞

𝑁∑︁
𝑘=1

𝑁

𝑁

𝑑𝑈LJ (𝑘𝑟)
𝑑𝑟

−�������𝑘

𝑁

𝑑𝑈LJ (𝑘𝑟)
𝑑𝑟

=
0
𝑁

(6.50)

Each unique Lennard-Jones potential has a weight of 1 in the overall sum when considering an

infinite configuration. The fact that there is one more distance of length 𝑙 than there is of length 𝑙 + 𝑟

becomes irrelevant when approaching infinity. Accordingly,

0 =

∞∑︁
𝑘=1

𝑑𝑈LJ (𝑘𝑟)
𝑑𝑟

=

∞∑︁
𝑘=1

−12
𝑘12𝑟13 + 12

𝑘6𝑟7 =
−12
𝑟7

(
1
𝑟6

∞∑︁
𝑘=1

1
𝑘12 −

∞∑︁
𝑘=1

1
𝑘6

)
(6.51)

=
−12
𝑟7

(
Z (12)
𝑟6 − Z (6)

)
=

−4𝜋6

315𝑟7

(
691𝜋6

675675𝑟6 − 1

)
, (6.52)

where Z (𝑠) is the Riemann zeta function. Solving the expression above for 𝑟 yields

𝑟★ = 𝜋 · 6
√︂

691
675675

∈ [0.9971792638858069273, 0.9971792638858069274] . (6.53)

This 𝑟★ would be a very good lower bound 𝑟LB on the minimum inter-particle distance of any one

dimensional configuration if we additionally prove that the infinite minimum energy configuration is

indeed equidistant. While this seems to be the case from the results below and also intuitive from

a symmetry point of view, it is not trivial to show this. Similar to the problem with the Kepler

conjecture, there is no trivial way of excluding all irregular patterns.
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6.2.7 The Verified Global Optimization Results for Configurations of 𝑘 Particles in 1D

The configuration of 𝑘 particles is placed on the positive 𝑥 axis with the particle 𝑝1 at 𝑥1 = 0. The

𝑘 − 1 variables 𝑣𝑥,𝑖 = 𝑥𝑖+1 − 𝑥𝑖 ≥ 0 describe the distances between two adjacent particles 𝑝𝑖 and

𝑝𝑖+1. Accordingly, the position 𝑥𝑖 =
∑𝑖−1

𝑗=1 𝑣𝑥, 𝑗 of particle 𝑝𝑖 is determined by the sum of all the

inter-particle distances 𝑣𝑥, 𝑗 to the left of particle 𝑝𝑖.

The lower bound 𝑟LB on the minimal inter-particle distance from Sec. 6.2.3.3 provides the

lower bound on the variables ®𝑣, with 𝑣𝑖 ∈ [𝑟LB, 1]. Accordingly, the upper and lower bounds on

the distances between particles, 𝑟LB and 𝑟UB = 𝑘 − 1, are directly incorporated into the domain

restrictions of the variables.

Mirror configurations can still occur if there are asymmetric minimum energy configurations.

Even if there are no asymmetric minimum energy configurations, the existence of asymmetric

configurations that yield a local minimum in the overall interaction potential could potentially slow

down the global optimizer. Accordingly, the mirror suppression from Eq. (6.20) is implemented.

The technique 1 from Sec. 6.2.3.2 creates symmetric upper bound configurations S𝑘,UB using

the configuration S★
𝑘−1, yielding a good initial cutoff value C = 𝑈UB,𝑘 .

The verified global optimization is performed with the Taylor Model based verified optimizer

COSY-GO [55, 56], which is implemented in COSY INFINITY [21, 18, 53]. The performance of

the optimizer varies with the order of the Taylor Models.

As a stopping condition, we set the minimum side length 𝑠min for a box to be split to 1E-6.

Given S★
2 with 𝑣★1 = 1 and the associated minimum energy 𝑈★

2 = 0, we iteratively increase

the number of particles 𝑘 , beginning with 𝑘 = 3. In Tab. 6.1, the performance of COSY-GO with

LDB/QFB enabled and stopping condition 𝑠min = 1E-6 is shown for different Taylor Model orders.

Since the QFB requires a minimum order of two, the order one calculations are particularly bad

and are not fully comparable to the higher order calculations.

The computation time is the product of the number of steps times the average computation time

per step. The higher the order of computation, the tighter the bounding and the lower the required

number of steps. At the same time, higher order computations are more time demanding. However,
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Table 6.1: Performance of verified global optimization using COSY-GO with LDB/QFB enabled
and stopping condition 𝑠min = 1E-6 on minimum energy search of a one dimensional configuration
of 𝑘 particles, where the particle interaction energy is modeled by the Lennard-Jones potential. The
Taylor Model orders are denoted by ‘O’. The QFB requires a minimum order of two, which is why
the order one (O1) calculation underperforms so significantly. The number of optimization
variables 𝑛var equals 𝑘 − 1. All computation (except for O1) were able to reduce the search space to
a single final box (𝑛fin,boxes = 1).

Time [s] Steps
𝑘 𝑛pairs O1 O2 O3 O4 O5 O1 O2 O3 O4 O5
3 3 0.046 0.015 0.015 0.015 0.016 265 9 6 6 6
4 6 0.265 0.015 0.015 0.015 0.016 1445 16 11 9 9
5 10 3.398 0.016 0.015 0.015 0.031 7871 22 15 12 12
6 15 22.62 0.032 0.031 0.031 0.047 44185 28 18 16 16
7 21 145.4 0.032 0.032 0.047 0.078 241111 40 22 20 20
8 28 993.9 0.062 0.031 0.047 0.172 1265531 55 25 25 23
9 36 0.094 0.062 0.094 0.265 81 29 28 28
10 45 0.156 0.094 0.140 0.469 101 35 30 31
11 55 0.265 0.156 0.265 1.312 141 49 39 37
12 66 0.765 0.296 0.625 2.486 249 75 51 49
13 78 2.484 0.719 1.328 3.859 565 122 75 69
14 91 4.470 1.469 2.471 10.51 1158 194 103 91
15 105 11.55 2.286 7.180 20.45 2189 278 173 131

these two factors do not scale the same way with higher orders.

For this particular example, calculations of order three are the most time efficient. Compared

to the second order calculation, the longer computation times of the third order calculations are

overcompensated by the tighter bounding and the associated reduction in the number of steps

required for the optimization. With higher order calculations, the number of steps can be reduced

even further, but the computation time per step increases significantly, such that O4 is the second

most time efficient an O5 is the least time efficient (not considering O1) despite the significant

reduction of calculation steps.

Calculations of all orders were able to narrow the minimum energy state down to a single box

(except for the O1 calculation). In Fig. 6.17, the position and the side lengths of this final domain box,

corresponding to the optimized inter-particle distances 𝑣★
𝑙

of the minimum energy configuration, are

illustrated.
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Figure 6.17: The plots show the values for the distances 𝑣★
𝑙

of the minimum energy configuration of
𝑘 particles that resulted from the global optimization. The minimum energy configuration seems to
be symmetric with the middlemost distances asymptotically approaching a value that could very
well be 𝑟★ from Sec. 6.2.6. The right plot emphasizes this hypothesis by plotting the logarithm of
the difference between the calculated distances from the optimization and 𝑟★. The error bars
indicate the side length of the resulting box.

The results are very symmetric and seem to asymptotically approach a minimum inter-particle

distance that corresponds to 𝑟★ from Sec. 6.2.6. The specific values of the 𝑣★
𝑙

are documented in

Tab. A.1 and Tab. A.2, and the values for 𝑟LB are listed in Tab. A.3. The side length of the box is

illustrated by the error bars. The left plot emphasizes the short range of the potential because the

distances between particles are almost the same except for the outermost particles on each side of

the configuration. Only the logarithmic plot on the right can show that the distances get shorter in

the middle of the configuration and seem to approach 𝑟★ from Sec. 6.2.6.

The resulting bounds on the minimum energy of the 𝑘-particle configurations are listed in

Tab. 6.2.
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Table 6.2: Verified global optimization results on the minimum energy 𝑈★ of a one dimensional
configuration of 𝑘 particles, where the particle interaction energy is modeled by the Lennard-Jones
potential. The initial upper bound 𝑈UB on the minimum energy was calculated using method 1
from Sec. 6.2.3.2. Optimizer: COSY-GO with LDB/QFB enabled and stopping condition
𝑠min = 1E-6. The initial search volume is denoted by 𝑉0, and the volume of the remaining 𝑛fin,boxes
boxes is represented by 𝑉fin.

𝑘 𝑛var 𝑛pairs 𝑛fin,boxes 𝑉0/𝑉fin 𝑈UB 𝑈★

3 2 3 1 6.4E11 0.968994140625000 0.96887586964486
68

4 3 6 1 5.3E17 2.934929941521004 2.93486371189826
799

5 4 10 1 3.6E23 5.900342654544756 5.90034204308608
571

6 5 15 1 2.0E29 9.865688399486586 9.86568807046357
06

7 6 21 1 8.2E34 14.83099005904018 14.83099004536579
10

8 7 28 1 3.5E40 20.79627461693900 20.79627460947684
598

9 8 36 1 8.6E45 27.76155137645425 27.76155137570033
69916

10 9 45 1 2.3E51 35.72682430087387 35.72682430044979
832

11 10 55 1 4.9E56 44.69209518551273 44.69209518543906
721

12 11 66 1 6.0E61 54.65736491976315 54.65736491972057
1810

13 12 78 1 7.8E66 65.62263397159556 65.62263397158563
250

14 13 91 1 9.1E71 77.58790260142806 77.58790260142260
1870

15 14 105 1 9.5E76 90.55317096078301 90.55317096078222
7742

6.2.8 The Verified Global Optimization Results for Symmetric Configurations of 𝑘 Particles
in 1D

Assuming that the minimum energy configurations are indeed symmetric, this section analyses

the associated optimization problem. Considering symmetric 1D configurations roughly cuts the

number of variables in half, since 𝑣𝑖 = 𝑣𝑘−𝑖. Additionally, the symmetry avoids distinct mirror

configurations of local minimum energy configurations in the optimization process. All other

parameters of the optimization like the bounds on the variables and the technique for the cutoff

remain unchanged.

Given S★
2 with 𝑣★1 = 1, we iteratively increase the number of particles 𝑘 , beginning with 𝑘 = 3.

In Tab. 6.3, the performance of COSY-GO with LDB/QFB enabled and stopping condition

𝑠min = 1E-6 is shown for different Taylor Model orders.

In Fig. 6.18, the results from Tab. 6.3 on the time efficiency and the number of steps required
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Table 6.3: Performance of verified global optimization using COSY-GO with LDB/QFB enabled
and stopping condition 𝑠min = 1E-6 on minimum energy search of a one dimensional symmetric
configuration of 𝑘 particles, where the particle interaction energy is modeled by the Lennard-Jones
potential. The Taylor Model orders are denoted by ‘O’.

Time [s] Steps
𝑘 𝑛var 𝑛pairs 𝑛fin,boxes O2 O3 O4 O2 O3 O4
3 1 1 1 0.016 0.015 0.016 6 5 5
4 2 2 1 0.015 0.016 0.016 11 7 6
5 2 2 1 0.038 0.015 0.016 12 8 8
6 3 3 1 0.015 0.016 0.016 17 12 11
7 3 3 1 0.016 0.032 0.031 18 13 12
8 4 4 1 0.031 0.031 0.022 24 18 15
9 4 4 1 0.031 0.032 0.047 24 17 16
10 5 5 1 0.069 0.032 0.053 33 20 20
11 5 5 1 0.091 0.047 0.069 31 20 20
12 6 6 1 0.139 0.063 0.101 45 23 23
13 6 6 1 0.131 0.063 0.116 43 24 23
14 7 7 1 0.187 0.125 0.200 59 30 26
15 7 7 1 0.390 0.125 0.239 57 30 26
16 8 8 1 0.419 0.234 0.486 80 41 29
17 8 8 1 0.433 0.328 0.448 80 41 32
18 9 9 1 0.586 0.469 1.225 114 52 39
19 9 9 1 1.215 0.484 1.663 119 56 39
20 10 10 1 2.545 1.062 3.070 180 71 50
21 10 10 1 2.745 0.799 2.344 209 73 53
22 11 11 2 4.230 1.843 4.882 365 105 74
23 11 11 2048 57.269 84.550 243.494 4494 4195 4167
24 12 12 4096 111.483 193.292 672.107 8885 8315 8302
25 12 12 4096 122.401 209.074 734.148 8932 8327 8292
26 13 13 8192 290.751 514.414 1771.820 17549 16558 16531
27 13 13 8192 286.457 537.120 1855.865 17651 16568 16456

are visualized together with the corresponding results from the previous section (Sec. 6.2.7). The

reduction of the optimization variables by assuming symmetric configurations significantly reduces

the computation time and the number of steps as the left plot indicates. With the symmetric

assumption, a configuration of 𝑘 particles can be represented by (𝑘 − 1)/2 variables instead of 𝑘 − 1,

when 𝑘 is odd. For 𝑘 < 23, the calculations of order three are the most time efficient, while only

requiring slightly more steps compared to higher order computations.

For 𝑘 ≥ 23, the number of final boxes increases drastically. Due to the high dimensionality, the
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Figure 6.18: Performance of minimum energy search of a one dimensional configuration of 𝑘
particles, where the particle interaction energy is modeled by the Lennard-Jones potential using
COSY-GO at different Taylor Model orders with LDB/QFB enabled and stopping condition
𝑠min = 1E-6. The order of the Taylor Models of the optimization is denoted by ‘O’. The results from
Sec. 6.2.7 are denoted by ‘nonsym’, because they assume that the minimum energy configuration is
symmetric. Accordingly, the results from Sec. 6.2.8 are labeled with ‘sym’.

overall interaction potential gets so shallow over the 𝑛var dimensional domain that the floating-point

accuracy restrictions prohibit narrowing down the minimum to a single final box of side length

𝑠min = 1E-6. This behavior is the only aspect of the cluster effect [38, 30] that is not solved by higher

order Taylor Models. It can only be improved by increasing the internal floating-point precision of

the calculation.

Accordingly, the order of the Taylor Models is no longer an advantage when evaluating boxes in

this plateau region but rather a disadvantage, since the number of those boxes are the same for every

order calculation, while the higher order evaluation takes longer as the plots indicate.

In Tab. 6.4, the resulting bounds on the minimum energy of the symmetric configurations are

listed. As expected, the results for symmetric 1D configurations agree with the previous results,

where this symmetry was not assumed.
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Table 6.4: Verified global optimization results on the minimum energy 𝑈★ of a symmetric one
dimensional configuration of 𝑘 particles, where the particle interaction energy is modeled by the
Lennard-Jones potential. The initial upper bound 𝑈UB on the minimum energy was calculated
using method 1 from Sec. 6.2.3.2. Optimizer: COSY-GO with LDB/QFB enabled and stopping
condition 𝑠min = 1E-6.

𝑘 𝑛var 𝑛pairs 𝑛fin,boxes 𝑉0/𝑉fin 𝑈UB 𝑈★

3 1 3 1 1.1E6 0.968994140625000 0.96887586964486
68

4 2 6 1 9.3E11 2.934929941521004 2.93486371189826
799

5 2 10 1 1.2E12 5.900342654544756 5.90034204308608
571

6 3 15 1 7.6E17 9.865688399486586 9.86568807046357
07

7 3 21 1 8.3E17 14.83099005904018 14.83099004536579
11

8 4 28 1 4.2E23 20.79627461693900 20.79627460947684
599

9 4 36 1 4.0E23 27.76155137645425 27.76155137570031
69919

10 5 45 1 1.4E29 35.72682430087387 35.72682430044979
835

11 5 55 1 1.3E29 44.69209518551273 44.69209518543906
725

12 6 66 1 3.1E34 54.65736491976315 54.65736491972056
1818

13 6 78 1 2.4E34 65.62263397159556 65.62263397158563
258

14 7 91 1 4.8E39 77.58790260142806 77.58790260142260
1879

15 7 105 1 3.7E39 90.55317096078301 90.55317096078222
7752

16 8 120 1 7.1E44 104.5184391413806 104.51843914138064
7511

17 8 136 1 9.5E44 119.4837072006288 119.48370720062876
298

18 9 153 1 1.8E50 135.4489751755410 135.44897517554100
3442

19 9 171 1 1.3E50 152.4142430906076 152.41424309060765
59982

20 10 190 1 1.5E55 170.3795109624117 170.37951096241168
0223

21 10 210 1 1.1E55 189.3447788024156 189.34477880241559
0447

22 11 231 2 1.0E60 209.3100466186911 209.31004661869111
7777

23 11 253 2048 1.0E59 230.2753144170244 230.27531441702442
0216

24 12 276 4096 5.6E63 252.2405822016606 252.24058220160768
58036

25 12 300 4096 3.6E63 275.2058499756172 275.20584997554204
1037

26 13 325 8192 2.1E68 299.1711177412260 299.17111774114227
0526

27 13 351 8192 1.4E68 324.1363855002667 324.13638550015532
1313

Note that each final box corresponds to a minimum energy configuration up to the precision

of the calculation. By finding the smallest box that contains all those final box solutions, one can

summarize them. The side lengths of this summarizing box will be larger than the side lengths of
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the individual final boxes. In Fig. 6.19, the results for the distances 𝑣𝑙 are given. For 𝑘 > 21, the
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Figure 6.19: The plots show the values for the distances 𝑣★
𝑙

of the minimum energy configuration of
𝑘 particles that resulted from the global optimization. Again, the middlemost distances
asymptotically approaching a value that could very well be 𝑟★ from Sec. 6.2.6. However, the right
plot shows that the increasing error bars with a higher dimensionality of the optimization problem
do not allow for clear conclusions.

final boxes are summarized, which explains the larger error bars. The specific values of the 𝑣★
𝑙

of

the final (summarized) box are documented in Tab. A.4, Tab. A.5, and Tab. A.6, and the values for

𝑟LB are listed in Tab. A.7.

6.2.9 The Verified Global Optimization Results for Configurations of 𝑘 Particles in 2D

The variables for a configuration of 𝑘 particles in 2D are defined as explained in Sec. 6.2.3.7. The

particles are numbered according to their 𝑥 coordinate, such that 𝑥𝑙 ≤ 𝑥 𝑗 for 𝑙 < 𝑗 . The first particle

𝑝1 is set at the origin, so 𝑥1 = 0. The 𝑘 − 1 variables 𝑣𝑥,𝑙 denote the 𝑥 distance between particle 𝑝𝑙

and particle 𝑝𝑙+1. Thus, the 𝑥 position of particle 𝑝𝑙 is given by
∑𝑙−1
𝑖=1 𝑣𝑥,𝑖.

The 𝑘 − 2 variables 𝑣𝑦,𝑙 denote the 𝑦 position of the particles 𝑝2 to 𝑝𝑘−1. The 𝑦 position of 𝑝𝑘
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is fixed to the positive value

𝜖𝑦 = 0.99 · 𝑟LB
2

, (6.54)

where 𝑟LB is determined by Eq. (6.11).

The initial search domain is defined according to Sec. 6.2.3.7 with 𝜖𝑧 = 0 (see Fig. 6.14). As

already mentioned in Sec. 6.2.4, the search domain includes entire manifolds where at least one

inter-particle distance is zero, which makes the evaluation of the classical Lennard-Jones potential

on those manifolds impossible for the global optimizer. As introduced in Sec. 6.2.4, the modified

Lennard-Jones potential [8] from Eq. (6.37) is used to avoid this.

To avoid multiple equivalent representations of a minimum energy configuration, the suppression

mechanisms from Eq. (6.19), Eq. (6.20), and Eq. (6.21) are implemented.

The verified global optimization is performed with the Taylor Model based verified optimizer

COSY-GO [55, 56], which is implemented in COSY INFINITY. As a stopping condition, we use a

minimum side length 𝑠min = 1E-6 for boxes that are split.

Given S★
3 with the associated minimum energy 𝑈★

3 = 0, we iteratively increase the number of

particles 𝑘 , beginning with 𝑘 = 4.

As before, the first step is determining the most time efficient calculation order since the

performance of the optimizer varies with the order of the Taylor Models. Due to the drastically

increasing complexity and computation time of the calculations with an increasing number of

particles, we will only use the four and five particle configurations for this evaluation (see Tab. 6.5).

Again, order three turns out to be the most time efficient calculation order. The increased computation

Table 6.5: Performance of verified global optimization using COSY-GO with LDB/QFB enabled
and stopping condition 𝑠min = 1E-6 on minimum energy search of a two dimensional configuration
of 𝑘 particles, where the particle interaction energy is modeled by the Lennard-Jones potential. The
Taylor Model orders are denoted by ‘O’.

Time [s] Steps
𝑘 𝑛var O2 O3 O4 O5 O2 O3 O4 O5
4 5 2.506 1.442 1.975 3.392 8916 6053 5722 5687
5 7 142.137 112.273 164.691 259.418 434776 312476 302708 300832

time per step is more than compensated by the reduction in the number of required steps.
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The minimum energy configuration for four particles in 2D is shown in Fig. 6.20. From Fig. 6.20,

Figure 6.20: Minimum energy configuration of four particles in 2D, where the pairwise particle
interaction is modeled by the Lennard-Jones potential. Note the tilt of the major axis. It avoids that
the middle two particles have the same 𝑥 position, which would otherwise yield two ambiguous
numbering schemes. Interestingly, the minimum energy configuration is not a square but a rhombus.

the configuration is indistinguishable from two connected equilateral triangles. Tab. 6.6 reveals

the distances between the individual particles and the difference between the minimum energy

Lennard-Jones configuration and two connected equilateral triangles. It also includes the resulting

Table 6.6: Verified global optimization results for the minimum energy configurations of four
particles in 2D, where the pairwise particle interaction is modeled by the Lennard-Jones potential
(see Sec. 6.2.9). The distance 𝑟𝑖 𝑗 between particle 𝑝𝑖 and 𝑝 𝑗 emphasize the difference to the closest
packing structure. The variable 𝑣𝑥,𝑙 is the 𝑥 distance between particles 𝑝𝑙 and 𝑝𝑙+1. The variable
𝑣𝑦,𝑙 is the 𝑦 position of particle 𝑝𝑙 . Note that 𝑣𝑦,𝑘 is not a variable but the constant 𝜖𝑦 and that 𝑣𝑦,1
is not defined because 𝑦1 = 0.

𝑘 𝑖 𝑗 𝑟𝑖 𝑗

4 1 2 0.998012419
220

4 1 3 0.998012478
162

4 1 4 1.726251685
264

4 2 3 1.002083083
2785

4 2 4 0.998012478
162

4 3 4 0.998012419
220

𝑘 † 𝑙 𝑣★†,𝑙
4 x 1 0.70590670

42
4 x 2 0.25679488

60
4 x 3 0.70590670

42
4 y 2 0.70549607

581
4 y 3 −0.26312521

495
4 y 4 0.44237086
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variables of the optimization problem as well as the vertical offset of the last particle 𝜖𝑦.

Compared to two equilateral triangles, the minimum energy Lennard-Jones configuration brings

the outermost particles closer together, which drives the two particles in the middle (𝑝2 and

𝑝3) slightly apart. This ‘squishing’ of an equidistance structure to yield the minimum energy

Lennard-Jones configuration could already be observed in the 1D minimum energy configurations.

This is possible because incremental changes of the distance between particles from the optimal

distance 𝑟★ = 1 come at a lower cost to the overall potential than the benefit of reducing the distance

between to particles with 𝑟𝑖 𝑗 > 1.

For five particles in 2D, this is ‘squishing’ can also be observed. Fig. 6.21, which visualizes the

minimum energy configuration is again barely distinguishable from the three equilateral triangles.

The distances between the individual particles, provided by Tab. 6.7, emphasize the ‘squishing’.

Figure 6.21: Minimum energy configuration of five particles in 2D, where the pairwise particle
interaction is modeled by the Lennard-Jones potential.

Tab. 6.7 also provides the values of the optimized variables and the vertical offset of the last particle

𝜖𝑦. The first and last particles move closer together to a distance below two. Particles two and four

are pulled downwards, reducing their distance to each other and their distance to the first and last

particle. Particle three, which is the one in the middle of the configuration, does something special.

It preserves the ideal distance of 1 as well as possible with the upper two particles 𝑝2 and 𝑝4.
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Table 6.7: Verified global optimization results for the minimum energy configurations of five
particles in 2D, where the pairwise particle interaction is modeled by the Lennard-Jones potential
(see Sec. 6.2.9). The distance 𝑟𝑖 𝑗 between particle 𝑝𝑖 and 𝑝 𝑗 emphasize the difference to the closest
packing structure. The variable 𝑣𝑥,𝑙 is the 𝑥 distance between particles 𝑝𝑙 and 𝑝𝑙+1. The variable
𝑣𝑦,𝑙 is the 𝑦 position of particle 𝑝𝑙 . Note that 𝑣𝑦,𝑘 is not a variable but the constant 𝜖𝑦 and that 𝑣𝑦,1
is not defined because 𝑦1 = 0.

𝑘 𝑖 𝑗 𝑟𝑖 𝑗

5 1 2 0.998007224
6996

5 1 3 0.996784635
187

5 1 4 1.726795218
4649

5 1 5 1.993561902
129

5 2 3 1.000010583
190

5 2 4 0.996108205
7773

5 2 5 1.726795224
4643

5 3 4 1.000010601
171

5 3 5 0.996784619
203

5 4 5 0.998007242
6977

𝑘 † 𝑙 𝑣★†,𝑙
5 x 1 0.30127457

13
5 x 2 0.67279160

27
5 x 3 0.30003744

09
5 x 4 0.67286863

27
5 y 2 0.95144745

14
5 y 3 0.21160125

087
5 y 4 1.16553960

26
5 y 5 0.42847346

For six particles, the computation times on a single machine are very long. Accordingly, parallel

computations are very helpful. COSY-GO is implemented in a way that easily allows for parallel

computations using MPI. A critical parameter of the parallel computations is the time between

processor communication and the associated load balancing. After this time, the processors exchange

their remaining domain boxes and redistribute them. They also share their most recent cutoff value.

If the time between communication is chosen too long, some processors will run out of work

while others still have a lot of boxes to evaluate. If the time is chosen too short, too much of the

computation time is wasted on communication.

The time for communication depends on multiple factors. Each processor runs the same repetitive

code with different content. At some point in the repetitive process, the code checks if it is time to

communicate. If it is time to communicate, the processor gathers all the data for communication

and waits for all the other processors to do the same. The exchange of data only happens when all

processors are ready for it. The more processors there are, the longer the potential wait time. The

wait time becomes additionally problematic if the computation steps in the repetitive process take a
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lot of time since it reduced the frequency of checking whether it is time to communicate. High-order

Taylor Model evaluation can increase the time for individual calculation steps in the process.

To evaluate a good time between communications 𝑡com for order three calculations, we investigate

the optimization for six particles in 2D for multiple 𝑡com on 64 cores on NERSC (see Tab. 6.8).

Table 6.8: Performance of verified global optimization using COSY-GO with LDB/QFB enabled
and stopping condition 𝑠min = 1E-6 on minimum energy search of a two dimensional configuration
of six particles, where the particle interaction energy is modeled by the Lennard-Jones potential.
The Taylor Model orders are denoted by ‘O’. The computation is run in parallel on 64 cores on
NERSC using different times between communication 𝑡com.

𝑡com [s] computation time [s] steps
0.25 1497.9 152156157
0.5 1283.1 153261678
1 1267.0 152479475
2 1262.1 152242640
3 1254.0 152327673
4 1300.1 152867144

A good time between communications lies somewhere in the range from one to three seconds.

This analysis is used for the optimization of the configuration with more than six particles. Specifically,

we chose 𝑡com = 3 s for parallel computations on 64 cores on NERSC.

In Fig. 6.22, the minimum energy Lennard-Jones configuration of six particles in 2D is illustrated.

This structure is composed of four almost equilateral triangles. Connecting the points as done in

Fig. 6.22 makes the shape look like an envelope.

Tab. 6.9 yields the distances between the particles in the minimum energy configuration and

the associated variables of the optimization problem. In the corresponding triangle structure, there

are nine unit distances, four distances of
√

3 from the height of two stacked triangles, and two

distances of value two. As we already saw previously, distances larger than the optimal unit distance

are shorter in the minimum energy configuration at the cost of the optimal unit distances slightly

diverting from one to either smaller or larger values. The symmetry of the configuration is captured

in the symmetry of the values in the left table of Tab. 6.9. Note that the only two connections that

do not have a symmetric partner are the distances between 𝑝1 and 𝑝5, and 𝑝2 and 𝑝6.
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Figure 6.22: Minimum energy configuration of six particles in 2D, where the pairwise particle
interaction is modeled by the Lennard-Jones potential.

The minimum energy Lennard-Jones configuration for seven particles in 2D is highly symmetrical,

as Fig. 6.23 illustrates. It is a regular hexagon with a particle at each of the edges and one particle

right in the middle.

This symmetry is further supported by the values for the distances between the individual

particles in Tab. 6.10. The table also shows the optimized variables.

The configuration is equivalent to an equilateral hexagon with a side length of roughly 0.996434.

The results of the bounds on the minimum energy of the minimum energy configurations in 2D

are listed in Tab. 6.11.

As for the symmetric 1D optimization in Sec. 6.2.8, the cluster effect due to the floating-point

accuracy occurs. Luckily, the two boxes of the calculation of seven particles could easily be

summarized as they are right next to each other in 𝑣𝑦,4.

To calculate configurations with more particles, it is reasonable to increase the minimum side
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Table 6.9: Verified global optimization results for the minimum energy configurations of six
particles in 2D, where the pairwise particle interaction is modeled by the Lennard-Jones potential
(see Sec. 6.2.9). The distance 𝑟𝑖 𝑗 between particle 𝑝𝑖 and 𝑝 𝑗 emphasize the difference to the closest
packing structure. The variable 𝑣𝑥,𝑙 is the 𝑥 distance between particles 𝑝𝑙 and 𝑝𝑙+1. The variable
𝑣𝑦,𝑙 is the 𝑦 position of particle 𝑝𝑙 . Note that 𝑣𝑦,𝑘 is not a variable but the constant 𝜖𝑦 and that 𝑣𝑦,1
is not defined because 𝑦1 = 0.

𝑘 𝑖 𝑗 𝑟𝑖 𝑗 𝑘 𝑖 𝑗 𝑟𝑖 𝑗

6 1 2 1.000179827
337 6 2 6 1.728422485

0325
6 1 3 0.992883667

2721 6 3 4 0.995908620
7690

6 1 4 1.726601011
599805 6 3 5 0.992883862

2527
6 1 5 1.711131111

29095 6 3 6 0.996597556
5718

6 1 6 1.989451746
49154 6 4 5 1.726600834

599983
6 2 3 0.996597061

6212 6 4 6 0.998217628
6406

6 2 4 0.998217474
6561 6 5 6 1.000179832

332
6 2 5 1.989451208

49692

𝑘 † 𝑙 𝑣★†,𝑙
6 x 1 0.30072759

09
6 x 2 0.66862470

31
6 x 3 0.30764243

02
6 x 4 0.35044932

856
6 x 5 0.31717329

265
6 y 2 0.95389864

27
6 y 3 0.21488168

22
6 y 4 1.16208244

03
6 y 5 −0.52857890

57
6 y 6 0.41997833

length 𝑠min of boxes that are split.

The values for the lower bound on the inter-particle distance 𝑟LB are listed in Tab. 6.12.
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Figure 6.23: Minimum energy configuration of seven particles in 2D, where the pairwise particle
interaction is modeled by the Lennard-Jones potential.
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Table 6.10: Verified global optimization results for the minimum energy configurations of seven
particles in 2D, where the pairwise particle interaction is modeled by the Lennard-Jones potential
(see Sec. 6.2.9). The distance 𝑟𝑖 𝑗 between particle 𝑝𝑖 and 𝑝 𝑗 emphasize the difference to the closest
packing structure. The variable 𝑣𝑥,𝑙 is the 𝑥 distance between particles 𝑝𝑙 and 𝑝𝑙+1. The variable
𝑣𝑦,𝑙 is the 𝑦 position of particle 𝑝𝑙 . Note that 𝑣𝑦,𝑘 is not a variable but the constant 𝜖𝑦 and that 𝑣𝑦,1
is not defined because 𝑦1 = 0.

𝑘 𝑖 𝑗 𝑟𝑖 𝑗 𝑘 𝑖 𝑗 𝑟𝑖 𝑗

7 1 2 0.996434890
384 7 3 4 0.996434894

217
7 1 3 0.996435167

4108 7 3 5 1.992869787
8762

7 1 4 0.996435421
3817 7 3 6 0.996435464

3811
7 1 5 1.725876314

4522 7 3 7 1.725876314
4522

7 1 6 1.725876746
4090 7 4 5 0.996435058

4381
7 1 7 1.992870842

67707 7 4 6 0.996435130
4017

7 2 3 1.725875849
4987 7 4 7 0.996435458

3853
7 2 4 0.996435257

4145 7 5 6 1.725875849
4987

7 2 5 0.996435464
3811 7 5 7 0.996435167

4108
7 2 6 1.992870259

68290 7 6 7 0.996434890
384

7 2 7 1.725876746
4090

𝑘 † 𝑙 𝑣★†,𝑙
7 x 1 0.30518721

666
7 x 2 0.36368640

578
7 x 3 0.30518717

670
7 x 4 0.30518717

670
7 x 5 0.36368640

578
7 x 6 0.30518721

666
7 y 2 0.94854798

61
7 y 3 −0.73857374

34
7 y 4 0.20997444

08
7 y 5 1.15852226

186
7 y 6 −0.52859946

09
7 y 7 0.41994852

Table 6.11: Verified global optimization results on the minimum energy 𝑈★ of a two dimensional
configuration of 𝑘 particles, where the particle interaction energy is modeled by the Lennard-Jones
potential. The optimization was performed using COSY-GO with LDB/QFB enabled and the
stopping condition 𝑠min = 1E-6.

𝑘 𝑛var 𝑛pairs 𝑛fin,boxes 𝑉0/𝑉fin 𝑈UB 𝑈★

4 5 6 1 1.2E34 0.927297668038409 0.92657914153731
682

5 7 10 1 2.8E47 2.823589476701818 2.82197624549239
164

6 9 15 1 4.2E61 5.647178953403635 5.64172565099515
415

7 11 21 2 4.1E74 8.470768430105453 8.46513348231335
195

Table 6.12: Results for the calculated lower bounds 𝑟LB on the minimum distance between particles
in a 2D configuration of 𝑘 particles (see Eq. (6.11) and Sec. 6.2.9).

𝑘 𝑟LB
4 0.893678512
5 0.865602947
6 0.848441067
7 0.848380848
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6.3 Verified Stability Analysis of Dynamical Systems

Verified calculations are particularly important for the stability analysis of dynamical systems.

With a verified upper bound on the rate of divergence, a system’s long term stability can be rigorously

estimated. Both of the previously discussed applications in Chapter 4 and Chapter 5 will benefit to

different degrees from such verified stability estimates.

6.3.1 The Potential Implications for the Bounded Motion Problem

For the bounded motion orbits under zonal perturbation in the Earth’s gravitational field (see

Chapter 4), a stability estimate is the maximum rate at which two bounded orbits drift apart. Below

we want to list aspects to consider for the calculation of such a verified upper bound on the rate of

divergence.

The bounded motion conditions from Sec. 4.2.5 require that the average nodal period 𝑇𝑑 and the

average drift of the ascending node ΔΩ of two bounded orbits are the same. In other words, two

orbits drift apart if those two averaged quantities are not the same for the two orbits. Additionally,

each of the orbits might be diverging on its own by slowly increasing or decreasing its distance from

the Earth. A verified upper bound on each of those diverging factors must be determined to combine

them to an overall verified upper bound on the rate at which the two bounded orbits drift apart.

An upper bound on the radial drift rate of the bounded orbits moving apart is determined by

the maximum difference between the individual radial drifts of each of the bounded orbits. The

normal form defect of the radial phase space can be used as a measure for this radial drift. However,

both the maximum and the minimum normal form defect of each orbit are relevant to determine the

worst-case scenario of one of the orbits decreasing its amplitude and one of the orbits increasing its

amplitude.

The longitudinal drift rate of the bounded orbits moving apart is determined by the difference in

the average revolution frequency of the orbital planes around the symmetry axis. The revolution

frequency is proportional to the drift of the ascending node ΔΩ per nodal period 𝑇𝑑 . Since both of
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these quantities are oscillating at the same rate, the average revolution frequency can be calculated

as the ratio of the average drift of the ascending node ΔΩ and the average nodal period 𝑇𝑑 .

Even if the orbital planes of the two bounded orbits are not radially or longitudinally drifting

apart, the satellites on those orbits might still be drifting apart due to different average nodal periods,

which constitutes the third drift factor.

These three factors have to be taken into account and rigorously estimated to calculate an overall

maximum drift rate. The combination of the individual factors is not trivial since they are not

independent of each other, e.g., the individual radial drifts of the orbits have nonlinear influences

on the bounded motion quantities ΔΩ and 𝑇𝑑 . Global verified optimization of the overall drift

rate is required to determine the maximum rate of divergence for any possible combination of the

individual radial drift rates.

Given that the overall maximum drift rate is formally defined, we need to determine verified

versions of the involved quantities. Accordingly, the starting point of the rigorous calculation of the

maximum drift rate is a rigorous map of the system.

The map is based on the equations of motion of the system, which include the zonal coefficients

of the Earth’s gravitational potential based on measurements. To be rigorous is has to be decided if

these coefficients are assumed to be exact or if the uncertainty about these coefficients is considered

in the calculation. Given that the approach from Chapter 4 considers the zonal problem, ignoring

sectional and tesseral terms, it seems reasonable to consider an idealized system where these

coefficients are assumed to be exact.

In the next step, the verified integration of the equations of motion is required to calculate a

verified map representation of the system. In our approach (see Chapter 4), we express the vertical

momentum component 𝑣𝑧 in terms of the other variables and system parameters. This operation

includes the calculation of an inverse, which requires special methods to be performed rigorously.

For the projection of the transfer map onto the Poincaré surface representing a generalized ascending

node state, another rigorous computation of an inverse is required. Additionally, every step of

the normal form based averaging procedure from Sec. 4.3.4 for the determination of the averaged
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quantities ΔΩ and 𝑇𝑑 has to be performed rigorously. The approach then calls for another inversion

to calculate the constants of motion H𝑧 and 𝐸 as a function of the phase space variables such that

the averaged bounded motion quantities match between any two orbits in the phase space.

If all those procedures are performed rigorously, one can calculate rigorous bounds on the

normal form defect of the system, which can then be used together with the rigorous estimations of

the averaged quantities ΔΩ and 𝑇𝑑 to calculate the rigorous overall rate of divergences.

In summary, much effort is required to establish a verified upper bound on the maximum rate at

which bounded orbits of the zonal problem drift apart. However, the practical implications of such

an estimate are limited since the approach does not consider the fully perturbed system. Accordingly,

we want to focus our attention on the application of a rigorous stability analysis for the system

discussed in Chapter 5.

6.3.2 The Implications for the Stability Analysis of the Muon 𝑔-2 Storage Ring

A verified stability estimate of the muon 𝑔-2 storage ring is the verified maximum rate at which

particles escape the storage region of the storage ring. The number of such escaped particles is very

important for this high precision experiment, because for reasons not to be discussed here, they

will introduce a systematic bias for the average polarization of the remaining particles, which will

influence the overall result of the measurement. Below we want to discuss the aspects to consider for

the calculation of such a verified upper bound on the rate of divergence and rigorously compute such

a verified stability estimate in form of the normal form defect using Taylor Model based verified

global optimization.

The normal form defect analysis will be conducted using a nonverified map as more research is

required to calculate a fully verified phase space map of the storage ring. As already mentioned

above, there are many intricacies to consider for a fully rigorous map calculation. A major challenge

regarding the verified calculation of the storage ring map is the verified representation of every

storage ring component, including all its perturbations, e.g., perturbations from ESQ fringe fields

and imperfection in the magnetic field. To assess whether our computation order is high enough –
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the main numerical error which is not based on measurement errors – we estimate inaccuracies in

the map by computing maps of various orders and show that these are sufficiently small and will not

affect the motion.

Accordingly, we will use the nonverified map from Chapter 5 and assume that it is exact. For

comparison, we will additionally analyze a storage ring map that considers an ESQ voltage of

17.5 kV instead of 18.3 kV. The tunes of particles under the influence of an ESQ voltage of 17.5 kV

are further away from the vertical 1/3 resonance tune. Accordingly, we expect less diverging

behavior for this map compared to the 18.3 kV map.

The goal is to rigorously analyze the stability of the entire five dimensional storage phase

space (𝑥, 𝑎, 𝑦, 𝑏, 𝛿𝑝) of the storage ring maps using verified global optimization of the normal form

defect. In Sec. 6.3.3, we specify the normal form defect function as the objective function of the

optimization problem. To be able to distinguish the diverging behavior in different areas of the

storage region, we divide the five dimensional space into partitions. Each of those partitions is

then used as the search domain for the verified global optimizer to find the maximum normal form

defect in it. In Sec. 6.3.4, we present the onion layer approach [22, 8], which partitions the storage

region according to the dynamics in the phase space. Next, we illustrate the complexity and strong

nonlinearity of the normal form defect in multiple such onion layers and how it changes for different

phase space regions and ESQ voltages (see Sec. 6.3.5). In Sec. 6.3.6, the results of the verified

global optimization for the two maps are presented and compared to each other and the results of a

nonverified analysis.

To understand the differences between the map for 17.5 kV and 18.3 kV, we present a tune shift

analysis of the map for 17.5 kV. In Sec. 6.3.8, we show how different order of the normal form

transformation affect the normal form defect.

6.3.3 The Normal Form Defect as the Objective Function for the Optimization

In Sec. 2.4, the normal form defect for the propagation of a state ®𝑧 with a map M was introduced

as the difference between the normal form radius of the mapped state M(®𝑧) and the normal form
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radius of the original state ®𝑧. If the motion occurs in multiple phase space dimensions, there is some

ambiguity to the term ‘normal form radius’ and the associated normal form defect.

From the definition and algorithms of normal form transformations discussed in Sec. 2.3 and

Sec. 2.4, it follows that there is a normal form radius for each normal form phase space. Each of

these radii, yields the radius of the circular motion in this particular normal form phase space with

𝑟NF,𝑖 (®𝑧0) =
√︂(

𝑞NF,i (®𝑧0)
)2

+
(
𝑝NF,i (®𝑧0)

)2
. (6.55)

Accordingly, as defined in Sec. 2.4, there is a normal form defect defined for each of those

normal form radii, with

𝑑NF,𝑖 (®𝑧0) = 𝑟NF,𝑖 (M (®𝑧0)) − 𝑟NF,𝑖 (®𝑧0) . (6.56)

Additionally, we define the (overall) normal form radius of the motion as the euclidean

composition of the individual normal form radii, with

𝑟NF (®𝑧0) =
√︄∑︁

𝑖

𝑟2
NF,𝑖 (®𝑧0). (6.57)

This definition of the (overall) normal form radius corresponds to the following definition for the

(overall) normal form defect

𝑑NF (®𝑧0) = 𝑟NF (M (®𝑧0)) − 𝑟NF (®𝑧0) . (6.58)

Unless stated otherwise, we will be using and referring to the (overall) normal form radius and the

(overall) normal form defect.

6.3.4 The Search Domain in the Form of Onion Layers

The onion layer approach describes a way to partition the phase space regions and determine the

associated variables for the global optimization. For the partitioning, it is important to consider

the dynamics of the system. In Chapter 5, we saw that the main characteristics of the phase space

motion in the storage ring are the oscillation amplitudes and the momentum offset 𝛿𝑝. Accordingly,
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we want to calculate the verified stability estimates on the rate of divergence based on partitions

categorized by those criteria.

While the partitioning according to the momentum offset 𝛿𝑝 is straightforward, defining the

partitions of different phase space amplitudes is not, because the phase space curve of a particle

with a certain amplitude forms a nonlinearly distorted elliptical shape in the original phase space.

The onion layer approach (see Fig. 6.24) partitions the phase space along those nonlinearly distorted

elliptical phase space curves using the normal form transformation.
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Figure 6.24: The left and the middle plot show the representation of an onion layer (black region) in
regular phase space coordinates. The thickness of the onion layer is determined by the range in
𝑟NF,1 and 𝑟NF,2 as well as the range in 𝛿𝑝. For this particular example, we set 𝛿𝑝 to a fixed value of
𝛿𝑝 = 0% instead of a range. The range in the normal form radii is given by 𝑟NF,1 ∈ [0.15, 0.25] and
𝑟NF,2 ∈ [0.7, 0.75]. Note that the thickness in 𝑟NF,1 is twice the thickness in 𝑟NF,2. Accordingly,
the projection of the onion layer into the radial phase space (𝑥, 𝑎) appears roughly twice as thick as
the projection into the vertical phase space (𝑦, 𝑏).

As illustrated in Fig. 6.24, the normal form coordinates allow us to partition by amplitude. They

are our best approximation of mapping the orbital phase space behavior onto circles. Accordingly, we

can use the normal form description of the motion to define the onion layers for the global optimization.

Specifically, we chose the normal form radii 𝑟NF,1 and 𝑟NF,2 as well as the corresponding normal

form phase space angles 𝜙NF,1 and 𝜙NF,2 as the optimization variables. Additionally, the momentum

offset 𝛿𝑝 is also considered an optimization variable.

The normal form phase space variables (𝑞NF,1, 𝑝NF,1) and (𝑞NF,2, 𝑝NF,2) are expressed in terms

196



of the polar optimization variables with

©«
𝑞NF,1

𝑝NF,1

ª®®¬ = 𝑟NF,1
©«
cos

(
𝜙NF,1

)
sin

(
𝜙NF,1

) ª®®¬ and
©«
𝑞NF,2

𝑝NF,2

ª®®¬ = 𝑟NF,2
©«
cos

(
𝜙NF,2

)
sin

(
𝜙NF,2

) ª®®¬ . (6.59)

The inverse normal form transformation A−1 is then used as a vehicle to express the relevant

phase space regions in original phase space (𝑥, 𝑎, 𝑦, 𝑏) in terms of the optimization variables

(𝑟NF,1, 𝜙NF,1, 𝑟NF,2, 𝜙NF,2, 𝛿𝑝).

Moving along the angles 𝜙NF,1 and 𝜙NF,2 will approximately move along the phase space curve

in the original coordinates. Accordingly, the search domain in those optimization variables is always

[−𝜋, 𝜋]. The domain on the normal form radii and the momentum offset determines the thickness

of the onion layer, as illustrated in Fig. 6.24, and is set to 0.04 for normal form radii and to 0.04% in

the momentum offset space.

6.3.5 The Complexity and Nonlinearity of the Normal Form Defect Function

In Chapter 5, we analyzed the normal form defect that individual particles encounter during

stroboscopic tracking. In other words, we only probed individual phase space points of a particle’s

orbit for its normal form defect. We found that muons that encounter phase space regions with

larger normal form defects are more likely to get lost (see Fig. 5.12). However, the probing only

yields an incomplete picture of the normal form defect that a particle can potentially encounter.

Fig. 6.25 illustrates how much the normal form defect can vary for fixed normal form amplitudes

that approximately represent the normal form defect landscape along the phase space curve of a

single particle.

Fig. 6.25 illustrates the radial normal form defect of an onion layer of zero thickness, which is

given by a single point in the 3D onion layer thickness space of 𝑟NF,1, 𝑟NF,2, and 𝛿𝑝. The landscape

is characterized by highly nonlinear behavior with many local minima and maxima, which are

extreme points of very steep valleys and hills. Accordingly, the stroboscopic normal form defect

probing while tracking can significantly underestimate the maximum normal form defect of an orbit
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Figure 6.25: Normal form defect landscape of the radial phase space in 𝜙NF,1 and 𝜙NF,2 for fixed
normal form amplitudes of 𝑟NF,1 = 0.4 and 𝑟NF,2 = 0.4, and with 𝛿𝑝 = 0%. The underlying map
considers an ESQ voltage of 18.3 kV.

in a certain phase space region, which motivates a rigorous analysis of the normal form defect for

those phase space regions.

Before we discuss the optimization process and its results, we look at different normal form defect

landscapes to emphasize how much the landscapes change in shape and magnitude for different

normal form phase space points.

In Fig. 6.26 and Fig. 6.27, the normal form defect landscapes in the vertical and radial direction
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are shown for maps considering an ESQ voltage of 18.3 kV and 17.5 kV, respectively.
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Figure 6.26: The normal form defect landscape of the radial (left) and vertical (right) phase space for
multiple onion layers of zero thickness, which are characterized by (𝑟NF,1, 𝑟NF,2, 𝛿𝑝). The top row
corresponds to (0.1, 0.2, 0.24%), the middle row corresponds to (0.2, 0.05, 0.24%), and the bottom
row corresponds to (0.56, 0.72, 0.04%). The underlying map considers an ESQ voltage of 18.3 kV.
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Figure 6.27: The normal form defect landscape of the radial (left) and vertical (right) phase space for
multiple onion layers of zero thickness, which are characterized by (𝑟NF,1, 𝑟NF,2, 𝛿𝑝). The top row
corresponds to (0.1, 0.2, 0.24%), the middle row corresponds to (0.2, 0.05, 0.24%), and the bottom
row corresponds to (0.56, 0.72, 0.04%). The underlying map considers an ESQ voltage of 17.5 kV.

Comparing the normal form defect of the radial and vertical phase space clearly shows the
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different orders of magnitude at play for those particular onion layers of zero thickness. The normal

form defect of the vertical phase space is about 1.5 orders of magnitude larger than the normal form

defect of the radial phase space.

The comparison between Fig. 6.27 and Fig. 6.26 shows something rather fascinating. Even

though the normal form defect landscapes change so drastically for different phase space positions,

they are very similar for the two maps at the same normal form positions. The magnitude of the

normal form defect is usually higher for the 18.3 kV, but the example in the bottom row shows that

there are also normal form phase space regions where it is the other way round.

The top row and middle row of Fig. 6.27 and Fig. 6.26 show phase space points with the same

momentum offset and roughly the same overall normal form radius. While the magnitude of the

normal form defects in the radial and vertical direction is roughly the same, the shape of the normal

form defect landscape differs tremendously. For the global optimization, this means that the objective

function looks vastly different for each of the onion layer search domains.

6.3.6 The Results of the Verified Global Optimization of the Normal Form Defect

As mentioned in Sec. 6.3.4, we partition the search space into onion layers of the size 0.04 × 2𝜋 ×

0.04 × 2𝜋 × 0.04% in (𝑟NF,1, 𝜙NF,1, 𝑟NF,2, 𝜙NF,2, 𝛿𝑝). We cover the entire relevant 𝛿𝑝 space from

−0.22% to +0.42% (see Fig. 5.10), which yields 16 partitions of size 0.04%.

For each of those 16 pieces, we additionally partition the (𝑟NF,1, 𝑟NF,2) space into boxes of size

0.04×0.04. To determine which of those boxes represent phase space behavior within the collimator

region, we probe the bottom left corner of each box, namely, the point with the lowest amplitudes

(𝑟NF,1,min, 𝑟NF,2,min) and check if those lowest amplitudes are already outside the collimator region

in the original phase space coordinates. For the probing, we take 30 × 30 × 2 testing points in

𝜙NF,1, 𝜙NF,2, 𝛿𝑝 and map them back into the original phase space (𝑥, 𝑎, 𝑦, 𝑏) using the inverse

normal form transformation A−1. A box is only analyzed if all of the 1800 probing points satisfy√︁
𝑥2 + 𝑦2 < 0.045 mm.

To benchmark the verified analysis, we also present a nonverified normal form defect analysis of
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the same onion layers. The nonverified analysis is based on probing using 3600 well-chosen probing

points for each onion layer. This probing approach is used in a verified form as a method to obtain a

good cutoff value for the global optimizer. Accordingly, the nonverified analysis provides a lower

bound on the maximum normal form defect, while the verified analysis constitutes an upper bound.

The results on the following pages (see Fig. 6.28 to Fig. 6.31) are ordered such that the nonverified

probing analysis can be compared to the verified global optimization by switching back and forth

between pages. Additionally, the two verified normal form defect analyses for the map with an ESQ

voltage of 18.3 kV and 17.5 kV can be compared the same way.

The tune shifts of the 17.5 kV map in Fig. 6.32 to Fig. 6.34 are of similar magnitude and

complexity as the tune shifts of the 18.3 kV map in Fig. 5.7 to Fig. 5.9. However, their absolute

values are in lower vertical tune ranges and therefore further away from the vertical low-order 1/3

resonance tune. Even under the combined influence of both the radial and vertical amplitude, as

well as the momentum offset, none of the tunes of the 17.5 kV map cross the vertical 1/3 resonance

tune. In contrast, almost for every momentum offset there is a combination of radial and vertical

amplitudes that crosses the vertical 1/3 resonance tune for the 18.3 kV map.

Accordingly, both the tune analysis as well as the normal form defect analysis could show that

the map with an ESQ voltage of 18.3 kV yields more potential divergence and instability.

The inner white onion layers have a maximum normal form defect below 10−5. Accordingly,

even in the worst case, it takes at least 4000 turns to cross the respective onion layer. It takes at least

400 turns to cross a yellow onion layer by the same measure and at least 40 turns to cross an orange

onion layer. Red onion layers take at least 12 turns to cross, and black onion layers can, in the worst

case, be crossed in fewer turns.

However, those turn numbers are a verified underestimation of the minimum number of turns it

takes to cross a respective onion layer. The estimation assumes that the maximum normal form

defect of the onion layer is encountered in every turn. To put this underestimation in perspective

we take a look at the island patterns from Fig. 5.30, which only differ in their vertical amplitude

(𝑟NF,1 ≈ 0, 𝛿𝑝 = 0.126%). Out of the five island sizes, we consider the largest, the smallest, and the
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Figure 6.28: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 17.5 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.29: Verified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 17.5 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.30: Verified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV. The individual plots show different
momentum ranges, clarified by the label at the top of each graph. The color scheme corresponds to
the normal form defect of the specific onion layer. The white boxes for lower normal form radii
indicate a normal form defect below 10−5. The yellow boxes denote normal form defects up to 10−4.
The orange boxes correspond to normal form defects up to 10−3. The red boxes denote normal form
defects up to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion
layer corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.31: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV. The individual plots show different
momentum ranges which are clarified by the label at the top of each graph. The color scheme
corresponds to the normal form defect of the specific onion layer. The white boxes for lower normal
form radii indicate a normal form defect below 10−5. The yellow boxes denote normal form defects
up to 10−4. The orange boxes correspond to normal form defects up to 10−3. The red boxes denote
normal form defects up to 10−2.5, and the black boxes indicate normal form defects larger than that.
Each onion layers corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04%
in 𝛿𝑝.

206



third largest/smallest referred to as the medium sized one.

The smallest island is very close to the period-3 fixed point. Its normal form radius only varies

slightly between 0.925 and 0.932. It takes roughly 250 turns to get from the lowest normal form

radius to the largest and another 250 turns to get back. This corresponds to an average normal

form defect of 2.8E-5. The corresponding verified analysis of the respective onion layer yields a

maximum normal form defect of 8.8E-3, which is roughly larger by a factor of 300.

The medium sized island varies between normal form radii of 0.820 and 1.028 every roughly 300

turns, which corresponds to an average normal form defect of 6.9E-4. The corresponding verified

analysis of the respective onion layers yield maximum normal form defects between 1.3E-3 and

1.6E-2, which are roughly larger by a factor of two to 23.

The largest sized island varies between normal form radii 0.773 and 1.066 every roughly

660 turns, which corresponds to an average normal form defect of 4.4E-4. The verified analysis

guarantees that the onion layer [0.8, 0.84] in 𝑟NF,2 can not be crossed in less than 29.7 turns. the

largest island crosses this onion layer in 301 turns. For the onion layer [0.84, 0.88] in 𝑟NF,2, the

verified analysis predicts it can not be crossed in less than 15.7 turns. The largest island crosses it in

104 turns. The onion layer [0.88, 0.92] in 𝑟NF,2 is crossed in 36 turns while the verified analysis

predicts a minimum of 8.3 turns. For the onion layer [0.92, 0.96] in 𝑟NF,2, it is 23 turns which is

more than the predicted minimum of 4.5 turns, and for the onion layer [0.96, 1] in 𝑟NF,2, it takes the

large island 20 turns to cross, while the verified analysis predicts a minimum of 2.5 turns.

As we saw in this analysis, the dynamics in a single onion layer can vary significantly. Some

orbits remain in an onion layer indefinitely, like the smallest island. In contrast, others are transported

through it with sometimes less than a factor ten between the worst case divergence and the actual

rate of divergence. However, for those island patterns, the same onion layer does not only transport

the particle outward but also transports it back inwards at the same rate. In short, it is possible to

relate the quantitative aspects of the normal form defect analysis to the actual dynamics within the

onion layer, in particular, the potential worst case dynamics.

The global normal form defect analysis is also very powerful for the qualitative stability analysis
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of different storage ring configurations. A comparison of Fig. 6.29 and Fig. 6.30 yields obvious

differences between the verified normal form defect of the map with an ESQ voltage of 17.5 kV

and the map with an ESQ voltage of 18.3 kV. There are clearly more diverging regions with a

larger maximum normal form defect for 18.3 kV in Fig. 6.30 than there are for the 17.5 kV map in

Fig. 6.29.

Note that the individual onion layers of the 18.3 kV map in Fig. 6.30 and the 17.5 kV map in

Fig. 6.29 do not necessarily correspond to the same phase space regions in the (𝑥, 𝑎, 𝑦, 𝑏) phase

space. Because we calculate a normal form transformation for each map, the representation of the

relevant (𝑥, 𝑎, 𝑦, 𝑏) phase space in normal form space can be slightly different for the two maps.

However, each of the 16 plots show the exact same viable (𝑥, 𝑎, 𝑦, 𝑏) phase space in the normal

form coordinates just with a slightly different scaling in 𝑟NF,1 and 𝑟NF,2. Accordingly, comparing

the color distributions for each of the 16 plots between the two maps is a valid measure to compare

the stability of the two storage ring configurations.

As already discussed in Chapter 5, the vertical 1/3-resonance tune and its associated period-3

fixed point structures for the simulation using an ESQ voltage of 18.3 kV were a major loss and

instability factor. For the map with an ESQ voltage of 17.5 kV, the tunes a further away from the

vertical 1/3-resonance tune as Fig. 6.32 to Fig. 6.34 illustrate.
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Figure 6.32: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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Figure 6.33: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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Figure 6.34: Behavior of combined amplitude dependent tune shifts at multiple momentum offsets.
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6.3.7 Comparison of Nonverified and Verified Normal Form Defect Analysis

Fig. 6.28 and Fig. 6.29 respectively show the nonverified and verified analysis for the map with

an ESQ voltage of 17.5 kV, while Fig. 6.30 and Fig. 6.31 respectively show the verified and the

nonverified analysis for the map with an ESQ voltage of 18.3 kV.

The differences between the nonverified and verified computations are small but visible if one

switches back and forth between the pages. To emphasize the differences between the verifed

and nonverified computations onion layer by onion layer, Fig. 6.36 and Fig. 6.35 illustrate those

differences for 17.5 kV and 18.3 kV, respectively. The differences show the importance of a verified

method to capture each onion layer’s maximum normal form defect, especially for the more diverging

regions.

To show that this difference is not just an artifact of back bounding by the global optimizer,

Fig. 6.37 and Fig. 6.38 illustrates the difference between the upper and the lower bound bound on

the maximum normal form defect for the 17.5 kV map and 18.3 kV map, respectively. Because

they only consists of white boxes, those differences are all smaller than 1E-5 and therefore do not

influence the calculation of the differences between the nonverified and verified evaluation.
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Figure 6.35: Difference between verified normal form defect analysis and nonverified normal form
defect analysis for the phase space storage regions of the muon 𝑔-2 storage ring simulation with an
ESQ voltage of 18.3 kV. The individual plots show different momentum ranges, clarified by the
label at the top of each graph. The color scheme corresponds to the difference of the evaluated
normal form defects of the specific onion layer. The white boxes for lower normal form radii
indicate a difference below 10−5. The yellow boxes denote differences up to 10−4. The orange
boxes correspond to differences up to 10−3. The red boxes denote differences up to 10−2.5, and the
black boxes indicate differences larger than that. Each onion layer corresponds to a 0.04 × 0.04 box
in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.36: Difference between verified normal form defect analysis and nonverified normal form
defect analysis for the phase space storage regions of the muon 𝑔-2 storage ring simulation with an
ESQ voltage of 17.5 kV. The individual plots show different momentum ranges which are clarified
by the label at the top of each graph. The color scheme corresponds to the difference of the
evaluated normal form defects of the specific onion layer. The white boxes for lower normal form
radii indicate a difference below 10−5. The yellow boxes denote difference up to 10−4, the orange
boxes correspond to a differences up to 10−3, the red boxes denote differences up to 10−2.5 and the
black boxes indicate differences larger than that. Each onion layers corresponds to a 0.04 × 0.04 box
in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.37: Difference between the rigorously guaranteed upper bound and the lower bound of the
maximum normal form defect using Taylor Model based verified global optimization. The analysis
is for the phase space storage regions of the muon 𝑔-2 storage ring simulation with an ESQ voltage
of 17.5 kV. The individual plots show different momentum ranges which are clarified by the label at
the top of each graph. The color scheme corresponds to the difference between the upper bound and
the lower bound of the maximum normal form defect of the specific onion layer. The white boxes
indicate a difference below 10−5. Each onion layers corresponds to a 0.04 × 0.04 box in normal
form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.38: Difference between the rigorously guaranteed upper bound and the lower bound of the
maximum normal form defect using Taylor Model based verified global optimization. The analysis
is for the phase space storage regions of the muon 𝑔-2 storage ring simulation with an ESQ voltage
of 18.3 kV. The individual plots show different momentum ranges which are clarified by the label at
the top of each graph. The color scheme corresponds to the difference between the upper bound and
the lower bound of the maximum normal form defect of the specific onion layer. The white boxes
indicate a difference below 10−5. Each onion layers corresponds to a 0.04 × 0.04 box in normal
form space with a thickness of 0.04% in 𝛿𝑝.
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6.3.8 The Analysis of the Effect of Normal Form Transformations of Different Order on the
Normal Form Defect

We use the normal form transformation as a function that provides pseudo-invariants of the motion,

i.e., the normal form radii. By using the normal form transformation up to different orders, we can

analyze the influence of the respective map orders on the dynamics of the system. In Fig. 6.39 to

Fig. 6.31, the nonverified normal form defect analysis is performed for the tenth order map with a

ESQ voltage of 18.3 kV using normal form transformations from order one to order ten.

The normal form defect pictures for a normal form transformation of order five, six, and seven

look identical even when carefully switching between pages. The larges improvement occurs with

the ninth order normal form transformation because it captures large parts of the strong ninth order

nonlinearities of the map caused by the 20th-pole of the ESQ potential.

To further analyze if the tenth order map does indeed capture most of the relevant dynamics, we

produce an eleventh order map and calculate its normal form defect using the tenth order normal

form transformation (see Fig. 6.49). This kind of order increasing analysis is known from nonverified

integrators with step size control. Compared to the tenth order map evaluation with the tenth order

normal form transformation in Fig. 6.31, the eleventh order of the map leads to no visible difference,

which is a good sign and suggests that a tenth order map is sufficient to capture the critical dynamics.

However, this heuristic approach can not guarantee that even higher order maps would also not yield

a significant change. To capture this uncertainty of unknown higher order terms a verified map is

required that includes all higher order errors in its Taylor Model remainder bound.

217



0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

𝑟 N
F,

2
[−0.22%,−0.18%] [−0.18%,−0.14%] [−0.14%,−0.10%] [−0.10%,−0.06%]

𝑟 N
F,

2

[−0.06%,−0.02%] [−0.02%, +0.02%] [+0.02%, +0.06%] [+0.06%, +0.10%]

𝑟 N
F,

2

[+0.10%, +0.14%] [+0.14%, +0.18%] [+0.18%, +0.22%] [+0.22%, +0.26%]

𝑟 N
F,

2

𝑟NF,1

[+0.26%, +0.30%]

𝑟NF,1

[+0.30%, +0.34%]

𝑟NF,1

[+0.34%, +0.38%]

𝑟NF,1

[+0.38%, +0.42%]

Figure 6.39: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 1 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.40: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 2 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.41: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 3 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.42: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 4 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.43: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 5 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.44: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 6 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.45: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 7 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.46: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 8 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.47: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
order 9 instead of the full tenth order. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.48: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
the full tenth order. The individual plots show different momentum ranges, clarified by the label at
the top of each graph. The color scheme corresponds to the normal form defect of the specific onion
layer. The white boxes for lower normal form radii indicate a normal form defect below 10−5. The
yellow boxes denote normal form defects up to 10−4. The orange boxes correspond to normal form
defects up to 10−3. The red boxes denote normal form defects up to 10−2.5, and the black boxes
indicate normal form defects larger than that. Each onion layer corresponds to a 0.04 × 0.04 box in
normal form space with a thickness of 0.04% in 𝛿𝑝.
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Figure 6.49: Nonverified normal form defect for the phase space storage regions of the muon 𝑔-2
storage ring simulation with an ESQ voltage of 18.3 kV using the normal form transformation up to
tenth order and an eleventh order map. The individual plots show different momentum ranges,
clarified by the label at the top of each graph. The color scheme corresponds to the normal form
defect of the specific onion layer. The white boxes for lower normal form radii indicate a normal
form defect below 10−5. The yellow boxes denote normal form defects up to 10−4. The orange
boxes correspond to normal form defects up to 10−3. The red boxes denote normal form defects up
to 10−2.5, and the black boxes indicate normal form defects larger than that. Each onion layer
corresponds to a 0.04 × 0.04 box in normal form space with a thickness of 0.04% in 𝛿𝑝.
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CHAPTER 7

CONCLUSION

We investigated a diverse set of nonlinear systems using normal forms and rigorous differential

algebra methods. The differential algebra framework implemented in COSY INFINITY served as

the backbone of all the methods and techniques in this thesis, and allowed us to establish algorithms

and solutions up to arbitrary order and with floating point accuracy.

The basis of our analysis constituted map representations of the various systems based on the

underlying equations of motion. These stroboscopic descriptions of the dynamics were expanded

around a fixed point corresponding to an equilibrium state of the motion. Using Poincaré projections,

the dimensionality of the system was reduced to the essential components of the system’s dynamics.

For the bounded motion problem in the zonal gravitational field of the Earth in Chapter 4, the

motion was considered within a four dimensional Poincaré surface capturing all ascending node

states. In Chapter 5, the dynamics within the muon 𝑔-2 storage ring were analyzed in transverse

cross sections of the storage ring at multiple azimuthal locations.

The origin preserving maps were then analyzed using high order normal forms to calculate a

description of the phase space dynamics that is rotationally invariant up to calculation order. In

Chapter 3, the normal form algorithm was discussed in full detail using the illustrative example

of the centrifugal governor. In this particular case, the normal form radii, which constitute the

(pseudo-)invariants of the motion up to calculation order produced by the normal form algorithm,

were directly related to the energy of the system up to calculation order. Additionally, the normal

form produced high order functional descriptions of the period of oscillation of the centrifugal

governor arms around their equilibrium angle depending on the amplitude of oscillation and changes

in the rotation frequency of the governor.

For the bounded motion problem, this rotational invariant representation of the phase space

motion provided by the normal form was used to transform the system into action-angle like

coordinates. This allowed us to average the bounded motion quantities while maintaining their
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functional dependence on the constants of motion. DA inversion methods were then used to enforce

the bounded motion conditions and produce parameterized descriptions of the constants of motion,

which yielded entire continuous sets of bounded motion orbits. We illustrated that the resulting

sets of orbits remained bounded for decades and far beyond the practically relevant distances of

formation flying missions.

Our approach can possibly be advanced to the fully gravitationally perturbed case. However, the

associated break of the rotational symmetry makes this already complex system even more complex.

The introduced longitudinal dependence and the loss of the angular momentum component as a

constant of motion increase the dimensionality of the problem by two. Accordingly, pseudo-circular

orbits of the full state are required to expand the fixed point map around. Only further research can

answer if and how the approach can be adjusted to compensate for the loss of a known constant of

motion and the increase in dimensionality.

In our analysis of the dynamics in the muon 𝑔-2 storage ring in Chapter 5, we studied the

oscillation frequencies of particles in the radial and vertical transfers direction also known as the

betatron tunes. The normal form transformation allowed us to calculate the functional dependence

of the tunes on the momentum offset of the particles and their amplitude of oscillation. A major

insight of this investigation was that particles over the entire momentum offset range could cross the

vertical 1/3-resonance frequency for certain vertical and radial amplitude combinations.

This closeness to the low order resonance triggered intensive lost muon tracking studies, which

revealed period-3 fixed point structures in the vertical phase space. Particles caught around those

period-3 fixed points experienced significant vertical amplitude modulations, which drastically

increased their risk of hitting a collimator and getting lost in the process.

Throughout the analysis, the strong ninth order nonlinearities of the map caused by the 20th-pole

of the ESQ potential were prominent. They could be found as eighth order dependencies in the

amplitude and momentum dependent tune shifts and be visualized by the drastic change in the tune

footprint when comparing eighth order to tenth order results.

To further assess the stability of the muon 𝑔-2 storage ring rigorously, we utilized Taylor
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Model based verified global optimization in Chapter 6. The abilities of Taylor Model based

global optimization was presented using the objective functions of different example problems.

The generalized Rosenbrock function served as an example to illustrate different effects that can

sometimes influence the optimization like the dependency problem and the cluster effect. We

illustrated that Taylor Models and their associated advanced bounding techniques could drastically

suppress those effects compared to other commonly used approaches.

The Lennard-Jones problem was used to illustrate the many intricacies that have to be solved

for rigorous global optimization of some complex systems. While the Lennard-Jones problem is

easily formulated, its formal description with optimization variables and bounding to a rigorous

initial search domain are far from trivial. Our discussion of the problem also illustrated the struggle

associated with not being able to exclude manifolds from the search domain for which the objective

function is not defined.

For the rigorous stability analysis of the muon 𝑔-2 storage ring, we calculated verified upper

bounds on the rate at which particles can escape the storage region. To get a detailed understanding

of the stability properties of the storage ring, we partitioned the five dimensional storage region

into more than 8000 sections using the onion layer approach. We used Taylor Model based verified

global optimization to calculate the maximum rate of divergence in the form of the normal form

defect for each one of those partitions. The verified normal form defect results from the map

with the closeness to the vertical 1/3-resonance from Chapter 5 were compared to the results of a

map with a different ESQ voltage, which yielded tunes further away from this vertical low order

resonance. The comparison illustrated significant differences in the stability of phase space regions

close to the collimators, confirming that the low order resonance noticeably impairs the system’s

long-term stability. The normal form defect analysis was also able to identify the strong ninth order

nonlinearities of the map caused by the 20th-pole of the ESQ potential.
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VERIFIED GLOBAL OPTIMIZATION RESULTS OF LENNARD-JONES PROBLEM

233



Table A.1: Verified global optimization results for configurations of 𝑘 particles in 1D, where the
pairwise particle interaction is modeled by the Lennard-Jones potential (see Sec. 6.2.7). The
variable 𝑣𝑙 is the distance between two adjacent particles 𝑝𝑙 and 𝑝𝑙+1. The table shows the results
for 𝑘 = 3 to 𝑘 = 13.

𝑘 𝑙 𝑣★
𝑙

3 1 0.99872421
06

3 2 0.99872421
06

4 1 0.99864313
295

4 2 0.99739651
34

4 3 0.99864313
295

5 1 0.99863243
22

5 2 0.99730687
66

5 3 0.99730687
66

5 4 0.99863243
22

6 1 0.99863023
2999

6 2 0.99729427
03

6 3 0.99721522
498

6 4 0.99729427
03

6 5 0.99863023
2999

7 1 0.99862964
35

7 2 0.99729153
25

7 3 0.99720205
177

7 4 0.99720205
177

7 5 0.99729153
25

7 6 0.99862964
35

8 1 0.99862945
13

8 2 0.99729074
43

8 3 0.99719911
880

8 4 0.99718868
37

8 5 0.99719911
880

8 6 0.99729074
43

8 7 0.99862945
13

𝑘 𝑙 𝑣★
𝑙

9 1 0.99862939
03

9 2 0.99729049
13

9 3 0.99719826
790

9 4 0.99718567
31

9 5 0.99718567
31

9 6 0.99719826
790

9 7 0.99729049
13

9 8 0.99862939
03

10 1 0.99862938
897

10 2 0.99729040
8999

10 3 0.99719797
57

10 4 0.99718478
38

10 5 0.99718263
22

10 6 0.99718478
38

10 7 0.99719797
57

10 8 0.99729040
8999

10 9 0.99862938
897

11 1 0.99862938
893

11 2 0.99729037
8992

11 3 0.99719786
41

11 4 0.99718448
03

11 5 0.99718172
27

11 6 0.99718172
27

11 7 0.99718448
03

11 8 0.99719786
41

11 9 0.99729037
8992

11 10 0.99862938
893

𝑘 𝑙 𝑣★
𝑙

12 1 0.99862941
888

12 2 0.99729038
8986

12 3 0.99719784
32

12 4 0.99718437
385

12 5 0.99718142
090

12 6 0.99718082
30

12 7 0.99718142
090

12 8 0.99718437
385

12 9 0.99719784
32

12 10 0.99729038
8986

12 11 0.99862941
888

13 1 0.99862944
885

13 2 0.99729040
8981

13 3 0.99719784
26

13 4 0.99718434
376

13 5 0.99718131
073

13 6 0.99718051
7993

13 7 0.99718051
7993

13 8 0.99718131
073

13 9 0.99718434
376

13 10 0.99719784
26

13 11 0.99729040
8981

13 12 0.99862944
885
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Table A.2: Verified global optimization results for configurations of 𝑘 particles in 1D, where the
pairwise particle interaction is modeled by the Lennard-Jones potential (see Sec. 6.2.7). The
variable 𝑣𝑙 is the distance between two adjacent particles 𝑝𝑙 and 𝑝𝑙+1. The table shows the results
for 𝑘 = 14 and 𝑘 = 15.

𝑘 𝑙 𝑣★
𝑙

14 1 0.99862947
881

14 2 0.99729043
8977

14 3 0.99719786
21

14 4 0.99718434
369

14 5 0.99718128
063

14 6 0.99718040
7975

14 7 0.99718020
7955

14 8 0.99718040
7975

14 9 0.99718128
063

14 10 0.99718434
369

14 11 0.99719786
21

14 12 0.99729043
8977

14 13 0.99862947
881

𝑘 𝑙 𝑣★
𝑙

15 1 0.99862950
877

15 2 0.99729046
8973

15 3 0.99719789
16

15 4 0.99718436
364

15 5 0.99718128
056

15 6 0.99718037
7965

15 7 0.99718009
7937

15 8 0.99718009
7937

15 9 0.99718037
7965

15 10 0.99718128
056

15 11 0.99718436
364

15 12 0.99719789
16

15 13 0.99729046
8973

15 14 0.99862950
877

Table A.3: Results for the calculated lower bounds 𝑟LB on the minimum distance between particles
in a 1D configuration of 𝑘 particles (see Eq. (6.11) and Sec. 6.2.7).

𝑘 𝑟LB 𝑘 𝑟LB
3 0.892064059 10 0.799735218
4 0.864104625 11 0.793892293
5 0.846285971 12 0.788630919
6 0.833085500 13 0.783845621
7 0.822566681 14 0.779457384
8 0.813810435 15 0.775405451
9 0.806305067
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Table A.4: Verified global optimization results for symmetric configurations of 𝑘 particles in 1D,
where the pairwise particle interaction is modeled by the Lennard-Jones potential (see Sec. 6.2.8).
The variable 𝑣𝑙 is the distance between two adjacent particles 𝑝𝑙 and 𝑝𝑙+1. The table shows the
results for 𝑘 = 3 to 𝑘 = 18.

𝑘 𝑙 𝑣★
𝑙

3 1 0.99872419
08

4 1 0.99864310
297

4 2 0.99739651
34

5 1 0.99863240
24

5 2 0.99730684
69

6 1 0.99863019
02

6 2 0.99729423
06

6 3 0.99721522
498

7 1 0.99862959
39

7 2 0.99729149
29

7 3 0.99720201
181

8 1 0.99862940
18

8 2 0.99729070
48

8 3 0.99719907
885

8 4 0.99718868
37

9 1 0.99862934
08

9 2 0.99729044
18

9 3 0.99719821
796

9 4 0.99718562
36

10 1 0.99862932
03

10 2 0.99729034
05

10 3 0.99719791
63

10 4 0.99718472
44

10 5 0.99718262
23

11 1 0.99862932
899

11 2 0.99729030
8999

11 3 0.99719780
48

11 4 0.99718441
09

11 5 0.99718166
34

𝑘 𝑙 𝑣★
𝑙

12 1 0.99862933
896

12 2 0.99729030
8994

12 3 0.99719776
40

12 4 0.99718429
393

12 5 0.99718134
098

12 6 0.99718082
31

13 1 0.99862935
893

13 2 0.99729031
8990

13 3 0.99719776
34

13 4 0.99718425
384

13 5 0.99718122
081

13 6 0.99718043
01

14 1 0.99862937
891

14 2 0.99729033
8987

14 3 0.99719776
30

14 4 0.99718425
379

14 5 0.99718118
072

14 6 0.99718031
7985

14 7 0.99718020
7955

15 1 0.99862939
888

15 2 0.99729035
8984

15 3 0.99719778
27

15 4 0.99718425
375

15 5 0.99718117
066

15 6 0.99718026
7975

15 7 0.99717998
47

𝑘 𝑙 𝑣★
𝑙

16 1 0.99862942
886

16 2 0.99729037
8982

16 3 0.99719780
24

16 4 0.99718426
371

16 5 0.99718117
062

16 6 0.99718025
7970

16 7 0.99717993
38

16 8 0.99717997
19

17 1 0.99862942
885

17 2 0.99729037
8981

17 3 0.99719780
24

17 4 0.99718426
370

17 5 0.99718117
061

17 6 0.99718024
7967

17 7 0.99717990
34

17 8 0.99717979
23

18 1 0.99862944
883

18 2 0.99729039
8979

18 3 0.99719781
22

18 4 0.99718428
368

18 5 0.99718118
058

18 6 0.99718024
7964

18 7 0.99717990
31

18 8 0.99717977
18

18 9 0.99717986
02
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Table A.5: Verified global optimization results for symmetric configurations of 𝑘 particles in 1D,
where the pairwise particle interaction is modeled by the Lennard-Jones potential (see Sec. 6.2.8).
The variable 𝑣𝑙 is the distance between two adjacent particles 𝑝𝑙 and 𝑝𝑙+1. The table shows the
results for 𝑘 = 19 to 𝑘 = 25.

𝑘 𝑙 𝑣★
𝑙

19 1 0.99862947
880

19 2 0.99729042
8976

19 3 0.99719784
19

19 4 0.99718430
365

19 5 0.99718121
055

19 6 0.99718026
7961

19 7 0.99717992
27

19 8 0.99717978
13

19 9 0.99717973
08

20 1 0.99862950
877

20 2 0.99729045
8973

20 3 0.99719787
15

20 4 0.99718433
362

20 5 0.99718123
052

20 6 0.99718029
7958

20 7 0.99717995
23

20 8 0.99717980
09

20 9 0.99717974
03

20 10 0.99717987
886

21 1 0.99862953
874

21 2 0.99729048
8970

21 3 0.99719790
12

21 4 0.99718436
359

21 5 0.99718126
049

21 6 0.99718032
7954

21 7 0.99717997
19

21 8 0.99717983
05

21 9 0.99717976
899

21 10 0.99717974
896

𝑘 𝑙 𝑣★
𝑙

22 1 0.99862956
870

22 2 0.99729051
8966

22 3 0.99719794
09

22 4 0.99718440
355

22 5 0.99718130
045

22 6 0.99718035
7950

22 7 0.997179100
16

22 8 0.99717986
01

22 9 0.99717979
894

22 10 0.99717976
891

22 11 0.99717993
873

23 1 0.99862969
858

23 2 0.99729063
8954

23 3 0.99719806
697

23 4 0.99718452
343

23 5 0.99718142
033

23 6 0.99718047
7938

23 7 0.99718012
7904

23 8 0.99717997
889

23 9 0.99717991
882

23 10 0.99717987
879

23 11 0.99717986
877

𝑘 𝑙 𝑣★
𝑙

24 1 0.99862974
853

24 2 0.99729069
8949

24 3 0.99719811
691

24 4 0.99718457
337

24 5 0.99718147
027

24 6 0.99718053
7933

24 7 0.99718018
7898

24 8 0.99718003
7883

24 9 0.99717996
876

24 10 0.99717993
873

24 11 0.99717991
871

24 12 0.99718015
7846

25 1 0.99862979
848

25 2 0.99729074
8944

25 3 0.99719816
686

25 4 0.99718462
333

25 5 0.99718152
023

25 6 0.99718057
7928

25 7 0.99718022
7893

25 8 0.99718008
7878

25 9 0.99718001
7871

25 10 0.99717997
868

25 11 0.99717995
866

25 12 0.99717995
865
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Table A.6: Verified global optimization results for symmetric configurations of 𝑘 particles in 1D,
where the pairwise particle interaction is modeled by the Lennard-Jones potential (see Sec. 6.2.8).
The variable 𝑣𝑙 is the distance between two adjacent particles 𝑝𝑙 and 𝑝𝑙+1. The table shows the
results for 𝑘 = 26 and 𝑘 = 27.

𝑘 𝑙 𝑣★
𝑙

26 1 0.99862984
843

26 2 0.99729078
8939

26 3 0.99719821
682

26 4 0.99718467
328

26 5 0.99718157
018

26 6 0.99718062
7923

26 7 0.99718027
7888

26 8 0.99718012
7873

26 9 0.99718005
7866

26 10 0.99718002
7863

26 11 0.99718000
7861

26 12 0.99717999
860

26 13 0.99718027
7831

𝑘 𝑙 𝑣★
𝑙

27 1 0.99862989
838

27 2 0.99729084
8934

27 3 0.99719826
676

27 4 0.99718472
323

27 5 0.99718162
012

27 6 0.99718067
7918

27 7 0.99718032
7883

27 8 0.99718017
7868

27 9 0.99718010
7861

27 10 0.99718007
7857

27 11 0.99718005
7855

27 12 0.99718004
7854

27 13 0.99718004
7854

Table A.7: Results for the calculated lower bounds 𝑟LB on the minimum distance between particles
in a 1D symmetric configuration of 𝑘 particles (see Eq. (6.11) and Sec. 6.2.8).

𝑘 𝑟LB 𝑘 𝑟LB
3 0.892064059 16 0.771642074
4 0.864104625 17 0.768129039
5 0.846285971 18 0.764835276
6 0.833085500 19 0.761735176
7 0.822566681 20 0.758807381
8 0.813810435 21 0.756033888
9 0.806305067 22 0.753399380
10 0.799735218 23 0.750890717
11 0.793892293 24 0.748496539
12 0.788630919 25 0.746206959
13 0.783845621 26 0.744013320
14 0.779457384 27 0.741907996
15 0.775405451
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