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ABSTRACT

Core-collapse supernovae (CCSNe) are the tumultuous explosions that accompany the ends of lives

of massive stars. After millions of years being seemingly idle, laboriously creating increasingly

heavy elements, the star exhausts its fuel supply and, in an instant, is ripped apart. Their innards,

consisting of millions of years of nucleosynthesis products, are spread throughout the interstellar

medium as fertilizer for the next generation of stars. Left in their wake is a stellar mass compact

object – a black hole or neutron star. CCSNe are vital to understanding our own origins. Our

understanding of CCSNe is driven by the union of observation and theory. Computational models,

constantly leveraging the most advanced supercomputers of the time, provide insights into the

central engines powering CCSNe and connect to observations of CCSNe. Observations, providing a

goal post and validation for computational models, require a theoretical framework to be interpreted.

The work presented in this Dissertation seeks to provide novel approaches to interpreting CCSN

observables and develops new computational models for studying the explosion mechanisms of

CCSNe.

I produce synthetic supernova light curves from high fidelity, neutrino-driven supernova models

– the largest such study. Using these light curves, I demonstrate the improved ability of neutrino-

driven models to constrain observations. I demonstrate how the imprint from the core structure

of the star on the explosion can be seen in observed photometry. In followup work, I build on

this and investigate the core structures of a population of observed supernovae. Using a novel

Bayesian analysis, I use these inferences to constrain the mass distribution of the stellar population.

To demonstrate the ineffectiveness of simplified models to constrain observations, I produce a grid

of roughly 2000 light curves and demonstrate that, with these simplified models, the results are

degenerate and ill-constraining.

I also report on the development of several open source software projects to further investigate

the CCSN explosion mechanism. First, I present the thornado hydrodynamics algorithms.

thornadouses a novel high order discontinuous Galerkin approach to modeling the underlying

partial differential equations and is posed to power the next generation of models. Next, I present



Singularity-Eos, an open source microphysics library for fluid dynamics that is capable of

leveraging modern heterogeneous hardware. Finally, I close with a description of Phoebus, a

new simulation software for supernovae, compact object accretion, and mergers set to make use of

exascale computing resources.
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CHAPTER 1

INTRODUCTION
Splendors of elemental strife;

Smit suns that startle back the

gloom;

New light whose tale of stellar

doom

Fares to uncomprehending life;

George Stirling, The Testimony

of the Suns

1.1 Overview

Massive stars with zero-age main sequence (ZAMS) masses greater than about ten solar masses

are doomed to suffer an inevitable fate – robbed of pressure support against gravity, their cores

collapse and produce a subsequent terminal explosion or implosion. These tumultuous explosions,

known as core-collapse supernovae (CCSNe), play a leading role in the cosmic drama. Upon

their deaths, their innards – newly synthesized elements such as carbon, oxygen, and nitrogen

– are scattered. These elements, acting as fertilizer, provide for the next generation of stars

and planets and drive the evolution of their host galaxies. Through their deaths, these stars

provide the birth channels for stellar mass compact objects – black holes and neutron stars. They

are laboratories for fundamental nuclear physics, probing matter in environments unattainable in

Terrestrial experiments. However, understanding these explosions and their astrophysical impact

requires modeling a rich amount of tightly coupled physics and connecting to observed supernovae:

a deeply difficult task.

In this Dissertation, I explore ways to improve our ability to interpret observations of CCSNe,

implications for populations of CCSNe, and develop open source software for modeling CCSNe.

I begin by producing synthetic light curves from 136 solar metallicity stellar models, simulated
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with a realistic, neutrino-driven mechanism and evolved for 300 days post bounce. In this work I

demonstrate the ability of neutrino-driven models to constrain observations and provide insights

into their core structures. In followup work, I use this suite of explosion models to constrain

CCSNe at the population level, applying Bayesian Markov Chain Monte Carlo methods to infer the

mass distribution of progenitors in a sample of observed CCSNe. Next, I produce a large grid of

approximately 2000 CCSN light curves from parametric explosion models spanning densely a range

of progenitor masses and explosion energies. Using this grid of models I demonstrate the failures

of simplified explosion models to constrain observations, highlighting the degeneracies inherent in

these simplified models and the need for realistic, neutrino-driven simulations. In the final sections

I describe the development of new software for high fidelity simulations of CCSNe and other

phenomena in relativistic astrophysics. First, I present the hydrodynamics methods for thornado,

the toolkit for high order neutrino radiation hydrodynamics, utilizing novel discontinuous Galerkin

(DG) methods for high order accurate solutions. I briefly describe Singularity-Eos, a new open

source software for performance-portable equations of state in fluid and continuum dynamics

simulations. Finally, I conclude by presenting Phoebus, a new performance portable general

relativistic radiation magnetohydrodynamics code for CCSNe, compact object mergers, and black

hole accretion. Phoebus includes a novel treatment of general relativistic gravity and state-of-

the-art physics. I present a suite of test problems, including production-scale simulations of

neutrino-cooled black hole accretion, and discuss its future as a tool for the community. The

resultant data products from this Dissertation are publicly available online.

1.2 Explosion Mechanism

Core-collapse supernovae (CCSNe) are the explosions that accompany the deaths of massive

stars. These stars with zero age main sequence (ZAMS) masses greater than about ten solar masses

inevitably form electron degenerate iron cores. What follows has emerged as one of the most

complex multiphysics problems and remains a grand challenge in astrophysics. The moments

preceding the observable transient are filled with such a range of physics that few phenomena

can boast: general relativistic magnetohydrodynamics, both weak and strong particle interactions,
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neutrino radiation transport and interactions with matter, photon transport, hot dense matter up to

and beyond nuclear saturation, and the potential for the existence of exotic matter. The supernova

explosion, prior to shock breakout and an observable electromagnetic transient, can be divided

into a few phases: collapse, bounce, stalled accretion shock, and explosion. These phases together

comprise the CCSN explosion mechanism.

Stars with ZAMS masses (MZAMS) ⪆ 10M⊙ will develop degenerate iron cores that become

gravitationally unstable at the Chandrasekhar limit. There is an upper limit to this mass range

for iron core collapse occurring when their helium cores exceed about 65M⊙– the lower limit for

pair-instability supernovae (Heger & Woosley, 2002; Heger et al., 2003). These cores are pressure

supported primarily by degeneracy pressure from electrons. What follows is a consequence of this

degeneracy. These electron degenerate cores, having reached the effective Chandrasekhar mass

and, aided by electron captures and photo-disintegration of heavy nuclei, collapse. The collapse

proceeds homologously, with infall velocity increasing linearly with radius. The local sound speed,

however, decreases outwards with density and radius. Thus at some radius – the sonic point – the

infall velocity exceeds the sound speed. As a result, the collapsing core is split in two: an inner

core collapsing homologously and subsonically, and an outer core in supersonic free fall. During

collapse, electron captures on (primarily) nuclei further reduce degeneracy pressure and accelerate

the collapse.

Eventually the collapse proceeds through nuclear densities, the inner core undergoes a phase

transition to bulk nuclear matter, the equation of state stiffens due to reaching the repulsive regime

of the strong force, and the inner core rebounds – commonly referred to as core bounce. Information

from this rebound propagates outwards in the form of sound waves until reaching the sonic point

delineating the subsonic inner core and supersonic outer core, and stops, falling inwards as quickly

as it can move outwards. The result: the production of an outward propagating shock wave. The

prevailing idea, for a time, was that this shock wave would fully disrupt the entire star in a supernova

explosion – referred to now as the prompt explosion mechanism. This, it turns out, is not the case.

The shock produced from the rebounding inner core is rapidly enervated, owing primarily to the
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dissociation of iron group nuclei. For every 0.1M⊙ of material the shock traverses, dissociation of

these nuclei robs it of around 1051 erg of energy – the characteristic energy of a strong explosion.

If that were not enough, electron captures on the newly freed protons results in the production

of massive amounts of electron neutrinos. These neutrinos, initially trapped in the dense matter

beneath the shock, are eventually released in the neutrino burst as the shock passes into sufficiently

low densities. The result: the shock, robbed of energy, stalls before it can escape the iron core. As

supernovae indeed occur (see, e.g., Baade & Zwicky, 1934, for confirmation), the shock must be

rejuvenated. The means for this rejuvenation – often referred to as shock revival – has been the

focus of decades of theoretical work. Figure 1.1 shows radial velocity profiles at various points

from collapse through stall.

Figure 1.2 shows a schematic at the point of shock stall. Now, the core is separated into a cooler,

inner core, and a hot, shocked mantle that together form the proto-neutron star (PNS). Around the

surface of the PNS is a collection of radii known as neutrinospheres. Analogous to the photosphere

of a star, these are surfaces of last scatter for each neutrino flavor and energy as they diffuse out of the

dense PNS. Above these neutrinospheres, the matter is cooled by neutrino emission. Further out,

still beneath the shock, net neutrino heating occurs, driven by charged-current neutrino absorption.

Approximately 10% of the early radiated neutrino flux is sufficient to revive the shock, leading to

the so-called neutrino-driven delayed explosion mechanism (Bethe & Wilson, 1985).

Experience has shown, however, that neutrino heating beneath the shock alone is insufficient to

revive the explosion. Spherically symmetric explosion models, even with the most robust treatment

of neutrino transport, fail to explode. It was not until the era of multi-D simulations that this was

fully understood: absent in spherical symmetry are hydrodynamic instabilities. These instabilities,

such as convection and turbulence, are now known to play a leading role in CCSN dynamics,

with turbulent pressure potentially reaching around 50% of the thermal pressure beneath the shock

(Couch & Ott (2015), but see also, e.g., Murphy & Meakin (2011); Murphy et al. (2013)). All of

these effects work together to determine whether or not a star can revive its shock and produce a

supernova explosion. It seems that for some progenitors, neutrino heating and hydrodynamic effects
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Figure 1.1 Radial velocity evolution at various epochs. Initially at rest in hydrostatic equilibrium
(HSE), the material begins to collapse and separates into a homologously collapsing inner core
and freefalling outer core. Bounce occurs and shortly afterwards the shock stalls. Figure from
Branch & Wheeler (2017).

fail to reinvigorate the stalled shock and the full star will collapse into the compact object, now

doomed to black hole formation. These cases are referred to as failed supernovae. Observational

searches for these events are difficult, but ongoing with some success (see, e.g., Neustadt et al.,

2021, and references therein). There are other potential explosion mechanisms for rare classes of

supernovae, such as magnetorotational supernovae, in which rapidly rotating, highly magnetized

stars may form accretion disks and magnetically-driven jets which drive an explosion (LeBlanc &

Wilson, 1970).

The importance of hydrodynamic instabilities in the supernova mechanism has cemented the
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Figure 1.2 Schematic at time of shock stall. The core now consists of two regions: a cool, inner
core that is unshocked material, and a hot, shocked, outer core. The outer core is cooled by
neutrino emission. Further out, beneath the stalled shock, net neutrino heating occurs (the gain
region) due to charged-current neutrino absorption. Figure from Herant et al. (1997).
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idea that CCSNe are fundamentally multidimensional phenomena. Therein lies the problem:

multidimensional CCSN simulations with all the bells and whistles (see Section 1.5) are compu-

tationally expensive. These facts have lead to the development of so-called effective supernova

models – treatments meant to, in spherical symmetry, drive an explosion that might mimic some

aspects of the full supernova problem. One such effective model, STIR (Supernova Turbulence In

Reduced dimensionality, Couch et al. (2020)) is featured heavily in this Dissertation. In STIR, the

impacts of turbulence and convection are included in spherical symmetry in a parameterized way.

By including terms in the evolution equations from a modified mixing length theory, the effects

of turbulent and convection motions can be captured with only a few free parameters. These free

parameters are fit to full 3D simulations, and the result is a spherically symmetric model capable

of producing explosions that are quite similar to 3D.

There are other effective explosion models, such as PUSH (Ebinger et al., 2017, 2019), which

modifies heavy lepton neutrino energetics to emulate the impact of convection on neutrino heating,

and PHOTB (Ugliano et al., 2012; Sukhbold et al., 2016, and references therein) which parame-

terized the neutrino luminosity. While the results from these works are sensitive to the effective

model, and comparison made harder by complications from stellar evolutionary modeling, one key

point has been made clear: the fate of a star undergoing core-collapse is not a monotonic function of

its ZAMS mass. That is, there exists no mass cut separating neutron star and black hole formation.

Instead, there exist so-termed islands of explodability, where failed supernovae (and so black hole

formation) are dispersed between successful explosions, like dark seas amongst the landscape of

explosions. Figure 1.3 shows one such result obtained with the STIR model. Plotted are explosion

results – green for a successful explosion, black for failure and black hole formation. The different

horizontal bands are results for differing values of the mixing length parameters 𝛼Λ which scales

the strength of convection in the model (1.25 is the fiducial value fit to 3D simulations). Notably,

black hole formation is not cleanly separated from successful supernova explosions. The question

of exactly which stars explode, and how that might be predicted, remains one of the largest open

questions in the field.
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Figure 1.3 Landscape of explodability for progenitors with masses from 9-120M⊙. Green
represents a successful explosion and black a failed explosion. Vertical bars (values of 𝛼Λ) are
different values of the mixing length parameters. Figure from Couch et al. (2020).

For in-depth reviews of the CCSN mechanism, there are a host of review articles, e.g., Mez-

zacappa (2001, 2005); Janka et al. (2012, 2016); Burrows (2013); Hix et al. (2014); Müller et al.

(2016); Couch (2017); Pejcha (2020); Müller (2020); Mezzacappa et al. (2020); Burrows & Var-

tanyan (2021); Mezzacappa (2022).

1.3 Observational Characteristics

Core-collapse supernovae are fundamentally multimessenger events. Their emission spans all

parts of the electromagnetic spectrum and includes both neutrino and gravitational wave (GW)

emission. Each of these emission channels provides key insights into the life and death of the star.

1.3.1 Electromagnetic Emission

Observed electromagnetic emission falls intro two camps: photometry and spectra. The former

is energy integrated measurements, often constructing bolometric (total luminosity) and broadband

light curves whereas spectra yield flux as a function of energy or wavelength. Photometry provide

constraints on bulk properties: ejected mass, explosion energy, synthesized 56Ni, and the stellar

radius (however, as I will discuss in Section 1.4, such constraints are difficult and degenerate).
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Figure 1.4 Comparison of supernova light curves. Figure from Trundle et al. (2009).

Spectra provide fine tuned details about the stellar composition and velocity of ejected matter.

Spectra give more information than photometry at the cost of being more difficult to measure.

Both are used to construct supernova classifications, with the primary classification indicating the

presence (Type II) or absence (Type I) of hydrogen in the ejecta. In Figure 1.4, I show a sample

of SN light curves including both Type I and Type II as well as subclasses. Notably, there is

an enormous diversity even in the energy integrated measurements, providing insights into the

diversity of supernova progenitors. For all observed supernova throughout history, all but one have

been detected only through electromagnetic emission, highlighting its importance as a messenger.

Most of the work in this Dissertation is focused on a particular subclass of Type II SNe known

as Type IIP SNe, where “P” here denotes “plateau.” These are the most common class of CCSNe,
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representing approximately half of all observed CCSNe (Li et al., 2011). These SNe are now

known to originate from red supergiant (RSG) progenitors with extended hydrogen rich envelopes,

ZAMS masses less than about thirty solar masses, and radii between 100 and 1000 solar radii

(Smartt, 2009). The actual upper mass limit for Type IIP SNe is highly contended (see, e.g., Smartt,

2009; Davies & Beasor, 2018, 2020; Morozova et al., 2018; Martinez et al., 2022, and references

therein), with the ambiguity termed the “red supergiant problem”, and is the subject of Chapter 3.

Even amongst this most common subclass of CCSNe, there is tremendous diversity of observed

transients Anderson et al. (2014); Valenti et al. (2016); Gutiérrez et al. (2017a,b). Owing to their

commonality and observed diversity, understanding SNe IIP is a crucial step to understanding SNe

as a whole.

The physics of their light curves is well understood. The shock launched from the initial

explosion will breakout from the stellar surface in roughly 24 hours. This breakout produces a

bright flash (the shock-breakout signal) in the ultraviolet (UV) and X-ray, whose properties depend

mainly on the stellar radius and shock temperature. Only a handful of shock-breakout events have

been detected for any class of CCSNe, and none so far for SNe IIP. Following shock-breakout, the

shock-heated ejecta expands and cools. As the outer layers cool below 10,000K, shock-ionized

hydrogen begins to recombine into neutral hydrogen. A recombination waves being to move inward,

with the recombined, neutral material being optically thin and the inner ionized material optically

thick. As a result, the photosphere follows the recombination wave, moving inward in mass but

staying roughly constant in radius. As hydrogen recombination at fixed composition occurs at fixed

temperature, the photospheric temperature remains roughly constant. As a result, the bolometric

luminosity remains constant, i.e.,

𝐿 = 4𝜋𝑅2𝜎𝑇4 (1.1)

for luminosity 𝐿, stellar radius 𝑅, Stefan-Boltzmann constant 𝜎, and surface temperature 𝑇 . Thus,

this recombination wave produces a flat “plateau” in the observed light curve lasting around 100

days. The optically thick plateau phase ends as the recombination wave reaches the inner boundary

of the hydrogen envelope. Here, the luminosity rapidly drops and falls into linear decline, now
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Figure 1.5 Schematic of a Type IIP SN light curve. Figure from Gutiérrez et al. (2017b).

powered by radioactive decay of 56Ni. Figure 1.5 shows a schematic of a Type IIP SN.

1.3.2 Neutrino and Gravitational Wave Emission

Core-collapse supernovae are copious emitters of neutrinos. Owing to electron captures on both

free protons and nuclei during core collapse, neutrinos are produced in vast numbers. As collapse

proceeds and central densities rise beyond about 1012 g cm−3, neutrinos become trapped in the

core. Throughout the following seconds during which the supernova matures, neutrinos diffuse out

of the core until reaching the neutrinospheres around 1011 g cm−3 and can move mostly uninhibited

through the star. These neutrinos, emitted from deep in the stellar interior, carry information about

the environment there.
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To date there has been only one detection of supernova neutrinos: SN 1987A (Arnett et al.,

1989). The serendipitous detection of roughly 20 neutrinos from this event confirmed the results

of early supernova models and set the stage for the next decades of work. The low mean energies

and long time span confirmed that the observed neutrinos diffused out of a dense inner core.

From core bounce onward, the proto-neutron star (PNS) rings with gravitational waves (Kotake,

2013; Mezzacappa & Zanolin, 2024). At core bounce, rotating stars (that is, all stars) produce a loud

burst as the bounce deforms the PNS and creates a time dependent mass quadrupole moment. Later,

accretion onto the PNS excites smaller amplitude, stochastic modes that emit gravitational waves.

These waves, emitted by vibrations of the PNS, carry information about the size and stiffness of the

PNS and would potentially help constrain the equation of state of dense, nuclear matter. However,

such GW sources are much quieter than those produced by merging compact objects and already

detected by LIGO. Much worse than the case for CCSN neutrinos, the current suite of detectors

(aLIGO, VIRGO, and KAGRA) can only detect GWs from a CCSN if it occurs within a distance

of about 100 kpc (Abbott et al., 2016). As such, there have been no detected GWs from CCSNe.

The community waits tirelessly for the next galactic core-collapse supernova.

1.4 Interpreting Observations

Our understanding of CCSNe is driven by the union of theory and observation. For any CCSN

observation, be it photometry, spectra, neutrino, or GW, an underlying model is required to discern

any information besides what is directly measured. For supernova light curves, these models fall

into two categories: analytic models and numerical models.

1.4.1 Analytic Models

Analytic models for interpreting CCSN light curves rely on making a set of simplifying as-

sumptions that allow one to relate fundamental properties such as progenitor mass and explosion

energy to easily observable properties such as a characteristic luminosity, timescale, and expan-

sion velocity. To construct such as model, the number of simplifications required is practically

uncountable.

The earliest successful analytic models for Type II SNe are owed to (Arnett, 1980; Arnett & Fu,
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1989). The closely related model of Popov (1993) has become commonly adopted. In this model

they describe the plateau phase of a Type II SN using the following primary assumptions:

• the matter is spherically symmetric

• the envelope conforms to a two zone opacity model – an optically thick, inner region and a

thin, inner region

• the density profile is uniform in space

• the envelope is expanding homologously (with velocity proportional to radius)

• all opacity comes from electron scattering

• the envelope is pure hydrogen (zero metallicity)

• heating due to radioactive decay is negligible.

In practice, none of these assumptions are satisfied perfectly, and it is unclear under what conditions

the model works or fails. Under these assumptions, the ejecta velocity can be approximated as

𝑣 ≈
(10𝐸expl

3𝑀

)1/2
(1.2)

for explosion energy 𝐸expl and ejecta mass 𝑀 , where it is implicitly assumed that the kinetic energy

of the ejecta is approximately the energy generated in the initial explosion. From here, the analysis

continues until the explosion energy and ejecta mass can be expressed in terms of key observables

log10

( Eexpl

1051erg

)
= 𝜽e · O + 𝜃c,e (1.3)

and

log10

(Mej

M⊙

)
= 𝜽m · O + 𝜃c,m (1.4)

where O = {log10(𝐿50), log10(𝑡𝑝), log10(𝑣50)} are the observed plateau luminosity, duration, and

ejecta velocity, and 𝜽𝑒, 𝜽𝑚, 𝜃𝑐,𝑒, and 𝜃𝑐,𝑚 are power law coefficients. From Popov (1993), the

parameters 𝜽𝑜 and 𝜃𝑐,𝑒 are {0.4, 4.0, 5.0} and -4.311, respectively (e.g., Pejcha & Prieto, 2015,
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Figure 1.6 Estimated explosion energy vs estimated ejecta mass for a suite of observed supernovae
with error estimates (shaded regions). Figure from Pejcha & Prieto (2015).

where these values assume the luminosity is instead a magnitude). There is some ambiguity in

the above, as it is not clear from the original work of Popov (1993) exactly what the ejecta mass

refers to. Some works have considered it the full ejected mass (roughly defined as the mass above

the iron core) and others considered it the mass of the hydrogen envelope. In some cases, the two

may differ substantially. The literature has yet to reach a consensus on this question. More modern

approaches have been taken to improve upon this approach, e.g., Kasen & Woosley (2009).

Such a model could, ideally, provide explosion energy estimates for virtually every observed

supernova. This result has been used broadly to estimate explosion energies of observed SNe. An

example of such a landscape is shown in Figure 1.6.
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1.4.2 Numerical Models

Numerical models, in contrast to analytic models, rely on fewer assumptions. The trade off

is that now the relationships remain partial differential equations and require numerical solution.

Historically, such models are often called “hydrodynamic models” in the literature1. Early examples

include Falk & Arnett (1973, 1977); Litvinova & Nadezhin (1985).

These models include a treatment of spherically symmetric hydrodynamics, typically using a

Lagrangian (comoving with mass elements) method. The hydrodynamics are coupled to radiation

transport, most often using a flux-limited diffusion approach. A simple, analytic equation of

state appropriate for stellar plasmas is adopted to close the hydrodynamic equations (e.g., that of

Paczynski (1983) is a common choice). A set of radiative photon opacities is chosen, often gray

(energy integrated). Finally, a prescription for heating due to radioactive decay of 56Ni → 56Co

→ 56Fe is needed. A common method is that of Swartz et al. (1995), which treats the gamma-ray

radiative transfer in the gray diffusion limit.

This physical model is insufficient to capture the explosion mechanism as laid out in Section 1.2.

Lacking an equation of state appropriate for dense nuclear matter, the core will never reach the

repulsive regime of the strong nuclear force, and core bounce will never be realized. Worse still,

without neutrino radiation transport, there is no heating source to power an explosion. In lieu of

a self consistently driven explosion, these models parameterize away the source of the explosion,

placing a user defined amount of energy in the core to initiate the explosion. In this way, one

has control over the explosion energetics and may explore light curves in a controlled fashion. A

common workflow is then: given one or more progenitor models, select a set of explosion energies

to to use with them, as well as masses of synthesized radioactive 56Ni (as this requires a nuclear

reaction network to create self consistently). The result is a grid of artificial explosion models in

progenitor mass, explosion energy, and nickel mass, each with a resultant light curve which may be

compared to observations. The method is not without cost: there is no way to determine if a given

progenitor may explode with a given energy (or at all) without more physics.

1Ironically, such models treat coupled radiation hydrodynamics.
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Figure 1.7 Bolometric light curve for a radiation hydrodynamic model (solid line) compared to
observational data for SN 1999em (blue dots). Dashed line shows luminosity due to radioactive
decay. Figure from Bersten et al. (2011).

Figure 1.7 shows an example of such a calculation. The synthetic bolometric light curve model

found to best match SN 1999em (blue dots) is shown with the black line. This particular work

(Bersten et al., 2011) finds a 19M⊙ model with 1.25 foe (1 foe = 1051 erg) explosion energy model

best reproduces the well-observed SN 1999em.

One such numerical model for SN light curves which is featured heavily in this Dissertation

is SNEC2, the SuperNova Explosion Code (Morozova et al., 2015). SNEC models spherically

symmetric photon radiation hydrodynamics with a gray, flux limited diffusion approach. SNEC

includes Newtonian hydrodynamics using a finite differencing scheme with artificial viscosity to

2SNEC is publicly available https://stellarcollapse.org/SNEC.html
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captures shocks (Mezzacappa & Bruenn, 1993). It includes the stellar equation of state of Paczynski

(1983) which includes contributions from radiation, ions, and electrons with approximate electron

degeneracy. The equation of state is coupled with a Saha ionization solver for the ionization state.

Hydrodynamic mixing of material is approximated with a boxcar smoothing algorithm applied at

the beginning of the simulation. Gray radiative transfer for the gamma-rays produced from 56Ni and

56Co decay is followed using the approach of Swartz et al. (1995). Positrons, which may sometimes

be produced from the decay of 56Co are not included – an error of perhaps a few percent is incurred.

Finally, SNEC has the option to initiate explosions using a thermal bomb. This Dissertation uses

SNEC heavily, often coupled to more sophisticated simulations to eliminate the need for a thermal

bomb.

1.4.3 Degeneracies

The synthetic light curve models of the preceding section provide enormous freedom for

exploring explosion models and connecting to observations. With that freedom, however, has crept

a snake. In Nature, a given star will explode in a specified, deterministic way. By arbitrarily

specifying the explosion energy as a free parameter we have allowed for potentially unphysical

explosions that may never be realized in Nature.

Worse still, these synthetic light curves are degenerate with each other. Different combinations

of explosion energy and progenitor mass produce identical light curves. For example, the plateau

luminosity and duration scale as

𝐿𝑝𝑙 ∝ 𝑀
−1/2
ej 𝐸

5/6
expl𝑅

2/3𝑋𝐻 (1.5)

𝑡𝑝𝑙 ∝ 𝑀
1/2
ej 𝐸

−1/4
expl 𝑅

1/6𝑋
1/2
𝐻

(1.6)

for ejecta mass 𝑀ej, explosion energy 𝐸expl, stellar radius 𝑅, and envelope hydrogen mass fraction

𝑋𝐻 (Kasen & Woosley, 2009). The seeds of the problem are shown here: treating progenitor and

explosion energy as independent, a given light curve plateau may be achieved by adjusting the

stellar progenitor (ejecta mass and stellar radius) or the explosion energy.

Only recently have these degeneracies been explored (Goldberg et al., 2019; Dessart & Hillier,
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Figure 1.8 Light curves and iron line velocities for observations (gray) and best fit models
(colored lines) for SN 2017eaw. Figure adapted from Goldberg & Bildsten (2020).

2019). Here, it was shown that there exist families of light curve models that match a given

observation. Artificial explosion models with progenitor ZAMS masses spanning 10 solar masses

or more can easily reproduce a given observation. The ability of thermal bomb models to constrain

observations is severely limited. Figure 1.8 shows an example of such a set of models for SN

2017eaw. Bolometric light curves (top) and iron line velocities (bottom) are shown for observational

data of SN 2017eaw (gray) and best fit models (colored lines). The three models presented here

span approximately 10M⊙ in ZAMS mass and 0.6 foe in explosion energy.

Additional measurements might help to constrain some relevant stellar properties and thus

reduce the scale of the parameter space and lessen the degeneracies. One such option involves

constraining the stellar radius. Such constraints limit the range of progenitors and reduce the size of
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the parameter space. This was demonstrated in Goldberg & Bildsten (2020) to successfully reduce

degeneracies, but far from completely. The prospects are made more difficult when uncertainties

on the radius inferences are pulled in, which in practice can be quite large. It is an area of active

work to identify other measurements which might help to reduce these degeneracies.

At the core of this degeneracy issue is the treating of the explosion itself as independent of

the stellar structure. In reality, the explosion energy is fully determined by the stellar profile

𝐸expl = 𝑓 (P(𝑀ej, 𝑅)) where 𝑓 (P(𝑀ej, 𝑅)) is some function of the stellar progenitor P3. The exact

relationship between the explosion energy and the progenitor properties (the so-called explosion

landscape) remains an area of active research (Pejcha & Thompson, 2015; Perego et al., 2015;

Ebinger et al., 2017; Sukhbold et al., 2016; Couch et al., 2020). There is some hope, then, that by

treating the explosion self consistently, instead of artificially generating it, that this issue might be

resolved, at least in part. That hope lies at the core of this Dissertation.

In summary, there is no model-independent way to interpret supernova observations. Moreover,

with the current suite of models, matching an observation is a necessary, but not sufficient condition

for inferring explosion and progenitor properties.

1.5 Modeling Supernovae

Modeling core-collapse supernovae from first principles requires following a huge range of

tightly coupled physics across a range of spatio-temporal scales. The choice of what physics is

included as well as how that physics is discretized determines the scope of the resulting model.

Despite the complex, multiphysical nature of CCSNe, the recipe for modeling them is relatively

straightforward. One needs to include a treatment of (magneto)hydrodynamics, neutrino radiation

transport, general relativistic gravity, and a suite of microphysics including a dense matter equation

of state and neutrino opacities.

For hydrodynamics we solve the Euler equations, given below in the non-relativistic limit:

3In reality the ejecta mass and stellar radius do not directly impact the explosion energy, instead they are products
of stellar evolution. Indeed, the picture may be further complicated by the fact that the exact details of the ejected
mass depend on knowledge of the explosion dynamics. Stellar evolution sets the ejactable mass and the details of the
resulting explosion determine exactly what is ejected. In spherical symmetry such complications are unimportant.
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𝜕𝑡𝜌 +
1
√
𝛾
𝜕𝑖

(√
𝛾 𝜌 𝑣𝑖

)
= 0, (1.7)

𝜕𝑡 (𝜌 𝑣 𝑗 ) +
1
√
𝛾
𝜕𝑖

(√
𝛾 Π𝑖

𝑗

)
=

1
2
Π𝑖𝑘 𝜕𝑗𝛾𝑖𝑘 − 𝜌 𝜕𝑗Φ, (1.8)

𝜕𝑡𝐸 + 1
√
𝛾
𝜕𝑖

(√
𝛾 [ 𝐸 + 𝑝 ] 𝑣𝑖

)
= −𝜌 𝑣𝑖 𝜕𝑖Φ, (1.9)

𝜕𝑡 (𝜌𝑦e) +
1
√
𝛾
𝜕𝑖

(√
𝛾 𝜌𝑦e 𝑣

𝑖
)
= 0, (1.10)

for density 𝜌, three velocity 𝑣𝑖, energy 𝐸 , pressure 𝑝, gravitational potential Φ, electron fraction 𝑦e,

coordinate metric 𝛾, and stress tensor Π𝑖
𝑗
= 𝜌 𝑣𝑖 𝑣 𝑗 + 𝑝 𝛿𝑖 𝑗 . The metric 𝛾, in this form, encapsulates

coordinate systems (Cartesian, spherical, and so on). These equations describe conservation of

mass, momentum, energy, and lepton number. This set of equations is closed by the equation of

state 𝑝 = 𝑝(𝜌, 𝑇, 𝑦e). Depending on the scientific questions one wants to answer, magnetic field

evolution may be included. Additional complications are gained in the case of special or general

relativistic hydrodynamics (for example, the so-called Valencia formulation Banyuls et al., 1997).

Neutrinos are implemented by assuming that they are massless and thus behave according to

traditional radiation transport approaches. The assumption of masslessness is justified as the typical

neutrino energy in CCSNe of O(10 MeV) is much larger than the neutrino rest mass which, while

unknown, is known to be small. The species-dependent neutrino distribution function 𝑓𝜈 (𝑥𝛼, 𝑝𝛼),

for 4-position and 4-momentum, 𝑥𝛼 and 𝑝𝛼, evolves according to the 6+1 Boltzmann equation

𝑝𝛼
[
𝜕 𝑓𝜈

𝜕𝑥𝛼
− Γ

𝛽
𝛼𝛾𝑝

𝛾 𝜕 𝑓𝜈

𝜕𝑝𝛽

]
=

[
𝑑𝑓𝜈

𝑑𝜏

]
coll

(1.11)

where Γ
𝛽
𝛼𝛾𝑝

𝛾 are the Christoffel symbols and the right hand side is the collision term including

neutrino-matter interactions. This must be solved for the distribution function 𝑓𝜈 of each neu-

trino species. Full solution of the 6+1 Boltzmann equation in dynamical environments remains

computationally intractable and simplifications must be made. For the case of CCSNe, where the

dynamics are so sensitive to the fidelity of neutrino transport, there are several considerations when

choosing an appropriate approximation to the transport. Firstly, supernovae are not spherical and

the transport implementation must be multidimensional as well. Furthermore, neutrinos emitted
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from the PNS are not in equilibrium with matter necessitating a multigroup transport method. As

both neutrino-matter absorption opacities and the neutrino heating rate scale as the square of the

neutrino energy 𝐸2
𝜈 , the emitted neutrino spectrum must be captured. With these needs in mind,

the state of the art for neutrino transport is a two-moment approach (Thorne, 1981; Shibata et al.,

2011). In this approach, one models the evolution of the (frequency dependent) energy density 𝐸

and flux 𝐹𝑖, obtained by taking angular moments of the neutrino distribution function:

𝜕𝑡 (
√
𝛾𝐸) + 𝜕𝑖 [

√
𝛾(𝛼𝐹𝑖 − 𝛽𝑖𝐸)] + 𝜕𝜖 [𝜖 (𝑅𝑡 +𝑂𝑡)] = 𝐺 𝑡 + 𝐶𝑡 , (1.12)

𝜕𝑡 (
√
𝛾𝐹𝑖) + 𝜕𝑗 [

√
𝛾(𝛼𝑃 𝑗

𝑖
− 𝛽 𝑗𝐹𝑖)] + 𝜕𝜖 [𝜖 (𝑅𝑖 +𝑂𝑖)] = 𝐺𝑖 + 𝐶𝑖, (1.13)

where 𝛼 is the lapse, 𝛽 is the shift, 𝛾 is the determinant of the three-metric, 𝐺𝜇, 𝐶𝜇 are the source

terms due to geometric and matter effects, and 𝑅𝜇, 𝑂𝜇 are gravitational redshifting and observer

correction terms.

The radiation pressure tensor 𝑃𝑖 𝑗 is required to close the truncated moments. Unlike the

hydrodynamics, where the pressure used to close the system of equations is given through the

equation of state, the pressure tensor here must be more arbitrarily prescribed. While there are

a number of so-called closures for two moment radiation transport, the general approach is to

construct a scheme that shows the correct behavior in the diffusive and free streaming regimes

and interpolates between them in intermediate optical depths (see, e.g., Murchikova et al., 2017;

Richers et al., 2017, for reviews of these closure methods).

1.5.1 Numerical Methods

With a physical model in hands, the equations must be discretized to allow for numerical solution.

For supernova modeling, most of the physics takes the form of hyperbolic partial differential

equations (PDEs), with gravity (elliptic) and diffusion (parabolic), such as for diffusive radiation,

being exceptions. This is the case for the hydrodynamics and radiation transport as described

previously. Here I lay out some of the basic properties of these hyperbolic PDEs and common
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ways of solving them numerically. Focus is given to hyperbolic PDEs as these are ubiquitous in

computational astrophysics and, in some sense, have the most strict requirements of discretization.

Hyperbolic PDEs describe, amongst other things (but most importantly), conservation laws and

are widely used to model, for example, wave motion and transport. These equations take the form

𝜕𝑡U + ∇ · F (U) = S (U) (1.14)

for a, in general, vector of conserved quantities U, flux vector F (U), and source vector S (U)

(noting that for strict conservation laws, the source term is 0). This form of hyperbolic PDEs,

while somewhat specialized from the most general form, describes a vast amount of physics.

Let U = 𝜌𝑐 be charge density and F = J be current density and this expresses conservation of

charge. Take U = (𝜌, 𝜌𝑣, 𝐸)T and F =
(
𝜌𝑣, 𝜌𝑣2 + 𝑝, 𝐸 + 𝑝

)T and we obtain conservation of mass,

momentum, and energy, i.e., non-relativistic equations of hydrodynamics in the absence of gravity.

The mathematical theory of hyperbolic PDEs is rich and could fill the entire text of this Dissertation

on its own, so I refer the interested reader to some of the great texts available that cover this topic

(e.g., LeVeque, 1992, 2002; Larsson & Thomee, 2003; LeVeque, 2007; Toro, 2009a).

With a system of PDEs in hand, they must be prepared for numerical solution. As computers are

inherently discrete and may only represent a finite number of states, complicated operations such

as integration and differentiation must be replaced by discrete approximations. The most common

such discretization is the finite difference derivative, i.e.,

𝜕𝑥 𝑓 (𝑥) ≈
𝑓 (𝑥 + Δ𝑥) − 𝑓 (𝑥)

Δ𝑥
(1.15)

for some small Δ𝑥. This simple approximation forms the basis for finite difference PDE solvers

and allows us to introduce an important concept: convergence rate. Taylor expanding 𝑓 (𝑥) and

applying the finite difference stencil, one can see that it is accurate up to a term proportional to Δ𝑥.

That is, the error scales as O((Δ𝑥)1), and the approximation is said to be first order accurate. In

general, for an 𝑛-th order accurate numerical method, the discretization error scales as

𝐸 ∝ (Δ𝑥)𝑛 (1.16)
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such that increasing the resolution by a factor of 2 reduces the error by a factor of 2𝑛. What this

shows, then, is that by moving to a higher-order accurate numerical method, one may use reduced

resolution (larger Δ𝑥) without compromising accuracy. This is beneficial for a number of reasons:

reducing the numerical resolution generally allows for faster time to solution, as there are fewer grid

points to perform the update on, the memory footprint is reduced, and the simulation can take larger

timesteps as the limiting timescale is the minimum sound crossing time, Δ𝑡 ∝ Δ𝑥/𝑐𝑠 for sound

speed 𝑐𝑠 (the constant of proportionality here is referred to as the Courant-Friedrichs-Lewy (CFL)

factor and must be less than unity). Furthermore, in applications involving turbulence – common

in astrophysical settings – a very high resolution is required to capture the turbulent behavior.

High-order methods can vastly reduce the required resolution to model turbulence faithfully.

With these concepts in hand, we turn to the discretization of our hyperbolic PDE, Equation 1.14.

Unlike ordinary differential equations (ODEs), which contain a derivative in only one variable and

may be directly integrated with, e.g., a Runge-Kutta integrator, PDEs require extra care. The

common practice for integrating hyperbolic PDEs is known as the method of lines approach. In

this approach, the flux term ∇ · F (U) is discretized in space with a standard approach such as finite

differences, or others, to be discussed below. Equation 1.14 becomes, for example,

𝜕𝑡U + L∇F (U) = S (U) (1.17)

where L∇ is some discretization operator (for example, the finite differencing introduced previ-

ously). Equation 1.17 is called the semi-discrete form, as the spatial components are discretized

while the time component remains continuous. This, then, is an ODE and can be evolved in time

with standard ODE integration methods such as Runge-Kutta methods.

Most of the complexity of a PDE solver lies in the choice and implementation of L∇. PDE

solvers are grouped, broadly, into a few classes. At the highest level, there are grid based methods

and gridless methods. Grid based methods are, by far, most common. Gridless methods include,

for example, smoothed particle hydrodynamics. Grid based methods are classified as structured or

unstructured. Structured grids are most common in astrophysical applications, with unstructured

grids being more prevalent in engineering disciplines, and these grids may be constructed from
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triangles or tetrahedra, for example. For hyperbolic PDEs, there emerge three primary categories

of grid based discretizations: finite difference, finite volume, and finite element methods (although

there are some notable extensions to this list).

Finite difference schemes have more or less been covered already. Derivative operators are

discretized following Equation 1.15 and integrated in time (often, even the time derivative is

discretized in this way). Generally, higher-order accurate finite difference stencils are chosen, as

Equation 1.15 is only first-order accurate. While finite difference methods have lost favor in the

solution of hyperbolic PDEs for e.g., fluid dynamics, they remain one of the central players in

parabolic and elliptic PDEs, such as for initial data solvers in numerical relativity (see some of the

many great texts, e.g., Alcubierre, 2008; Baumgarte & Shapiro, 2010).

Finite volume methods, owing largely to Godunov (1959), are the primary class of hyperbolic

PDE solver in use in computational astrophysics. These methods, in contrast to finite difference

methods, are based on the integral form of the PDEs, instead of the differential forms. In what

follows, I specialize to one spatial dimension. The computational domain D is decomposed into 𝑁

uniform zones of width Δ𝑥. The full domain D = [𝑥𝐿 , 𝑥𝑅] is then the union of 𝑁 non-overlapping

computational cells (or zones), each indexed as 𝑥𝑖. The left and right boundaries of each of these

cells is denoted as half integer indices, e.g., 𝑥𝑖−1/2, 𝑥𝑖+1/2, respectively. On each of these finite

volumes, the solution U is considered to be constant. Figure 1.9 shows an example of a finite

volume grid.

Integrating Equation 1.14 over a computational cell and normalizing by cell volume, an integral

form of the conservation laws is obtained (assuming for the moment that there are no sources)

1
Δ𝑥

∫ 𝑥1+1/2

𝑥𝑖−1/2

𝜕𝑡U 𝑑𝑥 = −
∫ 𝑥𝑖+1/2

𝑥𝑖−1/2

𝜕𝑥F (U) 𝑑𝑥 (1.18)

Pull the time derivative out of the integral on the left, yielding the time rate of change of the cell

average, and apply the divergence theorem to the right hand side, giving:

𝜕𝑡 ⟨U⟩𝑖 = − 1
Δ𝑥

[
F∗(U) |𝑥𝑖+1/2 − F∗(U) |𝑥𝑖−1/2

]
(1.19)
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Figure 1.9 Example of a finite volume grid. Each cell stores the average value ⟨ 𝑓𝑖⟩. Figure adapted
from Introduction to Computational Astrophysical Hydrodynamics, Open Astrophysics Bookshelf.

Notice that the right hand side is simply a surface integral, and so the time rate of change of the

cell average of a quantity U changes only by flux into or out of the finite volume. This conservation

property is what makes finite volume schemes so popular. Additionally, building the scheme

using integral forms of conservative equations allows for weak solution of the underlying PDEs

without the need to explicitly introduce artificial viscosity. Notice that above, the fluxes F (U)

were replaced with “numerical flux functions” F∗(U) evaluated at the cell boundaries. This is

due to the fact that in the finite volume picture, quantities are often discontinuous between cells

(refer back to Figure 1.9), leading to am ambiguity in evaluating the fluxes there. The practice of

evaluating the numerical flux at the cell boundaries is that of solving a so-called Riemann problem

which captures various wave families that propagate from discontinuous interfaces. This is one of

the two primary freedoms in constructing a finite volume scheme and is the topic of a mountain

of literature (Toro, 2009a). The other freedom in constructing a finite volume scheme is the so

called reconstruction method. In the finite volume picture, quantities are piecewise constant on

computational cells. This turns out to be second order accurate at cell centers, but very inaccurate

when evaluating quantities at cell boundaries. Thus, it is common to “reconstruct” the interface

values by interpolating to these positions using neighboring cells. Different reconstruction methods

have different properties, such as higher orders of convergence or oscillation controlling. A common

choice is the piecewise parabolic method that is third order accurate in space (Colella & Woodward,
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1984). The reconstruction method is part of what determines the (spatial) order of accuracy of a

finite volume method4. One ill property of high order finite volume reconstructions is that they have

a large stencil, that is, they require several neighboring cells, similar to high order finite differences.

This has implications for parallel finite volume algorithms.

The final5 class of PDE solver is known as finite element methods. While uncommon in

astrophysical settings, for reasons to be shown, they provide important concepts for a final, hybrid

class of methods. In the finite element method, the computational domain D is divided into 𝑁 finite

elements (conceptually identical to the finite volumes previously used, but with a key difference).

On each element, the solution U is approximated as a basis expansion in some set of basis functions

such as Legendre polynomials. The benefit to this is that high order information is trivially obtained

without need for reconstruction or fuss with cell averages. Unlike finite volume methods, where

the solution is discontinuous across cells, the finite element solutions are required to be continuous

across elements. This enforced continuity, while very advantageous for parabolic and elliptic

problems, is disastrous for hyperbolic PDEs which, notably, allow for waves and discontinuities.

For these reasons, pure finite element methods are seldom used in astrophysical settings where wave

phenomena and shocks are common. They have, however, found widespread use in engineering

disciplines in part for their straightforward use with unstructured meshes which can conform to

material boundaries, for example.

The benefits of finite volume and finite element methods have lead to the development of a

hybrid method, so-called discontinuous Galerkin (DG) methods (Reed & Hill, 1973; Cockburn &

Shu, 1989; Cockburn et al., 1990, 1989; Cockburn & Shu, 1998). DG methods follow closely

to finite element methods, with the distinction that the solution may be discontinuous between

elements, much like finite volume methods. Then, similar to finite volume methods, a numerical

flux is used to solve the Riemann problem between cells. This union of finite element and volume

4The formal order of accuracy of a finite volume scheme requires more than just a high order reconstruction,
gaining complications from the fact that the cell average and the cell center are not the same (McCorquodale & Colella,
2011).

5There are, of course, other classes of methods than the three presented here. These are the fundamentals, and
many others combine features of them. Closely related to finite element methods, for example, are spectral methods,
which also use globally smooth basis functions.
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methods provides local high order accuracy while also allowing for shock capturing schemes (

infact, a second order classical DG scheme is nearly identical to a finite volume scheme with a

particular reconstruction). They are, potentially, very flexible methods, allowing for refinement

in the spatial grid as well as the local order of accuracy. DG schemes are relatively new in the

astrophysics setting and have a lot of potential and are the focus of Chapter 5.

While a number of details remain, such as coupling between radiation and hydrodynamics, the

discussion here is a fairly complete picture of the essential numerical methods require for CCSN

modeling.

1.5.2 Moving Forward

Supernova simulations have become increasingly mature, with the ability to successfully ex-

plode now a generic feature and the validity of the neutrino-driven explosion mechanism firmly

established. There is, of course, much room for improvement.

On the physics side, the community is only just beginning to move towards proper treatments

of general relativistic gravity. There is an enormous amount of work to be done exploring the

impacts of magnetic fields in the context of CCSNe in different regimes. Perhaps most importantly,

there are many approximations remaining in the neutrino transport sector that been shown, in

simplified cases, to be violated. One such case is the presence of muons in the equation of state

and their feedback into heavy lepton type neutrino populations. A much harder, and potentially

more impactful, problem is that of neutrino fast flavor oscillations. This neutrino flavor instability,

which operates on nanometer scales, could drastically alter every aspect of the supernova problem

(or none at all), but remains computationally intractable with current methods.

Numerically, there is much interest in moving towards high-order methods (see Chapter 5).

Providing a more cost effective treatment of turbulence, high-order methods will be a key tool in

future studies of CCSNe. Additionally, as more physics is implemented, there is increasing need

for more efficient methods to handle the added physical complexity. The computational cost is

managed, in part, by increasingly powerful computational resources. These resources, however, are

becoming increasingly heterogeneous accelerators such as GPUs becoming commonplace. This
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trend is here to stay, as Moore’s law – our ability to pack transistors into chips – is nearing its end.

Software must be developed accordingly to take full advantage of these computational resources

(such is the focus of Chapter 7). The latter chapters of this Dissertation seek to provide resources

to address these points.

1.6 Outline

This Dissertation seeks to improve the ability to interpret CCSN observations and provide open

source scientific tools to better model CCSNe. Chapter 2 produces novel light curves from neutrino-

driven supernovae and investigates how these light might be used to better constrain observed SNe.

Chapter 3 explores how the previous methods, in tandem with Bayesian inference, can be used

to constrain entire populations. Chapter 5 presents the hydrodynamics methods for a new code,

thornado, for modeling supernovae with high-order numerical methods. Chapter 6 presents an

open-source tool for performance portable microphysics in fluid and continuum dynamics codes.

Finally, Chapter 7 presents Phoebus, a new open-source, performance portable, GPU accelerated

simulation software for supernovae, accretion disks, and mergers.
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CHAPTER 2

CONNECTING THE LIGHT CURVES OF TYPE IIP SUPERNOVAE TO THE
PROPERTIES OF THEIR PROGENITORS

It’s tempting to linger in this

moment, while every

possibility still exists. But

unless they are collapsed by an

observer, they will never be

more than possibilities.

Solanum, Outer Wilds

This chapter is based on the published work of B. L. Barker, et al. 2022 ApJ 934 1.
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ABSTRACT

Observations of core-collapse supernovae (CCSNe) reveal a wealth of information about the dynam-

ics of the supernova ejecta and its composition but very little direct information about the progenitor.

Constraining properties of the progenitor and the explosion requires coupling the observations with

a theoretical model of the explosion. Here, we begin with the CCSN simulations of Couch et al.

(2020), which use a non-parametric treatment of the neutrino transport while also accounting for

turbulence and convection. In this work we use the SuperNova Explosion Code to evolve the CCSN

hydrodynamics to later times and compute bolometric light curves. Focusing on SNe IIP, we then

(1) directly compare the theoretical STIR explosions to observations and (2) assess how properties

of the progenitor’s core can be estimated from optical photometry in the plateau phase alone. First,

the distribution of plateau luminosities (L50) and ejecta velocities achieved by our simulations is

similar to the observed distributions. Second, we fit our models to the light curves and velocity

evolution of some well-observed SNe. Third, we recover well-known correlations, as well as the

difficulty of connecting any one SN property to zero-age main sequence mass. Finally, we show that

there is a usable, linear correlation between iron core mass and L50 such that optical photometry

alone of SNe IIP can give us insights into the cores of massive stars. Illustrating this by application

to a few SNe, we find iron core masses of 1.3-1.5 solar masses with typical errors of 0.05 solar

masses. Data are publicly available online (https://doi.org/10.5281/zenodo.6631964).

2.1 Introduction

Core-collapse supernovae (CCSNe) are the explosive deaths that result from the ends of stellar

evolution for massive stars with zero-age main sequence (ZAMS) masses 𝑀ZAMS ≳ 8𝑀⊙. The

current understanding suggests that some fraction of possible progenitors will successfully produce

CCSNe while others will fail and produce a black hole (BH) (O’Connor & Ott, 2011; Lovegrove &

Woosley, 2013; Ertl et al., 2016; Sukhbold et al., 2016; Adams et al., 2017; Sukhbold et al., 2018;

Couch et al., 2020). The details of the explosion mechanism have been the subject of decades

of work with current work favoring, for most progenitors, the delayed neutrino-driven mechanism

(Bethe & Wilson, 1985). For an in-depth review of the CCSN explosion mechanism and related

https://doi.org/10.5281/zenodo.6631964


problems, see recent reviews (e.g., Bethe, 1990; Janka et al., 2007, 2012, 2016; Burrows, 2013;

Hix et al., 2014; Müller et al., 2016; Couch, 2017; Pejcha, 2020).

CCSNe are detectable by three primary messengers – EM waves, neutrinos, and gravitational

waves (GWs). Neutrino and GW signals have the very desirable property that they are emitted

directly from the core of the star at the time of collapse and may reveal information about the

structure there (e.g., Pajkos et al., 2019, 2021; Warren et al., 2020; Sotani & Takiwaki, 2020),

unlike photons which are emitted from the photosphere in the outer layers of the supernova ejecta

until the remnant phase. However, to date there has been only one detection of neutrinos from a

supernova (Arnett et al., 1989, SN1987A). With modern neutrino detectors, only CCSNe occurring

within our galaxy may be detectable (Scholberg, 2012). Similarly, there have been no confirmed

detections of GW emission from a CCSNe. The current suite of detectors (aLIGO, Virgo, and

KAGRA) can only detect GWs from a CCSNe if it occurs within a distance of ≤ 100 kpc (Abbott

et al., 2016). It is the case, however unfortunate, that the overwhelming majority CCSNe will only

be observed in EM signals.

The focus of this paper is connecting EM signals to progenitor properties for SNe IIP. These

events have been shown to originate from red supergiant progenitors (Van Dyk et al., 2003; Smartt,

2009; Van Dyk et al., 2019). Despite being the most common type of CCSNe, their diversity

of observable features – such as light curve morphologies – is still not fully understood (e.g.,

Anderson et al., 2014; Valenti et al., 2016). The connection between SNe IIP and IIL supernovae,

for example, still remains an open question – whether IIL’s are the limit of IIP’s as the H envelope

is depleted or a separate class (Barbon et al., 1979; Blinnikov & Bartunov, 1993; Faran et al., 2014;

Morozova et al., 2015).

Understanding the connection between SNe IIP light curves and stellar progenitors has a new

urgency. Coming next-generation telescopes such as the Vera C. Rubin Observatory and its

primary optical photometry survey, The Rubin Observatory Legacy Survey of Space and Time

(LSST) (Ivezić et al., 2019), will allow for extremely deep imaging of the entire sky every couple

of nights. The LSST will allow for statistical studies of populations of CCSNe of an unprecedented
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scale (for recent statistical studies see, e.g., Anderson et al., 2014; Sanders et al., 2015; Gutiérrez

et al., 2017a,b).

Ultimately, properly characterizing the diversity in SNe II supernova light curve morphology

will require the union of observation and theory. On the theory side, this comprises realistic stellar

evolution models including the core collapse, following the resulting explosion with robust physics,

and calculating EM light curves (as well as neutrino and GW signals). The gold standard is full three-

dimensional (3D), self-consistent simulations. Core-collapse supernovae and their progenitors are

truly 3D in nature and the key to understanding the diversity of light curve morphology lies in

faithfully modeling these asphericities (Wongwathanarat et al., 2013, 2015; Dessart & Audit, 2019;

Stockinger et al., 2020; Sandoval et al., 2021). 3D simulations are, however, computationally

expensive to perform and, as such, are limited in number and the range of parameter space that they

cover. Spherically symmetric (1D) simulations remain necessary for understanding the CCSNe

explosion mechanism and their observables by surveying landscapes of possible CCSNe. Great

progress has been made in the last few years regarding 1D CCSN simulations (Ebinger et al.,

2017; Sukhbold et al., 2016; Couch et al., 2020), allowing for successful explosions in 1D using

neutrino-driven explosions across wide ranges of progenitor masses. These 1D simulations allow

for large parameter studies performing potentially thousands of simulations spanning ranges of

progenitor masses, equations of state, and metallicities, for example.

Light curve calculations are the final, crucial piece of the theoretical process of understanding

these explosions. Commonly, calculations of synthetic bolometric light curves of CCSNe invoke a

thermal bomb or piston-driven model, where energy is artificially injected into a thin region above a

user-specified mass cut within the progenitor (see, e.g., Bersten et al., 2011; Morozova et al., 2015;

Ricks & Dwarkadas, 2019). In these models, the explosion energy is a user-set parameter instead

of being determined by the structure of the progenitor and explosion physics. The calculations

cannot determine whether a given progenitor will result in a successful supernova or fail to revive

its stalled shock and collapse to a black hole. The explodability has been shown to have non-trivial

behavior across a large range of ZAMS mass progenitors (Sukhbold et al., 2016; Ebinger et al.,
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2017; Sukhbold et al., 2018; Couch et al., 2020) and cannot be captured with more simplified

models. The clear next step is the coupling of high fidelity CCSN simulations with bolometric

light curve calculations.

Light curves contain information about their progenitor and the explosion – properties such as

the composition of the ejecta, mass or radius of the progenitor, or explosion energy may be inferred

(Litvinova & Nadezhin, 1985; Popov, 1993; Kasen & Woosley, 2009; Sukhbold et al., 2016). The

process of inferring progenitor and explosion properties from light curves has been shown to be

highly degenerate (Goldberg et al., 2019; Dessart & Hillier, 2019) with many combinations of

properties being capable of producing a given light curve. Of particular interest, however, is the

early time light curve dominated by radiation streaming form the shock heated outer envelope.

This early time behavior can be compared to shock cooling models to put constraints on the stellar

radius (Nakar & Sari, 2010; Tolstov et al., 2013; Shussman et al., 2016; Kozyreva et al., 2020).

Recently Morozova et al. (2016); Rubin & Gal-Yam (2017) explored the effectiveness and temporal

limitations of these models and these methods have been widely used for constraining the progenitor

pre-explosion radius (e.g., Rabinak & Waxman, 2011; Gall et al., 2015; González-Gaitán et al.,

2015; Sapir & Waxman, 2017; Soumagnac et al., 2020; Vallely et al., 2021). These early time

observations may help to break the degeneracies between progenitor and explosion properties

(Goldberg & Bildsten, 2020).

In this work, we calculate the bolometric light curves of the recent 1D simulations done with

the FLASH1 (Fryxell et al., 2000; Dubey et al., 2009) code using the new Supernova Turbulence

In Reduced-dimensionality (STIR) model (Couch et al., 2020). This 1D convection scheme has

the benefit of being more consistent with some properties of full physics 3D CCSN simulations

– such as explosion energies and landscapes – while leaving the neutrino physics unaltered. Like

any 1D method, it remains a simplification of the full picture and is not without its shortcomings

(e.g., Müller, 2019). Similar 1D schemes have also been used to study Rayleigh-Taylor instabilities

in supernova remnants (Duffell, 2016). The initial conditions of these models are set by the 1D

1https://flash.rochester.edu/site/
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stellar evolution models of Sukhbold et al. (2016), which make up a suite of 200 solar metallicity,

non-rotating massive stars between 9 and 120 M⊙. We couple the final state of the STIR simulations

with the SuperNova Explosion Code (SNEC) (Morozova et al., 2015), which follows the explosion

through the rest of the star and through the plateau and nebular phases of the light curves. We

will demonstrate that using a more sophisticated 1D explosion model to determine a distribution of

explosion energies consistent with 3D simulations imparts non-trivial features to observables and

thus properties inferred from them, highlighting the importance of the explosion model used. With

this set of light curves, we make available a new set of theoretical predictions to compare directly

with observations. Furthermore, we investigate direct correlations between progenitor properties

and light curve properties. We recover known correlations, and we quantify the dependence of

SNe IIP luminosity on the progenitor iron core mass at time of collapse – thus providing a way of

obtaining core properties from EM signals without the need for the much rarer neutrino and GW

signals.

This paper is laid out as follows: in Section 7.3 we discuss the various progenitors, codes,

and statistical methods that are used in this study. Section 3.3 presents our results: 2.3.1 presents

observable properties of our light curves and their trends across ZAMS mass, 2.3.2 presents

preliminary comparisons to observations of SNe IIP, 2.3.3 shows correlations found between light

curve and progenitor properties. In Section 3.4, we summarize our results and briefly discuss

comparison to other theoretical light-curve calculations and prospects for future work.

2.2 Methods

For this work, we begin with massive stellar progenitors evolved up to the point of core collapse

in Sukhbold et al. (2016) evolved using KEPLER. The core collapse and following explosion or

collapse to BH are simulated using the FLASH simulation framework (Fryxell et al., 2000; Dubey

et al., 2009) with the Supernova Turbulence In Reduced-dimensionality (STIR) model (Couch et al.,

2020), the details of which are discussed in Section 2.2.2. The output of the STIR simulations

are mapped into the SuperNova Explosion Code (SNEC) (Morozova et al., 2015, 2016, 2018)

to generate bolometric light curves as discussed in Section 2.2.3. In Section 2.2.4 we present
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the methods used to analyze statistical relationships between properties of the progenitor and

observables.

2.2.1 Progenitors

We begin with the 200 non-rotating, solar metallicity models of Sukhbold et al. (2016). These

models cover a range of ZAMS masses from 9 – 120 M⊙ and were created with the KEPLER

code assuming no magnetic fields or rotation and single star evolution. Progenitors with ZAMS

masses above 31M⊙ experienced significant mass loss during their lifetimes and did not explode

as SNe IIP and this is the upper limit on our mass range (see Sukhbold et al., 2016, for details

on their stellar evolution). The more massive Type I SNe progenitors are too few in number to

perform a meaningful statistical analysis and we defer their analysis for future work. This leaves

136 progenitors producing SNe IIP supernovae used in this work.

These progenitors span a wide range of possible CCSNe progenitor properties. Figure 2.1

shows the mass of the H-rich envelope as a function of pre-supernova radius (top) and the stellar

pre-supernova mass as a function of ZAMS mass (bottom). Here we show only models that

successfully exploded in Couch et al. (2020) and are included in this work. Gaps in this figure –

such as that from about 12-15M⊙– represent models which failed to explode and are not included

in this work. These progenitors become mass-loss dominated around 23M⊙, as seen in the bottom

panel of Figure 2.1. This complicates correlations between quantities of interest and tends to cause

them to deviate from monotonicity. This is key to investigating observable trends in light curves

across a wide range of progenitors, as we demonstrate later.

The progenitors in Sukhbold et al. (2016) were further investigated in Sukhbold et al. (2018)

using a set of high resolution stellar evolutionary models. They showed that the features of these

progenitors – notably the compactness landscape – was not numerical in nature and was present

in their high resolution models. Similarly, other, recent works have found similar trends in the

presupernova mass and compactness (e.g., Laplace et al., 2021, using MESA (Paxton et al., 2011,

2013, 2015, 2018, 2019)). We note that while general trends may be reproduced, details such as

the apparent ‘chaos’ seen in Sukhbold et al. (2016, 2018) are sensitive to implementation details of
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Figure 2.1 Properties of the progenitors of Sukhbold et al. (2016). (top) Mass of the H-rich
envelope (𝑀env) as a function of pre-supernova radius (𝑅preSN). (bottom) Final stellar mass
(𝑀preSN), after mass loss, as a function of ZAMS mass.

stellar evolution and may not appear in other studies (Chieffi & Limongi, 2020). Using a different

set of progenitors with a different compactness curve would likely affect the explosion landscape

but isn’t expected to affect the results presented here.

A key result of systematic 1D studies of CCSNe are the so-called “islands of explodabilty”

(Sukhbold et al., 2016). The final result of stellar core collapse - a successful or failed explosion -

is not a monotonic function of ZAMS mass. Instead, the explodability of the progenitor is sensitive
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to the core structure at the time of collapse. While the placement of these islands is sensitive

to the explosion model and the progenitors used, it is a feature that has now been seen amongst

many groups (O’Connor & Ott, 2011; Perego et al., 2015; Sukhbold et al., 2016; Ertl et al., 2016;

Ebinger et al., 2019; Couch et al., 2020). However, studies using exclusively thermal bomb driven

explosions uninformed by neutrino driven calculations cannot reproduce the explosion/implosion

fate of a progenitor and are insensitive to this feature. Any systematic study of light curves from

populations of SNe must capture this complex behavior.

2.2.2 FLASH

The CCSN simulations were conducted in Couch et al. (2020) using the FLASH code framework

with the STIR turbulence-aided explosion model. This model is a new method for artificially

driving explosions in 1D CCSN simulations.. Turbulence is key in simulating successful, realistic

explosions, as turbulence may constitute 50% or more of the total pressure behind the shock (Murphy

et al., 2013; Couch & Ott, 2015) and turbulent dissipation is important for post-shock heating

(Mabanta & Murphy, 2018). The combined impact of these effects is to aid the explosion. The

inclusion of turbulent effects allows for successful explosions in 1D simulations while reproducing

the results seen in 3D simulations from various groups (Couch et al., 2020) without the need for

parametrized neutrino physics.

STIR models turbulence using the Reynolds-averaged Euler equations with mixing length

theory as a closure. This model has one primary scalable parameter, the mixing length parameter

𝛼Λ, inherited from mixing length theory which scales the strength of convection. The mixing

length parameter has been tuned to fit STIR simulations to full 3D simulations run with FLASH and

reproduces 3D results seen in FLASH and other codes, noting particularly good agreement with the

3D works of (Burrows et al., 2020). We use the fiducial value found in Couch et al. (2020) for

the mixing length parameter, 𝛼Λ = 1.25. STIR also includes four additional diffusion parameters

that control the convective mixing of internal energy, turbulent kinetic energy, composition, and

neutrinos. As in Couch et al. (2020), all four of these diffusion coefficients are set to 1/6, a value

consistent with comparison to fully 3D simulation of convection in massive stars (Müller et al.,
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2016). We note that the convective dynamics are insensitive to the choice of diffusion coefficients

and, thus, impacts on the explosion are negligible (Müller et al., 2016; Boccioli et al., 2021). FLASH

with the STIR model has the desireable benefit that there is no need to tune the model to match a

specific observation. Instead, its one primary parameter is tuned to be consistent with multi-physics

3D CCSN simulations, reducing the possibility of inserting biases into the results.

STIR includes neutrino transport using a state-of-the-art two moment method with an analytic

“M1” closure (Shibata et al., 2011; Cardall et al., 2013; O’Connor, 2015; O’Connor & Couch,

2018). We simulate three neutrino flavors: 𝜈𝑒, �̄�𝑒 and 𝜈𝑥 , where 𝜈𝑥 combines the 𝜇 – 𝜏 neutrino and

antineutrino flavors. M1 transport requires no tuning and has no free parameters (up to the choice

of a closure for the high-order radiation moments), allowing for truly physics-driven explosions.

The STIR simulations use the now commonly adopted, empirically-motivated “SFHo” equation of

state for dense nuclear matter (Steiner et al., 2013a) which is able to replicate observed neutron star

masses.

At the end of the STIR simulations, the explosion energies for all but the highest-mass pro-

genitors have asymptoted. It is commonplace in CCSNe work to define the explosion energy as

the sum total energy, from all sources, of material that has both positive total energy and positive

velocity (e.g., Bruenn et al., 2016) at the end of the simulation. This is zero during the stalled

shock phase, when all of the material is still gravitationally bound, and becomes positive if/when

the shock begins to move outward again due to neutrino heating and other effects. This energy, once

it has reached its asymptotic value, represents the energy that is injected into the rest of the star to

drive the explosion and unbind the stellar material. When discussing the combined STIR + SNEC

simulations, this is the explosion energy that we will reference. It is important to note that this

energy is different than the energy that would be used in hydrodynamical modelling (e.g., thermal

bomb explosions). In the thermal bomb regime, a user set energy is deposited at 𝑡 = 0 over defined

temporal and spatial extent, and assumes that the energy of the shock comes directly from the

core-bounce which is inconsistent with the physical picture of CCSNe. In the case of high fidelity

simulations, a large amount of material has already been gravitationally unbound by the shock
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when the explosion energy is measured. A thermal bomb model with the “same” energy injected

into the inner zones would, by the time the same amount of material is unbound, be less energetic

by exactly the binding energy of the material. Care should be taken when comparing energetics

from these two approaches. While the physics of these two explosion methods are inconsistent with

each other, the thermal bomb energetics can be made consistent with neutrino-driven energetics by

correcting the bomb energy by the binding energy of the material between the shock and the PNS

surface (this material is already unbound when the explosion energy is calculated as above, but in

thermal bomb or piston-driven explosions it is not). Without this correction, a thermal bomb model

using energetics from neutrino-driven simulations will have less energy available for the explosion,

impacting observables.

Figure 2.2 shows the explosion energies obtained with STIR (black) alongside the explosion

energy with the progenitor’s overburden energy removed (blue). The progenitor’s overburden

energy is the (negative) total energy above the shock that the explosion must overcome to unbind

the star (Bruenn et al., 2016). The total energy, which we compute as the total energy on the

computational domain after the explosion has set in is closer to what will characterize the ejecta.

Gaps in mass, such as from about 12M⊙ to 15M⊙, indicate regions where progenitors failed to

successfully launch an explosion in STIR. The bottom panel shows the explosion energy as a

function of the iron core mass. These explosion energies are set largely by the structure of the

cores of their progenitors – effects which can only be seen by employing neutrino driven explosions

(for recent examples of the impacts of core structures on explosions and observable signatures, see

Warren et al., 2020; Burrows et al., 2020). The emerging picture from high fidelity simulations is

that there is no simple relationship between explosion energy and ZAMS mass, instead requiring

multi-physics simulations to determine robustly (Sukhbold et al., 2016; Ebinger et al., 2017, 2019;

Sukhbold et al., 2018; Couch et al., 2020; Burrows et al., 2020; Ertl et al., 2020). The explosion

energy is more closely related to the pre-supernova mass and properties of the core, such as the

compactness parameter or the mass of the iron core.
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Figure 2.2 Top: Explosion energies realized in the STIR CCSN simulations of Couch et al. (2020)
(black) and the final energy after removing the overburden energy of the progenitor (blue).
Bottom: STIR explosion energy as a function of the progenitor’s iron core mass.

2.2.3 SNEC

We simulate light curves for all of the models that successfully produced explosions in Couch

et al. (2020) (see their Figure 6, middle row). This is all but about 50 of the original 200 progenitors.

This limits our study to light curves obtained from progenitors that actually explode, allowing us to

explore solely relationships that come from physically-driven explosions. At the end of the STIR

simulations, the final states are mapped into the SuperNova Explosion Code (SNEC) (Morozova

et al., 2015). SNEC is a spherically symmetric, Lagrangian, equilibrium flux-limited diffusion

radiation-hydrodynamics code and is publicly available2. Unlike STIR, SNEC does not include

any form of general relativistic gravity, neutrino transport, or dense matter EoS, which are all

important for modeling the explosion but not necessarily for computing the light curve. Instead,

it follows the basic physics needed for predicting bolometric supernova light curves. SNEC

includes Lagrangian Newtonian hydrodynamics with artificial viscosity following the formulation

in Mezzacappa & Bruenn (1993) and a stellar equation of state following Paczynski (1983) that

includes contributions from radiation, ions, and electrons with approximate electron degeneracy.
2http://stellarcollapse.org/SNEC
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This is used in tandem with a Saha ionization solver that can follow ionization of any number of

present elements. At high temperatures SNEC uses OPAL Type II opacities (Iglesias & Rogers,

1996) suitable for solar metallicity. These opacities are supplemented by those of Ferguson et al.

(2005) at low temperatures.

1D modeling cannot properly capture the mixing at compositional interfaces due to Rayleigh-

Taylor and Richtmyer-Meshkov instabilities, for example. Without mixing, sharp compositional

gradients appear that produce features in light curves that are not observed in nature (Utrobin, 2007).

In these mixing processes, shock propagation outwards can cause light elements to mix inwards

and heavy elements to mix outwards (Wongwathanarat et al., 2015). Of particular importance is

the mixing of radioactive 56Ni, whose mixing extent affects the light curve properties (Morozova

et al., 2015). SNEC applies boxcar smoothing that smooths out compositional profiles, simulating

mixing and avoiding unphysical light curve bumps. We use the fiducial parameters of Morozova

et al. (2015) for our boxcar smoothing.

In the present work we follow the ionization of 1H, 3He, and 4He, similarly to Morozova et al.

(2015). H and He make up the majority of the energy contributions from recombination relevant for

producing bolometric SNe IIP light curves. Our STIR simulations do not currently track detailed

compositional information in their output. When mapping into SNEC, we fill the composition in

the STIR part of the domain to be pure 4He. This has no noticeable effect on the light curves in

this study (see Appendix 9A). Figure 2.3 shows mass fractions of 1H (light blue), 4He (dark blue),

12C (gold), 16O (red), and 56Ni (black, dot-dashed line). The solid lines show the unmixed profiles

that are input to SNEC. Notably, the gray region shows the STIR domain where the composition,

prior to mixing, is set to pure 4He. The dashed lines show the compsotion after boxcar smoothing

is applied. The bottom panel shows the radial density profile in the STIR domain (solid line) and

in SNEC after mapping (dashed line).

The final, critical ingredient for powering a SNe light curve is radioactive heating from the 56Ni

→ 56Co → 56Fe decay chain. Radioactive 56Ni is produced in explosive nuclear burning during the

first epochs of the explosion in the inner parts of the star. Hydrodynamic instabilities mix the 56Ni
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Figure 2.3 Top: Mass fraction of 1H (light blue), 4He (dark blue), 12C (gold), 16O (red), and 56Ni
(black, dot-dashed line). Solid lines show the unmixed profiles, dashed lines show the profiles
after boxcar smoothing is applied. The gray shaded region represents the STIR domain, which is
originally set to pure 4He prior to smoothing. Bottom: Radial density profile for the STIR domain
(solid line) and SNEC mapping (dashed line).

outward. Gamma-rays and positrons emitted from the decay process diffuse outward and provide

an additional source of energy. Capturing this is crucial as, after the end of the plateau phase, the

light curve is powered entirely by this radioactive decay. SNEC follows the radiative transfer of

gamma-rays from the 56Ni and 56Co decays using the gray transfer approximation (Swartz et al.,

1995) and the resulting energy release is coupled to the hydrodynamics independently from the rest

of the radiation.

Currently, neither our STIR models used here nor the public version of SNEC include a nuclear

reaction network. To alleviate this issue, SNEC allows for a user specified amount of 56Ni to

be input by hand throughout a specified mass coordinate. Sukhbold et al. (2016) simulate the

explosions of these progenitors including a large nuclear reaction network, and we use the 56Ni

yields as a function of explosion energy from their work (see their Table 4, Figure 17) to estimate a

mass of 56Ni from that relationship to be distributed by SNEC. For all but the lightest progenitors,
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they find around 0.07M⊙ of 56Ni. We disperse the 56Ni up to about 75% of the way through the

He shell – avoiding mixing into the H envelope. This provides control amongst the progenitors.

As the mixing extent must be set by hand, any further treatment would require a large parameter

study. In recent high fidelity models, mixing of radioactive 56Ni into the H-rich envelope is realized

(Utrobin et al., 2015, 2017; Stockinger et al., 2020; Utrobin et al., 2021; Sandoval et al., 2021) and

is expected to occur in at least some of our models. In Morozova et al. (2015), they showed that

variations in these distributions had little effect on the light curve, especially on the plateau (see

their Figure 6). Goldberg et al. (2019) show slight variations in the light curve as it falls off the

plateau depending on the extent of mixing (see their Figure 10). Kozyreva et al. (2019) explore

the effects of mixing prescriptions for 56Ni, such as uniform or boxcar, on light curves, showing

differences on the plateau between these methods. The lack of a reaction network consistently

incorporated into the calculations forms a weakness of the current work, despite being based on

nucleosynthetic calculations and tuned to our explosion energies. However, the main results of

this work (see Section 2.3.3) use quantities measured on the plateau where they are less sensitive

to reasonable variations in 56Ni mass and distribution. Future work will include nucleosynthesis

calculations with the STIR input models to properly seed the SNEC calculations.

Typically, high fidelity CCSN simulations do not simulate the entire star – instead focusing

on the inner 15,000 km or so necessary for launching the explosion. We must stitch the STIR

simulation data, with the explosions developed on the grid, onto the progenitor pre-explosion

profile outside the STIR boundary (15,000 km) in order to simulate the full star. Below the shock,

mass profiles are taken from STIR. Above the shock mass coordinate, mass profiles are taken from

the progenitor profiles. These smooth, combined STIR – pre-explosion progenitor profiles are used

as the inputs to SNEC as detailed in (Morozova et al., 2015). One advantage of using the STIR

models as the initial conditions to SNEC is that the high fidelity equation of state and neutrino

transport yield a physically realistic remnant mass to motivate the mass cut – an amount of material

not included in light curve simulations that should be close to the remnant mass. We place a mass

cut outside the PNS at the point where the total energy becomes positive – removing both the PNS
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and a small amount of still gravitationally bound material above it (of order 0.0001M⊙). For all

of the simulations we use 1000 cells in the SNEC domain using a geometric grid, as in Morozova

et al. (2015), that places higher resolution in the core around the shock and at the outer domain to

resolve the photosphere. Our grid is slightly modified from that of Morozova et al. (2015) to place

added resolution in the core over the already existing explosion. Simulations were run until 300

days when possible to adequately sample both the plateau and the tail for all events.

To simulate CCSNe directly from progenitors, SNEC has the ability to artificially drive an

explosion with a piston or thermal bomb. One of the primary qualities of our method is to eliminate

the need for this and thus eliminate user input explosion energies, which can take any range or

distribution, replacing them with physically motivated energetics. However, for some of the more

massive progenitors in this study, the explosion energies were still increasing by the time the shock

reached the outer boundary. Eventually, energy generation from neutrino heating and other sources

will slow as the shock expands and the explosions energies will asymptote. Since our computational

domain is limited to 15,000 km, some progenitors do not reach their “true” explosion energies. In

order to fully capture the energy of the explosion in STIR, we integrate the neutrino heating in the

gain region at the end of the FLASH simulations to estimate the asymptotic explosion energy and

add the difference – at most about 0.3×1051 erg – as a thermal bomb over the shocked region. These

additions are most necessary in the region of high energy between about 21M⊙ and 25M⊙ where

the final energies were still readily increasing. This energy is what is displayed in Figure 2.2.

The light curves presented in this work represent those 136 progenitors (of the suite of 200) that

both successfully launch an explosion (Section 2.2.2) and have light curves that would be identified

as a SNe IIP, which we find is simply a mass cut of 𝑀ZAMS ≤ 31M⊙.

2.2.4 Correlations

We are interested in uncovering correlations between observable properties of the explosion

and properties of the progenitors. The size and fidelity of the sample allows us to address these

connections necessary to understand light curve diversity. Our robust treatment of the explosion

physics combined with large sample of progenitors makes us uniquely situated to address corre-
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lations in a novel way. We proceed similarly to Warren et al. (2020), wherein the correlations

between observed neutrino and GW signals with progenitor properties were addressed.

We measure correlations with the Spearman’s rank correlation coefficient. The Spearman

correlation coefficient measures any monotonic relationships between variables, in contrast to the

Pearson coefficient which measures only linear correlations. It is important that we are able to

access non-linear relationships that are seen in the data. The combined effect of a wide range of

stellar progenitors with mass loss effects and non-linear, non-monotonic explosion energetics over

the range of progenitors produces robust and realistic – but not necessarily linear – relationships.

The Spearman coefficient is obtained by first ranking the data by replacing the values by their

indices after sorting. For example, the data (1.5M⊙, 1.4M⊙, 1.6M⊙) would transform to (2, 1, 3).

Then, the Spearman rank correlation coefficient is obtained by computing the Pearson correlation

of the transformed data, calculated by

𝜌 =

∑
𝑖 (𝑥𝑖 − 𝑥) (𝑦𝑖 − �̄�)√︃∑

𝑖 (𝑥𝑖 − 𝑥)2
√︃∑

𝑖 (𝑦𝑖 − �̄�)2
(2.1)

for ranked variables 𝑥 and 𝑦 with 𝑥 and �̄� being the mean values. This process of first ranking the

data is what allows the Spearman process to produce a more robust correlation metric. We note

that the above equation is the same as that for the Pearson correlation coefficient and, when used

on non-ranked data, will produce the Pearson correlation coefficient.

A value of +1(-1) represents an exact monotonic correlation (anticorrelation) and a value of

0 indicates no monotonic relationship. We consider values |𝜌 | ≳ 0.5 to indicate strong statis-

tical correlation, values 0.3 ≲ |𝜌 | ≲ 0.5 to be moderate correlation, and |𝜌 | ≲ 0.3 to be a

weak correlation, as is standard practice. Correlation coefficients were calculated using Python’s

scipy.stats.spearmanr package.

We strived to limit observables considered to those reasonably detectable with current facilities

– mostly photometric and early time (meaning, in this context, on the plateau but not requiring

observations within days of explosion) features. Ultimately plateau duration, plateau luminosity,

and ejecta velocity – all at early times – proved to be the most useful and accessible. We explored
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numerous properties of the progenitors for correlations with observables – shell masses, density

structures, core compactness, and envelope mass to name a few. Most of these parameters had

weak relationships with observable properties. Ultimately, we settled on the mass of the iron core

as the most meaningful and useful progenitor property, as we will see in the next section.

2.2.5 Light curve fitting

A common method for estimating CCSN progenitor properties is to construct a grid of models

with varying masses, explosion energies, and 56Ni masses and distributions and select the progenitor

from that grid that best fits an observed light curve (see Morozova et al., 2018; Martinez & Bersten,

2019; Martinez et al., 2020, for recent examples). We accomplish this by finding the progenitor

which minimizes the average relative error 𝜀 of a quantity 𝑓

𝜀( 𝑓 ) = 1
𝑁

𝑡𝑁∑︁
𝑡∗=𝑡1

| 𝑓𝑡∗ − 𝑓 ∗
𝑡∗ |

𝑓 ∗
𝑡∗

(2.2)

where 𝑓 ∗
𝑡∗ is the observed quantity at time 𝑡∗, 𝑓𝑡∗ is the synthetic quantity at the same time, and 𝑁

is the number of observational data points. We compare the synthetic and observed data only at

the times where observational data is available, using the closest synthetic data to the observational

data, which is always within 0.02 days with the output frequency used with SNEC. That is, we do not

interpolate between observational data points. We not not consider uncertainties in the explosion

epoch in the current work. We seek models that match both observed bolometric luminosity and

velocity evolution, i.e., we seek a model minimizing the combined error metric 𝜀(𝐿50) + 𝜀(𝑣Fe).

Other approaches have been used, such as (historically) simply fittng by eye, 𝜒2 minimization

(Morozova et al., 2018), and Markov chain Monte Carlo methods (Martinez et al., 2020). We

implemented several minimization approaches and found that the above method worked best for

the current work. This is discussed more in Section 2.3.2.2.

2.3 Results

We consider the properties of the bolometric light curves followed through the end of the

plateaus and into the radioactive tails and the ejecta velocities for models with ZAMS masses 9M⊙

≤ MZAMS ≤ 31M⊙ for a total of 136 progenitors. In an effort to find relationships with observables
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that are easily detectable, we consider primarily the photometric and spectroscopic properties in the

plateau phase. The primary quantities that we consider are the plateau luminosity at day 50 (𝐿50),

the plateau duration (𝑡𝑝), and the ejecta velocity at day 50 (𝑣50). These quantities are commonly

used when inferring explosion properties from observations (e.g., Litvinova & Nadezhin, 1985;

Popov, 1993; Pejcha & Prieto, 2015) and so their trends from realistic models are of particular

interest. These quantities are easily detectable by current and next generation facilities without the

need for late time observations or particularly high cadences, acknowledging that the photosperic

velocity will not be as easily observable for most sources. This will allow for a relationship to be

obtained between these quantities and properties of the core of the progenitor that is both robust

and easily detectable with standard measurements.

2.3.1 Landscape properties across ZAMS mass

Here we present global trends in photometric properties to test the impact of our explosion

calculation on light curve features. As we will see, these properties exhibit non-monatonic features

as a function of ZAMS mass and thus introduce degeneracy into attempts to infer progenitor

properties from direct comparisons to light curves.

Figure 2.4 shows the bolometric luminosity at day 50 (on the plateau for all progenitors) for

all masses. The imprint from the distribution of explosion energies is readily seen in the plateau

luminosities, with more energetic explosions yielding brighter plateaus. A consequence of this is

the highly degenerate mapping between plateau luminosity and ZAMS mass following the explosion

energy distribution (Figure 2.2).

Figure 2.5 shows the plateau duration for the STIR + SNEC models. We follow Valenti et al.

(2016) and Goldberg et al. (2019) and compute the plateau duration by fitting part of the light curve

near the end of the plateau to a combined Fermi-Dirac – linear function of the form

𝑓 (𝑡) = −𝑎0

1 + exp((𝑡 − 𝑡𝑝)/𝑤0)
+ (𝑝0 𝑡) + 𝑚0. (2.3)

This avoids biases or inconsistencies that may possibly be introduced by determining the plateau

durations by eye for a large sample of light curves. The physical significance of the various fitting
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Figure 2.4 Log of the plateau luminosity at day 50 for the STIR + SNEC models.

parameters is described in detail in Valenti et al. (2016) and Goldberg et al. (2019). Importantly,

the parameter 𝑡𝑝 is taken to be the plateau duration and tends to be placed about halfway through

the drop off of the plateau. Also of interest are 𝑎0 and 𝑤0 which describe the luminosity drop at

the end of the plateau and the width of the drop, respectively. Fitting was done using Python’s

scipy.optimize.curvefit package starting shortly before the end of the plateau. For a few of the

high mass models between 27 and 28M⊙, timestep restrictions made it difficult to simulate the

explosions into the radioactive tails. Most made it to the end of the plateau and began drop off,

but two progenitors were unable to reach the end of the plateau. For the former case, the fitting is

unable to work properly and the plateau duration is set by hand in a way that was consistent with

the fitting routine. For the two progenitors that could not reach the end of the plateau – 27.4M⊙

and 27.5M⊙– we omit them in comparisons involving the plateau duration.

Clearly, the distribution of the explosion energies imparts a resulting morphology on the plateau

durations that cannot be reproduced without energetics informed by neutrino-driven explosions.

We note that many of the plateaus here are quite long, greater than 150 days or so, which is not

very common. These plateaus originate from very massive progenitors, around 20M⊙, which are

rare in nature. Moreover, these models retain quite massive H-rich envelopes (see Figure 2.1) and

have reduced explosion energies (see Figure 2.2). The combination of massive H-rich envelope
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Figure 2.5 Plateau duration for the STIR + SNEC models. Two progenitors between 27 and 28M⊙
have been removed for fair comparison, as some of them did not reach the radioactive tail in the
simulation time.

with reduced explosion energy results in extended plateaus (Popov, 1993). Some uncertainty in the

plateau duration remains through the prescription for setting the mass and mixing of radioactive

56Ni, as it lengthens the plateau slightly (Kasen & Woosley, 2009; Morozova et al., 2015; Sukhbold

et al., 2016; Goldberg et al., 2019; Kozyreva et al., 2019). These uncertainties, however, should be

on the order of days (see, e.g., Figure 13 from Morozova et al. (2015), Figure 10 from Goldberg

et al. (2019), Figure 4 from Kozyreva et al. (2019)). It is also somewhat difficult to fairly compare

plateau durations to observed works, as many authors present the length of the optically thick phase

duration (e.g., Gutiérrez et al., 2017b) which may be smaller than our measurement by another 5-10

days or more. For these reasons, we defer further comparisons to observational data of the plateau

durations to future work.

All of this directly impacts the ability to reliably extract progenitor features from light curves.

Without a distribution of explosion energies that is set by a physically realistic explosion model,

any sort of arbitrary distribution of light curve properties may be recovered, even with the same

diversity of progenitors used. While STIR is not a perfect or parameter free description of the

explosion – no 1D model ever will be – it matches well with 3D results and provides a large set of

such physically motivated explosion energies for these studies.
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Another quantity of interest – albeit not a directly observable one – is the time to shock breakout.

Figure 2.6 shows the time for the shock to breakout from the stellar surface for the STIR + SNEC

models. This is particularly important, as the time to shock breakout sets the on source window for

electromagnetic follow-ups of gravitational wave and neutrino events from core-collapse supernovae

(Abbott et al., 2020). The time to shock breakout is sensitive to the structure of the progenitor and

the explosion energy and may be significantly over- or under-estimated if an incorrect explosion

energy is used.

With the next galactic CCSNe and prospects for detecting their gravitational wave and neutrino

signals, the time to shock breakout becomes a measurable quantity through the difference between

GW or neutrino detection time and first light from the SNe. The SuperNova Early Warning System

(SNEWS) (Adams et al., 2013; Kharusi et al., 2021) will alert observatories to trigger an EM

followup after a neutrino detection, and knowing the shock breakout time will be an important

factor for the followup study. Combined with constraints from the GW detection (Abbott et al.,

2020) and constraints from other EM observations, the time to shock breakout could help to place

additional constraints on the SNe progenitor – provided that adequate energetics are used. Similarly,

constraints on the shock breakout time after an EM signal may be used to look back at GW and

neutrino data, assuming a nearby event.

The previous figures highlight the strong dependence on the distribution of explosion energies

used to drive the explosion. This leads to degeneracies when mapping from observables to ZAMS

mass with many progenitors of varying masses being capable of producing a given observation.

2.3.2 Comparisons with observations

In this section, we compare our light-curves to observations of SNe IIP both through global prop-

erties of many SNe and fits to the light-curves of individual SNe IIP that have 𝑀ZAMS determined

through pre-explosion imaging data.

2.3.2.1 Comparison with a large observational sample

Apart from photometric observations, spectroscopic observations may also be used to constrain

progenitor properties. While we have not computed full synthetic spectra in this work, we can
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Figure 2.6 Time for shock breakout for the STIR + SNEC models.

approximate standard line velocities. Figure 2.7 shows ejecta velocity at day 50 (𝑣50) versus plateau

luminosity at day 50 (𝐿50) for all progenitors that exploded as SNe IIP. Also plotted are data

presented in Gutiérrez et al. (2017a,b)3. All ejecta velocities here are inferred from the Fe II (5169)

line. In our models, this velocity is calculated in post-processing as the velocity of the ejecta at the

point where the Sobolev optical depth (𝜏Sob) is unity, with

𝜏Sob =
𝜋𝑞2

𝑒

𝑚𝑒𝑐
𝑛Fe 𝜂𝑖 𝑓 𝑡expl 𝜆0 (2.4)

where 𝑞𝑒 and 𝑚𝑒 are the electron charge and mass, 𝑛𝐹𝑒 is the number density of iron atoms, 𝜂𝑖

is the ionization fraction relevant for the transition of interest, 𝑓 = 0.023 is the atomic oscillator

strength, 𝑡expl is the time since explosion, and 𝜆0 is the wavelength associated with the transition.

For material in homologous expansion, this measures the strength of a particular line (Mihalas

et al., 1978; Kasen et al., 2006) and the point where 𝜏Sob = 1 has been shown to match better

to observational measurements than the 𝜏 = 2/3 electron scattering photosphere (Goldberg et al.,

2019; Paxton et al., 2018). To estimate the ionization fraction, we use a table of 𝜂𝑖 as a function of

density and temperature that is now publicly available in MESA (Paxton et al., 2018).

3Bolometric luminosity data were calculated from 𝑀𝑉 measurements at day 50 provided by C. Gutièrrez (private
communication).
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Figure 2.7 Ejecta velocity at day 50, 𝑣50, versus the log of the bolometric luminosity of the plateau
at day 50, 𝐿50 for all of the exploding progenitors. Simulated data are colored by the zero-age
main sequence mass. Points with error bars are observational data from Gutiérrez et al. (2017a,b).

We choose to use this metric for the velocity evolution because ultimately we seek to compare

with observables. While the standard 𝜏 = 2/3 photosphere – and its velocity – are simple to

compute, they are not simple to observe. On the other hand, the Fe II 5169 line is commonly

measured. Therefore, we seek to estimate the location in the ejecta where this line is measured,

using the Sobolev approximation that has been readily used in recent works (Paxton et al., 2018;

Goldberg et al., 2019; Martinez et al., 2020). However, this approach to estimating the iron line

velocity is ultimately an approximation and there are physical uncertainties associated with this

method. Paxton et al. (2018) investigated the effects of the choice of the Soboloev optical depth

used and found relatively small differences when compared to using the traditional photospheric

velocity. In lieu of full spectral calculations this method provides an estimate of the desired velocity

but more work may be needed to robustly compare to observed ejecta velocities.

The sample of luminosities and velocities from our models matches well with the observational

sample, but reach higher in luminosity than the observed set. These high luminosity events

are from some of the higher pre-supernova mass stars around the transition to the mass-loss

dominated regime (see Figure 2.1). These high mass stars are less common than their lower

mass companions. The highest ZAMS mass stars, those ⪆ 23M⊙ dominated by mass-loss, dip

back down and left in luminosity- and velocity-space, obtaining similar luminosities but slightly
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lower velocities than lower mass progenitors. Ultimately, we are able to reproduce observed

distributions quite well without having to tune to observations, instead following the explosions

from self-consistent simulations.

2.3.2.2 Determination of progenitor properties for individual events

It is commonplace to estimate supernova progenitor parameters using a grid hydrodynamical

models (i.e., codes similar to SNEC using a thermal bomb) with varying initial masses, thermal

bomb energies, and other parameters, and determining the best fitting model (see, e.g., Utrobin &

Chugai, 2008, 2009; Pumo et al., 2017; Morozova et al., 2018; Martinez & Bersten, 2019; Martinez

et al., 2020; Eldridge & Xiao, 2019). We attempt to match our set of explosions with 7 observed

bolometric light curves from Martinez & Bersten (2019); Martinez et al. (2020)4. Bolometric

luminosities are calculated using the bolometric correction method of Bersten & Hamuy (2009),

which requires only BVI photometry to estimate the bolometric correction.

Figures 2.8 and 2.9 show observed bolometric light curves (left) and velocity evolution (right)

for (top to bottom) SN 2004A, SN 2004et, SN 2005cs, SN 2008bk, SN 2012aw, SN 2012ec, and SN

2017eaw. Dark blue lines show bolometric luminosity and velocity evolution for best fit progenitors

from our sample using the STIR + SNEC model using the fitting described in Section 2.2.5. For the

velocity evolution, dashed lines show approximate Fe II 𝜆5169 line velocities estimated through the

methods described in Section 2.3.2 and solid lines show the proper 𝜏 = 2/3 photospheric velocity.

Gold lines are for ZAMS mass models corresponding to estimates from pre-explosion imaging.

We use the ZAMS mass estimates from Davies & Beasor (2018) for SN 2004A, SN 2004et, SN

2008bk, SN 2012aw, and SN 2012ec. Properties of these SNe are discussed in detail in Martinez

& Bersten (2019) and Martinez et al. (2020). For SN 2005cs, Davies & Beasor (2018) estimated

an initial mass of about 7 M⊙– well below the minimum mass we consider to produce a CCSN – so

we use the estimate from Smartt (2015). Finally, we use the mass estimate for SN 2017eaw from

Eldridge & Xiao (2019). In all cases we use the optimal value of the initial mass when possible,

or the closest value within the reported range that was both on our mass grid and produced an

4Observational data were provided by L. Martinez (private communication).
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explosion.

We determine the best fit progenitor by minimizing the total relative error of both luminosity

and velocity across the entire light curve after day 30 as discussed in Section 2.2.5. We also

tried minimizing 𝜒2, as was done in Morozova et al. (2018), but found unsatisfactory performance

compared to our method (see Appendix 9B for an example using SN2017eaw). We did not consider

the errors associated with the observations in our fitting. The inverse variance weighting typically

used in 𝜒2 minimization gave stronger significance to the radioactive tail, as this region has much

smaller error compared to the plateau. The result was the selection of models that fit the tail nicely,

but fit the plateau very badly. We do not consider data before 30 days post shock breakout, as very

early time bolometric luminosities may be heavily influenced by interactions with circumstellar

material (CSM) for some SNe (Morozova et al., 2018) and we have not included CSM effects in

this work.

We do not expect to find close fits for all observed CCSNe. In this work, we have progenitors

that cover a wide range of ZAMS masses with explosions driven by turbulence-aided neutrino

radiation hydrodynamics simulations, but are limited in scope in other regards, such as rotation,

metallicity, 56Ni mass and distribution, and possible effects of binarity. Moreover, we do not have

models with masses lower then 9M⊙, which may contribute to CCSNe. For example, SN 2008bk

is very underluminous with low expansion velocities as is very likely a lower mass progenitor than

we have in our set (Mattila et al., 2008; Van Dyk et al., 2012; Lisakov et al., 2017; Lisakov et al.,

2018; Martinez & Bersten, 2019; O’Neill et al., 2021). With these limitations in mind, we still

find good fits for two observed CCSNe, notably 16.0 M⊙ for SN 2012aw and 20.0 M⊙ for SN

2017eaw. Our best fit progenitors tend to have larger ZAMS masses than those estimated from

pre-explosion imaging, for example by about 5M⊙ for SN2017eaw. This difference of about 5M⊙

is not uncommon – Goldberg & Bildsten (2020), for example, find a possible ZAMS mass for

SN2017eaw of 10.2M⊙– also about 5M⊙ from the value obtained from pre-explosion imaging.

We have presented light curves for which we do not find particularly good fits for the sake of

completeness and to show the strengths and weakness of the current progenitor set. As previously
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Figure 2.8 Left: Comparison between STIR + SNEC light curves (blue lines) and observations
(squares). Right: Comparison between STIR + SNEC velocity evolution (lines) and Fe II 𝜆5169
line velocity observations (squares). Solid lines show approximate Fe II 𝜆5169 calculated in
post-processing and dashed lines show the proper photospheric velocity. In both plots, blue lines
show best fit STIR + SNEC models and gold lines show light curves for ZAMS masses obtained
from pre-explosion imaging (Smartt, 2015; Davies & Beasor, 2018; Eldridge & Xiao, 2019). The
gray shaded region shows the first 30 days that we omit from fitting. From top to bottom: SN
2004A, SN 2004et, SN 2005cs, and SN 2008bk.
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Figure 2.9 Same as Figure 2.8 but for (from top to bottom): SN 2012aw, SN 2012ec, and SN
2017eaw

mentioned, there is no reason for this progenitor set to perfectly fit any specific light curve.

The differences highlighted in Figures 2.8 and 2.9 show the inherent degeneracy involved in

extracting CCSNe progenitor properties. As shown in Goldberg et al. (2019); Dessart & Hillier

(2019), there are familes of progenitor properties that can lead to a given light curve. This

further highlights that light curve fitting is extremely degenerate – not only in the ways explored

in previous works, but also in the method used to drive the explosion. Thus, we do not claim

that these progenitors necessarily reflect the true progenitors, they simply match the observations

given a set of neutrino-driven explosions. It has become clear that more work in needed to infer

progenitor properties. Matching an observed SN is a necessary, but not sufficient, condition for
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Table 2.1 Best-fit ZAMS mass and explosion energy for SN2012aw and SN2017eaw for our work
and others in the literature. For all works we present the best fit model reported with the exception
of 5 (Goldberg & Bildsten, 2020), where we list all presented matches.
† The authors only present ejected mass, so we present that as a lower bound for the ZAMS mass.

SN Quantity This work 1 2 3 4 5

2012aw MZAMS [M⊙ ] 16.0 23.0 14.35 20.0 >19.6† –
𝐸expl [1051 erg] 0.66 1.40 0.90 0.52 1.5 –

2017eaw MZAMS [M⊙ ] 21.9 – 15.47 – – (10.2, 12.7, 17.2, 11.9, 15.7, 19.0)
𝐸expl [1051 erg] 1.09 – 1.29 – – (0.65, 0.84, 1.30, 0.90, 1.10, 1.50)

References: (1) Martinez & Bersten (2019); (2) Martinez et al. (2020); (3) Morozova et al.
(2018); (4) Pumo et al. (2017); (5) Goldberg & Bildsten (2020).

inferring progenitor and explosion properties.

Finally, we summarize our best fitting models for those light curves for which we see good

agreement (SN2012aw and SN2017eaw) in Table 2.1 alongside various other sources.

2.3.3 Correlations

In this section, we address the primary goal of this study, which is to connect light curve

properties to progenitor properties using a statistically significant sample of simulations. Figure 2.10

shows the Spearman’s correlation matrix for the observable quantities and progenitor properties

that we consider for the STIR + SNEC models. Our goal is to assess direct correlations between

individual quantities, and for this reason we do not consider correlations with ZAMS mass because

it does not correlate with any single quantity. In many cases, we are simply recovering well-known

correlations, which provide a sanity check on our methods. For example, relationships between

ejecta velocity and luminosity have been used in SNe IIP supernova cosmology (Hamuy, 2005;

Nugent et al., 2006; Poznanski et al., 2009). Relationships between photometric and spectroscopic

observables, 𝐿50, 𝑣50, and 𝑡𝑝, and properties of the progenitor, such as 𝑅500 (the pre-supernova

progenitor radius in units of 500𝑅⊙) in addition to the explosion energy are used in scaling

relationships, such as those in Popov (1993); Kasen & Woosley (2009); Sukhbold et al. (2016);

Goldberg et al. (2019).

We first consider some typical observables of SNe IIP light curves – the plateau luminosity

(𝐿50), plateau duration (𝑡𝑝), and ejecta velocity measured through the Fe 5169 line during the
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Figure 2.10 Correlation matrices for observable quantities and properties of the progenitors for
STIR + SNEC. Here we consider the following quantities: iron core mass (𝑀Fe), progenitor radius
(𝑅500), explosion energy (𝐸expl), ejecta velocity at day 50 (𝑣50) as determined from the Fe II
(5169) line, log of the plateau luminosity at day 50 (𝐿50), and plateau duration (𝑡p). The lower left
half of the matrix shows the Spearman rank correlation coefficient for each pair of quantities.

plateau phase (𝑣50). These observables correlate with each other and are expected to correlate with

properties of the progenitors, such as the presupernova radius (𝑅500) and envelope mass (𝑀env). We

observe significant correlations between 𝑡𝑝, 𝐿50, and 𝑅500. Correlations with 𝑅500 tend to be non-

monotonic (see, e.g., Figure 2.1), which is why they tend to have weaker values of the correlation

coefficient. There is a moderate correlation between the 𝐿50 and 𝑣50 and the presupernova mass

(𝑀preSN).

The explosion energy (𝐸expl, see Section 2.2.2) is expected to correlate with both progenitor

properties and observable properties. Correlations between 𝐸expl and observable properties are

monotonic relationships (i.e., always increasing or always decreasing, but not necessarily linear),

for example with a correlation coefficient of 0.97 for 𝐿50 – 𝐸expl. This is because in the self-

consistent STIR + SNEC models, the explosion energies are the total positive energies of unbound

material as liberated by neutrino heating and is thus correlated with properties of the core (and

thus, the rest of the progenitor properties through stellar evolution) of the progenitor.

Finally, we turn our attention to connections between properties of the core of the progenitor
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and observable quantities. Motivated by connections between explosion energy and the compact

remnant, we explore correlations with the iron core mass (𝑀Fe). Progenitors with more massive

iron cores tend to liberate more gravitational binding energy, have higher neutrino luminosities, and

ultimately are associated with more energetic explosions for progenitors that successfully explode.

The origins of this correlation can be seen in the bottom panel of Figure 2.2 through the connection

between iron core mass and explosion energy. This correlation, therefore, once again highlights the

need for realistic physics in explosion models even in 1D. Equipped with this correlation, and the

previously mentioned relationships between explosion energy and observables, one might expect

some imprint of the iron core mass on the observables. Indeed, for the STIR + SNEC models

we observe a very strong, linear relationship between iron core mass and plateau luminosity. We

note that the compactness parameter 𝜉2.5 (O’Connor & Ott, 2011) produces a stronger correlation.

This, however, is of little practical use, as the 9-12M⊙ progenitors have nearly zero values of the

compactness parameter (≤ 0.02), breaking the trend for the most common progenitors, and the iron

core mass is a more physical quantity (i.e., does not depend on the exact choice of mass coordinate

for the measurement). The compactness parameter and iron core mass are very tightly correlated

and both provide a measure of the gravitational binding energy available in the explosion.

A relationship between iron core mass and supernova observables helps constrain stellar evo-

lution models and characterize the diversity of supernova light curves. Figure 2.11 shows iron

core mass versus plateau luminosity at day 50. Higher luminosity events tend to originate from

progenitors with more massive iron cores. Ultimately, more massive stellar cores collapse to form

more massive proto-neutron stars, liberating more gravitational binding energy in the process and

resulting in higher neutrino luminosities emanating from the PNS surface. All of this results in a

more energetic explosion and a brighter supernova. In Table 3.1 we report the fits coefficient for

the 𝑀Fe-𝐿50 relationship and the associated variances and covariances for a linear fit of the form

𝑦 = 𝑎𝑥 + 𝑏.

This correlation, though simple, has a profound implication that we can constrain core structure

from optical photometry alone. While not necessarily providing a precise measure of the iron core

59



1 2 3 4

L50 [1042 erg s−1]

1.3

1.4

1.5

1.6

1.7

M
F

e
[M
�

]

Iron Core Mass – Plateau Luminosity Relation

9.7803E-02 L50 + 1.2973

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

M
Z

A
M

S
[M
�

]

Figure 2.11 Iron core mass 𝑀Fe versus plateau luminosity at day 50 𝐿50.

mass for individual events due to observational error and uncertainties on the fit parameters from

scatter, which we quantify below, it provides a method for comparing the cores of virtually all

SNe IIP simultaneously. Furthermore, these parameter estimates can be used to constrain stellar

evolution models for CCSN progenitors. We find a similar, although slightly weaker, correlation

between the ejecta velocity at day 50, 𝑣50, as well, but most LSST sources won’t have a spectroscopic

follow-up so this is of limited use.

For the case of Sukhbold et al. (2016), fewer massive iron cores produced explosions, and the

explosions had a tendency to be brighter. Using their data we find slope and intercept parameters

of 0.033 and 1.344, respectively.

For any relationship of this type to be useful, error must be taken carefully into account. The

optimal fit parameters were obtained with a least squares method. However, it is known that the

covariances provided by least squares methods are not appropriate for a wide range of problems,

including those with a non-Gaussian intrinsic scatter among other criteria (see, e.g., Clauset et al.,

2009, and references therein). For this reason, we resort to a bootstrapping method (Efron, 1979)

to obtain the errors on the fit parameters. This method has the advantage of making no assumptions

about the underlying distribution of the data. Instead, bootstrapping operates by resampling the

data 𝑀 times with replacement. For each resampling, a new fit is made and those fit parameters

stored. Then, estimates of the variance and covariance of parameters 𝑢 and 𝑣 are given by
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𝜎2
𝑢 =

1
𝑀

𝑀∑︁
𝑗=1

(
𝑢 𝑗 − 𝑢

)2 (2.5)

𝜎𝑢𝑣 =
1
𝑀

𝑀∑︁
𝑗=1

(
𝑢 𝑗 − 𝑢

) (
𝑣 𝑗 − 𝑣

)
(2.6)

where 𝑢 and 𝑣 are the optimal fit parameters and each of 𝑢 𝑗 , 𝑣 𝑗 are the fit parameters for each of

the 𝑀 resamples. These error estimates tend to be, for this application, somewhat smaller than

parameter errors obtained through a simple least squares method. The full set of fit parameters,

variances, covariances, and adjust coefficient of determination are supplied in Table 3.1. We note

that the fit presented uses the non-log plateau luminosity as its independent variable, as opposed to

the log luminosity presented in other parts of the paper. Then, given errors on the fit parameters it

is straightforward to compute the error on an iron core mass estimate. For a linear fit, we propagate

the combined observational – fit parameter uncertainty in the following way:

𝜎2
MFe

= 𝜎2
𝑎 𝐿

2
50 + 𝜎

2
𝐿50
𝑎2 + 𝜎2

𝑏 + 𝜎
2
res + 2𝐿50𝜎𝑎𝑏, (2.7)

where 𝐿50 is the luminosity at day 50 in erg s−1 and where we have included explicitly the covariance

of the fit parameters 𝑎 and 𝑏. In order to further account for intrinsic scatter in the relationship, we

have included 𝜎res which is the 67% percentile on the residual distribution 𝑟𝑖 = |𝑀Fe − �̂�Fe |, where

�̂�Fe is computed from the fit.

As an example, we estimate iron core masses for six well-observed SNe, shown in Table 2.3.

Data for SN1999em, SN2003hl, and SN2007od are taken from Gutiérrez et al. (2017a,b). Data for

SN2004et, SN2012aw, and SN2017eaw are taken from Martinez et al. (2020).

2.4 Discussion and Conclusions

We present synthetic bolometric light curves for 136 solar metallicity, non rotating CCSNe

progenitors and consider statistical relationships for those with ZAMS masses ranging from 9M⊙

to 31M⊙. These light curves are calculated with SNEC using the CCSNe simulated in Couch et al.

(2020) as the initial condition. This allows for light curves obtained without a user-set explosion

energy. Our 56Ni yields were fit from Sukhbold et al. (2016) who exploded the same progenitors with
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Table 2.2 Linear fit paramaters for iron core mass (𝑀Fe) to plateau luminosity (𝐿50)in units of 1042

erg s−1. The first two rows shows the optimal fit parameters. The next two rows shows the error on
each parameter. The next row shows the covariance between the parameters and the residual error
accounting for intrinsic scatter. The final row shows the adjusted coefficient of determination �̄�2

for the fit.

𝑀Fe = 𝑎𝐿50 + 𝑏
𝑎 0.0978
𝑏 1.29

𝜎𝑎 3.17×10−3

𝜎𝑏 8.31×10−3

𝜎𝑎𝑏 -2.33×10−5

𝜎res 3.79×10−2

�̄�2 0.85

Table 2.3 Estimated iron core masses (𝑀Fe) and uncertainties (𝜎MFe) for a sample of
well-observed supernovae.

SN 𝑀Fe [M⊙ ] 𝜎MFe [M⊙ ]

1999em 1.42 0.041
2003hl 1.34 0.039
2004et 1.48 0.039
2007od 1.50 0.040
2012aw 1.43 0.039
2017eaw 1.49 0.040

an expansive reaction network coupled to the evolution. This is sufficient for the current work, and

future work with FLASH will include detailed nucleosynthesis calculations. These light curves, as

well as the SNEC initial profiles and necessary parameters, are provided online5. We also include

the necessary binding energy of our progenitors to correct STIR’s explosion energy to produce

identical results with a thermal bomb explosion. In the online resources, we furthermore provide

the light curves for the 𝑀ZAMS > 31M⊙ models that successfully explode. For progenitors that

explode with STIR, we follow the explosions in SNEC to produce bolometric light curves, forming

a large, statistically significant set of CCSN light curves followed from high-fidelity explosions

allowing us to address relationships between progenitor properties and properties of the explosion

5https://doi.org/10.5281/zenodo.6631964
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in a statistical way. We consider the full shape of these light curves, but also reduce them to

characteristic quantities such as the plateau luminosity, plateau duration, and ejecta velocity.

Next, we show that global trends in light curve properties – such as plateau duration and plateau

luminosity – depend sensitively on the explosion model and require explosion energies set by robust

physics. To demonstrate this, we compute bolometric light curves for the same set of progenitors

using two different thermal bomb models with SNEC. The distribution of explosion energies plays a

leading role in setting the distribution of observables across a large sample of progenitors. Thus, the

ability to identify global trends in light curve properties and extract progenitor features from them

depends sensitively on the determination of explosion energy, underscoring the need for explosions

driven with high-fidelity multi-physics models.

We present a simple best-fit procedure to individual, observed CCSN light curves (Martinez

et al., 2020). The usual procedure for estimating progenitor properties of observed CCSNe is to

construct a large grid of “hydrodynamical models” – usually in ZAMS mass, explosion energy,

and perhaps 56Ni mass and distribution – and find a best fit model. This approach results in

known degeneracies, for example, as shown by Goldberg et al. (2019); Dessart & Hillier (2019)

wherein there are certain families of progenitor and explosion parameters (such as ejecta mass,

explosion energy, and ejecta velocity) that produce a given light curve, though pre-explosion radius

measurements may help to resolve this degeneracy (Goldberg & Bildsten, 2020; Kozyreva et al.,

2020). Our approach differs in that we do not control the explosion properties, instead following

a dense set of various ZAMS mass progenitors from neutrino driven explosions. While this does

not solve the light curve degeneracy problem, it could reduce the size of the family of explosion

properties for a given light curve, as some combinations of explosion energy and stellar mass are not

realizable. Although the explosions are not calibrated to observed data we still find great agreement

both when comparing to large samples of events and for some individual cases. Intriguingly, we

find best-fit ZAMS masses that are greater by as much as ≈7M⊙ than those estimated from pre-

explosion imaging in tandem with stellar evolution modeling. The fact that hydrodynamic models

have tended to find ZAMS masses in agreement with pre-explosion imaging estimates for these
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CCSNe (Morozova et al., 2018; Martinez & Bersten, 2019; Martinez et al., 2020) may indicate the

danger of exploring too large a parameter space instead of knowing which regions are physically

realizable, though we note that some hydrodynamic models have also found noticeably higher

masses in better agreement with our conclusions (e.g., Utrobin & Chugai, 2008, 2009). Ultimately,

the set of solutions for matching a given observed light curve is degenerate, with many progenitors

being capable of producing a given light curve.

Despite the progenitors and explosions in this study not being crafted to reproduce specific

events, we find good qualitative agreement with SN2012aw and SN2017eaw. Notably, the lu-

minosity evolution of SN 2012aw is fit by our 16.0M⊙ progenitor remarkably well. The best fit

progenitors for the observed light curves in this study are not necessarily the progenitors that these

explosions originated from – they simply reproduce the observables. We have demonstrated that

beyond the now understood light curve degeneracies, there are additional degeneracies inherited

from the choice of explosion model. This result is complementary to the recent findings by Farrell

et al. (2020) where they showed that a star’s final temperature and luminosity cannot be reliably

traced back to the star’s ZAMS mass – that very different mass stars may end up at the same

temperature and luminosity. These results together show that much more work is needed before a

SN IIP progenitor’s ZAMS mass can be reliably determined – the path from stellar birth to death

is not a one-to-one function.

The light curves here present avenues for future work to explore the discussion surrounding

explosion energy. There is tension between explosion energies realized in 3D CCSN simulations

and energies inferred from fitting hydrodynamical models to observations. The energies from these

two methods differ, with those inferred from hydrodynamical modeling being significantly larger

(see Murphy et al., 2019, which discusses this tension in detail). On one hand, 3D simulations of

very massive progenitors have often simply not asymptoted to their final values within the simulated

time. There is also still physics left to include, such as the recently demonstrated affects of magnetic

fields on neutrino-matter interactions (Kuroda, 2021) and improved neutrino pair-production rates

(Betranhandy & O’Connor, 2020) on the explosion mechanism, neutrino mixing, among other
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affects, all of which will likely play a role in setting the final energy. On the other hand, solutions

using thermal bomb models have been shown to be degenerate, and these studies access a very

large area of this degenerate parameter space and may not necessarily find physically realizable

solutions. The methods described here could illuminate or even weaken the tension between these

energies by limiting the parameter space spanned by hydrodynamical modeling studies and by using

physically-motivated explosions.

The final aim of this study is to leverage the large number of light curves to perform a statistical

investigation of relationships between progenitor and explosion properties. Focusing our inves-

tigation to SNe II, 136 light curves, a number of correlations between the light curves and their

progenitors are found. We find a robust relationship between the iron core mass of the progenitor

and the luminosity on the plateau of the SNe. This relationship allows one to, for the first time,

constrain properties of the stellar interior from photometry alone. We provide an analytic approx-

imation to the observed correlation, including error, for future use with large survey data such as

LSST.

Recently, Curtis et al. (2021) presented synthetic light curves and spectra from a sample of 62

CCSNe with the 1D PUSH model (Ebinger et al., 2017) and SNEC to obtain the light curves. Our

results complement one another in several ways – notably, the size and composition of our samples

differ. Our sample contains 148 light curves – 136 of which are analyzed in this work – from

the same metallicity, compared to their 62 light curves from three different metallicity populations

ranging from zero to solar. This allows us to more robustly survey global explosion properties of

progenitors from similar origin within the nearby universe. These studies, together, survey a vast

range of progenitor properties. The CCSNe simulations in our work are perfmormed with FLASH

using the STIR model. Notably, STIR requires no tuning to observations, eliminating the potential

for biases when simulating progenitors different than the one used for tuning. Importantly, the

results from STIR are consistent with 3D simulations. The explosion energies, explodability, and

the shape of each as a function of ZAMS mass differ non-trivially for STIR and PUSH (see Couch

et al., 2020; Ebinger et al., 2019) and this could impact global trends in explosion properties. On the
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other hand, Curtis et al. (2021) obtained their 56Ni distributions using a nuclear reaction network

in conjunction with their CCSN simulations. As aforementioned, we estimated 56Ni mass from the

explosion energy, informed by KEPLER yields. Curtis et al. (2021) also have a larger diversity of

supernova types through their inclusion of sub-solar and zero metallicity progenitors. To keep the

scope of the current work contained, we have not produced synthetic spectra for these explosions,

whereas Curtis et al. (2021) calculated spectra for their supernovae.

Similarly, Sukhbold et al. (2016) present a sample of synthetic light curves of the same statisti-

cal size and originating from the same progenitors using a different parametrized, neutrino-driven

explosion mechanism. Using these simulations they present scaling relations to determine explo-

sion and progenitor properties from observables. The outcomes of these simulations – both the

explosions and resulting light curves – differ from STIR and this work, having a tendency to be

brighter than those produced in this work. It would be interesting, for future work, to investigate

the affect of these differences in explosion mechanism when applied to populations of observed

CCSNe and implications for inferred properties such as explosion energy.

This work is part of a larger context to understand and predict full multi-messenger signals

from realistic CCSNe. Understanding how variations in progenitors properties tie into variations

of different observables will ultimately help to constrain real populations. This work, in tandem

with the work of Couch et al. (2020) and Warren et al. (2020), gives us explosion fates, energies,

neutron star mass distributions, neutrino signals, approximate GW signals, and now EM signals

for a massive suite of neutrino driven CCSNe. It is only through advanced methods – studying in

detail all messengers from first principles simulations – used in tandem with growing observational

data that we can truly understand these phenomena.
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CHAPTER 3

INFERRING TYPE II-P SUPERNOVA PROGENITOR MASSES FROM PLATEAU
LUMINOSITIES

for the relief of the body

and the reconstruction of the

mind.

Adrienne Rich, Planetarium

This chapter is based on the published work of B. L. Barker, et al. 2023 ApJL 944 1.
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ABSTRACT

Connecting observations of core-collapse supernova explosions to the properties of their massive

star progenitors is a long-sought, and challenging, goal of supernova science. Recently, Barker et al.

(2022) presented bolometric light curves for a landscape of progenitors from spherically symmetric

neutrino-driven core-collapse supernova (CCSN) simulations using an effective model. They find a

tight relationship between the plateau luminosity of the Type II-P CCSN light curve and the terminal

iron core mass of the progenitor. Remarkably, this allows us to constrain progenitor properties with

photometry alone. We analyze a large observational sample of Type II-P CCSN light curves and

estimate a distribution of iron core masses using the relationship of Barker et al. (2022). The

inferred distribution matches extremely well with the distribution of iron core masses from stellar

evolutionary models, and namely, contains high-mass iron cores that suggest contributions from

very massive progenitors in the observational data. We use this distribution of iron core masses

to infer minimum and maximum mass of progenitors in the observational data. Using Bayesian

inference methods to locate optimal initial mass function parameters, we find Mmin = 9.8+0.37
−0.27 and

Mmax = 24.0+3.9
−1.9 solar masses for the observational data.

3.1 Introduction

Core-collapse supernovae are the fate of most stars more massive than 𝑀ZAMS ≳ 8𝑀⊙ zero-

age main sequence (ZAMS) mass. These stars, at the ends of their lives, inevitably collapse

and form an outwardly moving shock that stalls due to neutrino losses and photodissociation of

iron group nuclei. Some fraction of these stars will successfully revive their shocks and produce

observable supernovae, while others will instead fail and form a black hole. It is certain, now,

that an increasingly rich amount of physics is necessary to fully describe the CCSN explosion.

For in-depth reviews of the CCSNe mechanism, we refer the reader to, e.g., Mezzacappa (2001,

2005); Janka et al. (2012, 2016); Burrows (2013); Hix et al. (2014); Müller et al. (2016); Couch

(2017); Pejcha (2020); Müller (2020); Mezzacappa et al. (2020); Burrows & Vartanyan (2021);

Mezzacappa (2022).

In lockstep with theoretical studies, the observational study of CCSNe has also progressed at an



ever increasing rate, with next-generation telescopes such as the Vera C. Rubin Observatory and its

primary survey, The Rubin Observatory Legacy Survey of Space and Time (LSST) (Ivezić et al.,

2019), posed to observe an unprecedented number of CCSNe and other transient events. Despite

the growing repository and fidelity of observational data, few constraints on the cores of CCSN

progenitors exist. Such constraints would bound stellar evolutionary models and guide studies of

the CCSN explosion mechanism. This absence is due, in part, to the fact that photons are emitted

from the photosphere which resides primarily in the original H envelope of the progenitor star, far

above the core of the star in which the explosion is generated. Ideally, such constraints would come

from neutrino and gravitational wave (GW) observations as they are produced directly in the core

and propagate nearly unhindered through the progenitor carrying information of the inner core.

To date, however, there has been only one detection of supernova neutrinos (Arnett et al., 1989,

SN1987A). With modern detectors, only CCSNe occurring within the galaxy may be detected

(Scholberg, 2012). There have been no confirmed detections of GWs from CCSNe. The current

suite of detectors can only detect GWs from a CCSNe occurring approximately within the Galaxy

(Abbott et al., 2016, 2020; Szczepańczyk et al., 2021). CCSNe are, for the vast majority of events,

only detectable through electromagnetic emission.

While 3D simulations offer the most complete model of the CCSN explosion, they are computa-

tionally expensive and have limited predictive power for populations. Recently, phenomenologically

modified 1D simulations have been used to great effect to simulate hundreds to thousands of CCSNe

(Pejcha & Thompson, 2015; Perego et al., 2015; Ebinger et al., 2017; Sukhbold et al., 2016; Couch

et al., 2020). The low computational cost of these sets of simulations allow for very powerful

statistical studies. In this spirit, Meskhi et al. (2021) compared the observed neutron star (NS) and

black hole (BH) mass distributions to those obtained with the PUSH method (Perego et al., 2015)

to constrain the dense matter equation of state. Other works have used these methods to probe the

sensitivity to the nuclear matter equation of state (e.g., Schneider et al., 2019; Yasin et al., 2020;

Ghosh et al., 2022; Boccioli et al., 2022) and to electron capture rates (Johnston et al., 2022). These

1D methods also allow for the production of light curves from realistic simulations for suites of
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progenitors (Curtis et al., 2021; Barker et al., 2022), which opens up the statistical power of these

suites of simulations to electromagnetic observables.

Recently, Barker et al. (2022) (henceforth B22) simulated a landscape of 136 light curves for

SNe II-P from neutrino-driven turbulence-aided explosions1. From this set of light curves, they

identified a number of correlations between observable features and properties of the progenitor.

Notably, B22 find that iron core mass is linearly correlated with the plateau luminosity to a high

degree of significance – more massive cores result in more energetic and brighter explosions. This

relationship provides a way to constrain properties of the cores of populations of CCSN progenitors

from photometry alone. Notably, measurements of the plateau luminosity may be made robustly

and cheaply for a huge swath of CCSNe, especially so as LSST comes online.

Here, we combine the relationship between iron core mass and plateau luminosity of B22

with the well studied Type II-P CCSN sample presented in Anderson et al. (2014); Gutiérrez et al.

(2017a,b) (henceforth G17) in order to infer iron core masses for a large sample of observed CCSNe.

We use the inferred distribution of iron core masses to constrain the minimum and maximum masses

of progenitors in the sample.

In this Letter, we begin by reviewing the numerical methods and results of B22 in Section 7.3.

We also briefly describe the observational sample of G17 in that section. We present the results

of our Bayesian analysis for inferring CCSN progenitor iron core masses and ZAMS masses in

Section 3.3, showing that observations of the Type II-P plateau luminosities alone can tightly

constrain progenitor masses of populations.

3.2 Methods and Input Data

In B22, the authors simulated light curves for 136 SNe II-P starting from the progenitors of

Sukhbold et al. (2016) by coupling neutrino radiation hydrodynamics calculations with a Lagrangian

radiation-hydrodynamics code to simulate bolometric light curves.

These non-rotating, solar metallicity progenitor models cover a range of ZAMS masses from

9 – 31 M⊙2 and were created with the KEPLER code assuming no magnetic fields and single
1The data may be found at https://doi.org/10.5281/zenodo.6631964
2Sukhbold et al. (2016) provides 200 progenitors with masses 9 – 120M⊙ , but only those up to 31M⊙ produced
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star evolution. They span a wide, realistic range of progenitor properties making them ideal for

landscape studies such as that in B22.

The collapse of the progenitors’ cores and subsequent explosions were simulated with FLASH3

(Fryxell et al., 2000; Dubey et al., 2009, 2022) in Couch et al. (2020) using the STIR turbulence-

aided explosion model. Turbulence has been shown to be key in simulating successful, realistic

explosions (see, e.g., Burrows et al., 1995; Murphy & Meakin, 2011; Couch & Ott, 2015; Mabanta

& Murphy, 2018). The effects of turbulence and convection are included in a parametrized way

with mixing length theory as a closure. These effects are parametrized by 5 free parameters –

a mixing length type parameter and four diffusion parameters – the latter of which have little

impact on the dynamics. The mixing length type parameter is calibrated by comparison to sets of

3D simulations of CCSNe. The inclusion of turbulence in STIR allows for successful explosions

in 1D that reproduce the results of 3D simulations (Couch et al., 2020). without the need for

parameterized neutrino physics or tuning to specific events.

To produce synthetic bolometric light curves, STIR is coupled with the SuperNova Explosion

Code (SNEC)4 (Morozova et al., 2015). SNEC is a Lagrangian, flux-limited diffusion radiation

hydrodynamics code that allows for the calculation of bolometric light curves. It includes all of the

necessary physics to model CCSN light curves beyond the initiation of the explosion, including a

Saha ionization solver and radiative heating due to 56Ni decay.

While SNEC alone typically requires an artificially driven explosion (e.g., a thermal bomb),

STIR + SNEC together allow for the simulation of light curves from neutrino-driven explosions

without user-set explosion energies that may not be realizable in nature. This allows for statistical

studies that are not influenced by the user’s choice of thermal bomb energetics. We refer the reader

to B22 for more details on the coupling of STIR and SNEC and the results of that study.

A primary result from B22 was a linear relationship between the mass of a progenitor’s iron

core and its resulting plateau luminosity. Simply, more massive iron cores release more binding

Type II-P SNe in B22.
3https://flash-x.org
4http://stellarcollapse.org/SNEC
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Table 3.1 Linear fit parameters for iron core mass (𝑀Fe) to plateau luminosity (𝐿50) from B22.
The first two rows shows the optimal fit parameters. The next two rows shows the uncertainty on
each parameter. The next row shows the covariance between the parameters and the residual error
accounting for intrinsic scatter.

𝑀Fe = 𝑎𝐿50 + 𝑏
𝑎 0.0978
𝑏 1.297

𝜎𝑎 3.17×10−3

𝜎𝑏 8.31×10−3

𝜎𝑎𝑏 -2.33×10−5

𝜎res 3.79×10−2

energy and result in more energetic, brighter explosions. In Table 3.1 we recap the fit coefficients

and their uncertainties for a linear fit of the form,

𝑀Fe = 𝑎𝐿50 + 𝑏, (3.1)

where 𝑀Fe is in solar masses and 𝐿50 is in units of 1042 erg s−1.

Here the iron core mass is defined by the mass coordinate where the Si and iron group mass

fractions reach sufficient thresholds, separating the iron core from the Si shell.

Variances and covariances were calculated by bootstrapping (Efron, 1979) and we include a

term 𝜎res calculated from the residuals that may be added in quadrature with the other sources of

uncertainty to calculate the uncertainty on the iron core mass inference

𝜎2
MFe

= 𝜎2
𝑎 𝐿

2
50 + 𝜎

2
𝐿50
𝑎2 + 𝜎2

𝑏 + 𝜎
2
res + 2𝐿50𝜎𝑎𝑏 (3.2)

where 𝜎𝐿50 is the uncertainty on the plateau luminosity measurement and the other parameters are

as previously defined.

We consider the observation sample of SNe II-P studied in G17 as an application of the results

of B22. This sample represents a very large, well studied, statistical sample of SNe II-P, containing

over 100 supernovae with both photometry and spectra. A large number of properties have been

estimated for these SNe, including 56Ni mass, explosion epoch, plateau duration, line velocities,

various light curve slopes, and more. These observations come from a range of sources spanning
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Figure 3.1 Distribution of observational plateau luminosities used in this work, taken from
Gutiérrez et al. (2017a,b).

from 1986 to 2009, covering the nearby universe out to about z = 0.08. The sample contains both

SNe II-P and II-L CCSNe, although for the analysis here we have excluded all Type II-L events,

giving us a sample of 82 Type II-P SNe. Figure 3.1 shows the distribution of plateau luminosities

from these data. For details about the data, collection, and analysis see G17 and references therein.

3.3 Analysis and Results

We begin by considering the set of observations from G17 under the lens of the iron core mass

– plateau luminosity relationship of B22. When using the B22 fits, we include only a subset of

the observational sample, excluding Type II-L events and events that did not have sufficient data to

discern the type. We also exclude a handful of II-P events that were notably dimmer or brighter

than the synthetic light curves obtained in B22 to avoid extrapolation. This gives us a sample of 82

Type II-P CCSNe.

Figure 3.2 shows (left) the iron core mass distribution inferred from the G17 sample (unfilled

black histogram) using the results of B22. The data are plotted with large bins representative of

the uncertainties. Also plotted is the distribution of iron core masses of the Sukhbold et al. (2016)

progenitor set, convolved with the Salpeter initial mass function (IMF) (purples), for simulations

that produced explosions in STIR. The histogram colors represent the ZAMS mass range of the
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Figure 3.2 Left: Iron core mass distributions for the Sukhbold et al. (2016) progenitor set,
convolved with the Salpeter IMF, for simulations that successfully produced explosions in STIR.
Color indicates the ZAMS mass range of the progenitor in a bin. The unfilled black histogram
represents the iron core mass distribution for the G17 sample determined by our MFe–L50 fit. Bin
widths for the inferred distribution are 0.03M⊙ to be comparable to iron core mass uncertainties.
Right: Empirical distribution function (EDF) for the inferred iron core mass distribution of the
G17 sample. The shaded regions represent the error region on the EDF due to the 68%
uncertainties on the iron core mass inferences. The dashed black line represents the iron core
mass where the primary contribution is from progenitors with ZAMS mass above 16.5M⊙, which
is representative of the early Smartt (2015) result.

progenitor of origin. We find remarkable agreement between the peaks of the distributions between

the two samples. Most notable is the right side of the distribution, occurring around 1.5M⊙, which

is composed almost completely of progenitor stars with initial masses greater than or equal to about

16M⊙. This provides evidence of very high mass stars in the G17 sample. The right panel shows

the equivalent empirical distribution function (EDF, dark line). The light shaded area represents the

error region on the EDF resulting from the uncertainties on the iron core mass inferences, obtained

via Monte Carlo uncertainty propagation. The vertical dashed black line represents the iron core

mass where, in the Sukhbold et al. (2016) progenitors, the primary contribution is from progenitors

with ZAMS mass above 16.5 M⊙, signifying evidence of high mass progenitors in the data.

Given a distribution of iron core masses inferred from observational data (𝑀obs
Fe ), we may begin

to ask questions about the progenitor population. The distribution 𝑀obs
Fe should encode information
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Figure 3.3 Iron core mass (MFe) distribution for the Sukhbold et al. (2016) progenitors up to
31M⊙. The horizontal dashed line represents a hypothetical 1.4M⊙ iron core with an uncertainty
of 0.05M⊙ (shaded region). The blue points represent ZAMS mass models that could, within the
uncertainty, produce such an iron core.

about, for example, the underlying distribution of progenitor masses. Unfortunately, the mapping

between iron core mass and ZAMS mass is highly degenerate and a given iron core mass could

potentially belong to one of several progenitors, disallowing a simple transformation from iron core

mass to ZAMS mass. Figure 3.3 shows the iron core masses as a function of ZAMS mass for the

Sukhbold et al. (2016) progenitor set. We show a hypothetical iron core mass inference of 1.4M⊙

with 0.05M⊙ uncertainties shown by the shaded band, highlighting the difficulty of recovering

ZAMS mass directly from iron core mass. This is a symptom of a much larger difficulty, that

determining the ZAMS mass of a given event from any one quantity is highly degenerate. The

mapping from ZAMS mass to iron core mass provided through a set of stellar evolutionary models

is, however, simple.

To alleviate this issue of retrieving the ZAMS mass, we apply Bayesian inference methods to

seek an initial mass function (IMF) whose stellar population would result in the distribution 𝑀obs
Fe .

We begin by sampling progenitors from the cumulative distribution function (CDF) 𝐹 (𝑚) of the

IMF,
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𝐹 (𝑚) = (𝑚1−𝛼 − 𝑀1−𝛼
min )/(𝑀

1−𝛼
max − 𝑀1−𝛼

min ). (3.3)

Here, 𝑀min/max is the minimum/maximum mass of progenitors producing SNe II-P and 𝛼 is the

slope of the IMF. In the results presented here we take the canonical Salpeter IMF slope of 2.35.

Not all of these progenitors in a given range will produce CCSNe, however, so before mapping

these progenitors to a set of iron core masses, we must make an assumption about explodability.

Here, we use the explodability results of Couch et al. (2020), consistent with the rest of the methods

used in this study, denoting 𝑓𝐸 (𝑀ZAMS) as the sampled progenitors that produce CCSNe under

a given explodability result 𝑓𝐸 . Given this filtered set of progenitors, we may then estimate the

inferred set of iron core masses using the mapping 𝑓𝑀Fe : 𝑓𝐸 (𝑀ZAMS) ↦→ 𝑀Fe which, given a

stellar evolutionary set, maps a ZAMS mass to an iron core mass. All that remains is to assess

how close the inferred observational distribution 𝑀obs
Fe and the hypothetical distribution for a given

minimum and maximum mass �̂�Fe are to each other. We use the Anderson-Darling statistic

𝐴2 (𝐹1, 𝐹2) (Anderson & Darling, 1952) to assess the closeness of the two distributions 𝐹1 and 𝐹2.

To summarize, we sample progenitors from a given IMF, apply an explodability result, get those

models’ iron core masses, and compute the distance between this distribution and that inferred from

observations.

Using this approach, we find the posterior distribution of IMF parameters

𝑃

(
𝑀min, 𝑀max |𝑀obs

Fe

)
∝

∏
𝑖

L
(
𝑀obs

Fe |𝑀min, 𝑀max

)
𝑃 (𝑀min) 𝑃 (𝑀max)

(3.4)

where 𝑃 (𝑀min) and 𝑃 (𝑀max) are uniform priors with𝑀min ∈ [9.0, 15.0] and𝑀max ∈ [15.0, 31.0].

The extreme values represent the smallest and largest progenitors to produce a Type II-P SNe in

B22. The cutoff of 15M⊙ is arbitrary and in practice we need only specify that 𝑀min < 𝑀max,

but both parameters stayed far from 15M⊙ so this choice is justified. The likelihood function for a

distribution is given by
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L
(
𝑀obs

Fe |𝑀min, 𝑀max

)
=

1
√

2𝜋𝜎2
𝑒−𝐷

2 (𝑀obs
Fe ,�̂�Fe)/2𝜎2

(3.5)

where 𝐷2 is an appropriate distribution distance metric and for the uncertainty 𝜎 we use the 68%

uncertainty on the EDF
√︁
𝑙𝑛(2/𝛽)/2𝑛 with 𝛽 = 1 − 0.68. Here, we use the Anderson-Darling

quadratic EDF statistic: 𝐷2 ≡ 𝐴2 (𝐹1, 𝐹2) for EDFs 𝐹1 and 𝐹2, which will become the inferred and

sampled iron core mass distributions.

We use a distance measure between the EDFs as opposed to the probability density function

to avoid issues with binning or kernel density estimators. The Anderson-Darling statistic has the

quality of being sensitive to the tails of the distribution, which carry information about the least

and most massive progenitors. There are other possible choices for the distance metric, such as the

Kolmogorov-Smirnov measure or the energy distance.

To infer the posterior distributions, we use the above process with the Markov Chain Monte

Carlo (MCMC) package emcee (Foreman-Mackey et al., 2013). In the MCMC algorithm we use

512 parallel walkers each running for a chain length of 32,768 steps – about 800 autocorrelation

times – and a burn in phase of over 100 autocorrelation times. Figure 3.4 shows the resulting

posterior distributions for 𝑀min and 𝑀max. We find 𝑀min = 9.8+0.37
−0.27 and 𝑀max = 24.0+3.9

−1.9, where

the uncertainties are the 68% percentiles of the posterior distributions.

In this analysis we incur a set of limitations from the stellar evolutionary models used. Notably,

we do not consider progenitors less massive then 9M⊙ as this is the least massive progenitor in the

Sukhbold et al. (2016) set. It is likely possible for less massive progenitors to form an iron core and

result in core-collapse supernovae. In the Sukhbold et al. (2016) progenitor set, the 9M⊙ model

forms a very light iron core and this is our lower bound. While there may be stars less massive

than this in the observational sample, we do not expect these to be a significant fraction of the SNe

II-P population. Similarly, we have an implicit upper limit of 31 solar masses – the most massive

progenitor in the evolutionary set to retain a sufficient hydrogen envelope to produce a Type II-P

SNe.

In the previous analysis we constructed sample progenitor populations from an IMF with a fixed
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Figure 3.4 The posterior distributions for 𝑀min and 𝑀max in units of M⊙.

canonical power-law slope of 𝛼 = 2.35 (Salpeter, 1955). Observations of young stellar clusters

contest the traditional power-law slope, with many studies finding both steeper and narrower slopes

(e.g., Dib, 2014; Weisz et al., 2015). Constraints from supernova remnant masses also find a spread

of IMF parameters (e.g., Williams et al., 2019; Koplitz et al., 2021). Instead of fixing the slope of

the IMF, then, we may allow it to vary along with the minimum and maximum masses to access

the sensitivity of the results to this parameter. We find that the posterior distribution of IMF slopes

is uniform when allowed to range between 2.0 and 2.5, representing some of the extremal values

found from observations of young stellar clusters. This has no effect on the mass posteriors and,

ultimately, this approach is not sensitive to reasonable variation of the IMF slope.

A number of studies have sought to constrain the mass limits of Type II SN progenitors. Smartt

(2009), and later Smartt (2015), combined about 20 archival pre-explosion images of SN progenitors

with stellar evolutionary modeling finding (in the latter work) maximum and minimum masses of

9.5+0.15
−1.0 and 16.5+1.0

−0.5, respectively. This result and the apparent lack of high mass SN progenitors

became the “Red Supergiant Problem”. More recently, a number of works have found larger

upper mass limits using both different methods and a more thorough accounting of observational

and statistical uncertainties. Davies & Beasor (2018), accounting for observational and sample
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Table 3.2 Summary of IMF parameters and their reported uncertainties found in the literature.

Source 𝑀min 𝑀max

Smartt (2015) 9.5+0.15
−1.0 16.5+1.0

−0.5
Davies & Beasor (2018) 8.7+0.6

−0.4 24.0+3.3
−1.9

Davies & Beasor (2020) — 19.0+5.8
−3.6

Morozova et al. (2018) 10.4+0.8
−1.0 22.9+3.6

−1.9
Martinez et al. (2022) 9.3+0.1

−0.1 21.3+3.8
−0.4

This Work 9.8+0.37
−0.27 24.0+3.9

−1.9

size effects, found minimum and maximum masses of 8.7+0.6
−0.4 and 24.0+3.3

−1.9. In Davies & Beasor

(2020), by studying the luminosity distribution of red supergiants in the Magellanic Clouds, find

an upper mass limit of about 19+5.8
−3.6. By fitting observed light curves to parameterized light curves

simulations, Morozova et al. (2018) found lower and upper limits of 10.4+0.8
−1.0 and 22.9+3.6

−1.9. Using

a similar approach with a different observational sample, Martinez et al. (2022) found limits of

9.3+0.1
−0.1 and 21.3+3.8

−0.4, although with a notably steeper IMF slope. Our results, found using a distinct

approach, is in good agreement with many of the recent findings. These results are summarized in

Table 3.2.

The previous results were obtained by invoking an explosion model – STIR – and using the

resulting relationship between iron core mass and plateau luminosity. The second and third steps,

along with the relationship to infer the iron core masses from observations, are model dependent,

either on the explosion model or the progenitor set. There are other models which may be used

for this analysis, namely the works of Sukhbold et al. (2016) and Curtis et al. (2021). However,

in the case of Sukhbold et al. (2016), their explosion model produces a large number of light

curves far brighter than any in the observational sample used here and thus does not sufficiently

describe the diversity of Type II SNe. As we use the same progenitors as Sukhbold et al. (2016),

the difference with STIR here comes down to the explosion energies achieved in the two effective

models. Sukhbold et al. (2016) achieves more explosion with energies greater than 1051 erg s−1

and at much lower mass.

On the other hand, Curtis et al. (2021) does not include progenitors less massive than about

11M⊙. For these reasons, the data of B22 is the ideal starting point for this analysis.
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The effective explosion model, STIR, is not without its sources of potential uncertainty either.

STIR includes a primary tunable parameter that is calibrated to 3D explosions. Changes to the

STIR explosion landscape could potentially alter the iron core mass – luminosity relationship and

affect the results presented here. However, the explosion energies achieved with STIR are quite

insensitive to variations in the mixing length like parameter (see Figures 7 and 8 of Couch et al.,

2020). The main effect is that for sufficiently low (high) values, fewer (more) explosions are

achieved. The exclusion (inclusion) of these explosions could potentially alter the iron core mass

– luminosity relationship and thus the results presented here. However, such extreme values of the

free parameter are disfavored by comparisons to 3D simulations and to observed neutron star mass

distributions. Given the scale of the effect of the parameters on the STIR explosion energy, any

changes to the results here would be smaller than the uncertainties on the iron core masses. For

these reasons, we feel that the results presented here are insensitive to reasonable variations of the

STIR model.

These results may be further sensitive to the distance metric used in the MCMC algorithm.

We tested both Kolmogorov-Smirnov (KS) and the energy distance, finding that, expectedly, the

KS test was less sensitive to both the low and high mass progenitors, increasing (decreasing) the

minimum (maximum) mass by less than 1M⊙. In our tests the energy distance had a tendancy to

select models that, by visual inspection, were clearly a poor fit and determined it unsuited to this

problem. We conclude that the results here are not sensitive to the distance metric used, so long as

a reasonable measure is sought.

3.4 Summary and Conclusions

We use the iron core mass – plateau luminosity relationship of B22 to constrain the core

structures of Type II-P SNe progenitors.

The data from this work are publicly available5.

For the first time photometry alone may give us insight into the cores of populations of CCSNe.

Using this relationship alongside the observed sample of Type II CCSNe of G17, we produce a

5https://doi.org/10.5281/zenodo.7430154
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distribution of inferred iron core masses for 82 observed Type II-P CCSNe. This distribution is

in remarkable agreement with the IMF weighted distribution of iron core masses produced in the

Sukhbold et al. (2016) progenitor set. Of note are the large fraction of events corresponding to iron

cores produced by very massive stars larger than about 18M⊙.

By sampling massive stellar progenitor populations from a given IMF and connecting them

to their resulting iron core mass distributions, we use this sample of inferred iron core masses

with an MCMC analysis to infer the posteriors on the minimum and maximum ZAMS masses of

progenitors of the G17 sample. We find 𝑀min = 9.8+0.37
−0.27 and 𝑀max = 24.0+3.9

−1.9. These results are in

decent agreement with other works using both differing methods and observational samples (e.g.,

Morozova et al., 2018; Davies & Beasor, 2018, 2020; Martinez et al., 2022). The results presented

here are not intended as evidence of an upper mass threshold for Type II-P SNe, but instead that,

within this observational sample, there is evidence for massive progenitors. Determining a true

upper mass limit will rely on advances in stellar evolutionary modeling, core-collapse supernova

theory, and a wealth of observational data all used in tandem.

The results here rely on 1D progenitors and explosion models. Ultimately, reality is three

dimensional and the results of B22 will need to be tested against suites of 3D simulations carried

through their light curves. Variations in the results of B22 to higher dimensionality will potentially

yield differences in the results here. Further 3D simulations may also help to tune the turbulent and

convective parameters in the STIR explosion model.

This work contributes to the growing amount of evidence disfavoring the existence of the red

supergiant problem. By using a novel approach, we have found evidence of very massive progenitors

in this observational sample. It is becoming clear that the landscape of CCSN progenitors is complex

and very likely contains contributions from very massive progenitors.

This work is the first of its kind to combine high fidelity neutrino-driven CCSN simulations –

followed through their light curves – with a statistically significant sample of SNe II-P observations

to infer core properties. Effective 1D core-collapse supernova models provide a means of studying

not only single events, but entire populations of supernova progenitors. Future work should
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explore the dependence of these results and others on the chosen effective model – ultimately

a large, collaborative effort. Understanding the core-collapse explosion mechanism and inferring

properties of both single observations and populations will require a union of these effective models,

multidimensional modeling, and ever growing observational data.
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CHAPTER 4

ON CORE-COLLAPSE SUPERNOVA LIGHT CURVE DEGENERACIES
We mortals who dwell in pain

and sorrow might, with reason,

envy the birds of heaven which

know not either!

Fyodor Dostoyevsky, Poor

Folks
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ABSTRACT

Connecting observations of core-collapse supernovae (CCSNe) to properties of the underlying

progenitor and explosion remains an ongoing challenge. The explosion dynamics are determined

by a rich, and computationally expensive, set of physics that depends sensitively on the progenitor

properties. Producing electromagnetic observables from high fidelity simulations is a challenging

endeavor, and typically simplified “thermal bomb” calculations are used to artificially drive the

explosion and produce synthetic light curves. However, these synthetic light curves from simplified

explosion models have recently been shown to be highly degenerate, with many combinations of

progenitor mass and explosion energy producing identical light curves, making progenitor and

explosion property inference very difficult at best. In this work, we explore the severity of this

degeneracy. By constructing a large, dense grid of explosion models from a wide range of masses

and explosion energies, we show that fully constraining explosion and progenitor properties from

parametric explosion models alone is not possible. Even when radius information is included, the

progenitor’s mass remains poorly constrained.

4.1 Introduction

Massive stars with zero age main sequence (ZAMS) masses greater than about 8M⊙ may end

their lives with a tumultuous explosion. Having spent their lives evolving successive cycles of

nuclear burning, they eventually develop an electron degenerate iron core. This core, nearing the

effective Chandrasekhar mass (Baron & Cooperstein, 1990), inevitably collapses. What ensues is

a consequence of this degeneracy in concert with a rich amount of physics yielding one of Nature’s

premier multiphysics problems. The collapse proceeds through supranuclear densities where the

strong nuclear force becomes repulsive and the core rebounds. An outward forming shock is formed

that rapidly dissociates iron group nuclei in the core. The shock is rapidly enervated and inevitably

stalls, transitioning to a standing accretion shock.

Some fraction of these progenitors will successfully revive the stalled accretion shock and

produce a core-collapse supernova (CCSN) while others will fail and produce a stellar mass black

hole and no supernova transient (e.g., O’Connor & Ott, 2011; Lovegrove & Woosley, 2013; Pejcha



& Thompson, 2015; Ertl et al., 2016; Sukhbold et al., 2016; Adams et al., 2017; Sukhbold et al.,

2018; Ebinger et al., 2019; Couch et al., 2020). The details of this revival depend sensitively on the

structure of the progenitor star (and thus to the treatment of stellar evolution) as well uncertainties

in fundamental physics through neutrino-matter cross section and the neutron star equation of state.

For in-depth reviews of the CCSN explosion mechanism and the panoply of physics involved,

we refer the reader, e.g., Mezzacappa (2001, 2005); Janka et al. (2012); Burrows (2013); Hix

et al. (2014); Janka et al. (2016); Müller (2016); Couch (2017); Pejcha (2020); Müller (2020);

Mezzacappa et al. (2020); Burrows & Vartanyan (2021); Mezzacappa (2023).

While our understanding of the explosion mechanism is driven primarily by the increasing

fidelity of computational models, observational studies provide ever more detailed pictures of

the emission of CCSNe. These observations, almost always of electromagnetic emission (see

SN 1987A for the singular case of observed neutrino emission (Arnett et al., 1989)), provide

insights into the dynamics and composition of the explosion (Hummer & Rybicki, 1968; Falk &

Arnett, 1973, 1977; Mihalas & Mihalas, 1984; Litvinova & Nadezhin, 1985; Popov, 1993; Kasen

& Woosley, 2009). These observations, however, require a theoretical framework to facilitate

interpretation and infer progenitor or explosion properties. The simplest approach for inferring

explosion and progenitor properties is the use of phenomenological models. These are generally

some form of power-law type scaling relation owing to Litvinova & Nadezhin (1985); Popov (1993).

While easy to use, these relations rely on a vast number of assumptions that are difficult to validate

in realistic environments. A more sophisticated approach involves modeling simplified radiation

hydrodynamics. Gray, spherically symmetric radiation hydrodynamics, with an appropriate stellar

equation of state, treatment for radioactive heating from 56Ni decay, and artificial means for

initiating an explosion (a so-called “thermal bomb”), provides the ability to create synthetic light

curves. Creating a grid of these synthetic light curves from a set of progenitor models with different

explosion energies allows for the fitting of observed light curves1 (see, e.g., Falk & Arnett, 1973;

1In reality, there are more parameters than just progenitor mass and explosion energy. Metallicity, stellar mass loss
scheme, mass of synthesized 56Ni, its distribution through the star, compositional mixing, circumstellar material mass
and distribution, to name a few, all complicate the fitting process.
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Litvinova & Nadezhin, 1985; Bersten et al., 2011; Morozova et al., 2015, 2018; Ricks & Dwarkadas,

2019; Martinez & Bersten, 2019; Goldberg et al., 2019; Goldberg & Bildsten, 2020; Martinez et al.,

2020; Martinez et al., 2022, and references therein).

While these radiation hydrodynamics models (often referred to as hydrodynamical models in the

literature) have been extensively to study observed CCSNe, it has recently been demonstrated that

this approach is not without flaw. Goldberg et al. (2019); Dessart & Hillier (2019) recently showed

that fitting light curves with artificially-driven radiation hydrodynamic models incurs a massive

degeneracy: many combinations of progenitor mass and explosion energy produce an identical

light curve. Indeed, without more information, progenitor and explosion properties cannot be

uniquely inferred from observations. The breaking of this degeneracy remains an open problem.

In followup work, ? demonstrated that progenitor radius estimates, via pre-explosion imaging or

shock cooling models, could potentially reduce the degeneracy. Even in the absence of uncertainties

on the radius inference, however, the degeneracy could not be completely lifted, with a spread of

roughly 10M⊙ in ZAMS mass for best fit models for SN 2017eaw. Taking a different approach,

Barker et al. (2022); Barker et al. (2023) showed that light curves obtained from neutrino-driven

explosion models, instead of thermal bomb models, could be used to constrain observations of

both individual SNe and populations. By using a physically motivated, neutrino-driven explosion

model, the parameter space is vastly reduced. Under this framework, a given progenitor explodes

in a single deterministic way, removing the explosion energy as a free parameter.

The full severity of these degeneracies has yet to be explored. We build upon the pioneering

works of Goldberg et al. (2019); Dessart & Hillier (2019). Constructing a large, dense grid of

artificial explosion models, we show the full degenerate parameter landscape for a few select

observed supernovae. We focus on type IIP SNe, which make up the lion’s share of observed

CCSNe (Li et al., 2011). The results presented here cement what has been shown before: for

artificially-driven light curves, matching an observation is a necessary but not sufficient condition

for inferring explosion and progenitor properties.

In Section 7.3 we lay out the methods used in this study, highlighting the construction of the
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model grid, the progenitor models used, and the radiation hydrodynamic calculations used for the

light curves. In Section 5.5 we lay out the results of our analysis. We conclude in Section 7.5 by

reviewing our findings and next steps.

4.2 Methods

Here we lay out all of the necessary details to interpret and recreate the study. We begin with

describing the construction of the model grid used. Care is then given to the details of the stellar

progenitor set used in the model grid. We briefly describe the setting used with the SuperNova

Explosion Code, snec, used for the radiation hydrodynamic modeling. We end with a discussion

of light curve fitting methods.

4.2.1 Grid

Studies involving fitting observations to synthetic light curves rely on grid of parameterized

models. Given the known degeneracies with this approach (Goldberg et al., 2019; Dessart & Hillier,

2019), the results of such a fitting procedure are at least as sensitive to the model grid as they are to

the underlying physics. An overly sparse grid may completely miss potential solutions. As such,

we construct a dense grid in progenitor mass and explosion energy

We include solar metallicity progenitors with ZAMS masses MZAMS ∈ [9.0M⊙, 24.0M⊙ ]. This

mass range is chosen as, in single star stellar evolution, they will produce red supergiants and type

II SNe. These progenitor models have a cadence

Δ𝑀 =


0.25M⊙ for MZAMS < 13.0M⊙

0.1M⊙ for MZAMS > 13.0M⊙

(4.1)

resulting in 127 progenitors spanning 9 to 24 solar masses. We use an energy grid spanning 𝐸 ∈

[0.3 foe, 2.0 foe] (foe = 1051 erg) with Δ𝐸 = 0.2 foe for a total of ten values of explosion energy

per progenitor. At present we fix the mass of radioactive 56Ni to be 0.07M⊙. We define then the
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model set

G = {𝑀 | 𝑀 ∈ [9, 24] with Δ𝑀,

𝐸 | 𝐸 ∈ [0.2, 2.0] with Δ𝐸,

𝑀Ni = 0.04}

(4.2)

This makes a total of 1270 light curve models. With a sufficiently dense grid in mass and

energy, we seek to construct the degeneracy landscape for type II SNe.

4.2.2 Progenitor Models

For the progenitor grid described previously, we use the stellar evolutionary models of Sukhbold

et al. (2016). These models, evolved with KEPLER (Weaver et al., 1978), are solar metallicity,

non-rotating, non-magnetized progenitors evolved to core-collapse. They are single star stellar

evolutionary models. We include all of the progenitors of Sukhbold et al. (2016) up to, and

including, 24M⊙. These progenitors are a suitable choice for this study, as they span a range of

parameters relevant for type II SNe. They have a wide range of core and envelope properties that

power a range of transient properties. Figure 4.2.2 shows envelope mass (top), presupernova mass

(middle), and presupernova radius (bottom) for the progenitor set.

4.2.3 Synthetic Light Curve Calculations

We construct synthetic light curves using the SuperNova Explosion Code 2 (snec, Morozova

et al., 2015). snec is a spherically symmetric photon radiation hydrodynamics code for modeling

supernovae with artificially-driven explosions. snec treats Newtonian hydrodynamics in a co-

moving, Lagrangian fashion using a finite difference scheme with artificial viscosity (?). Radiation

transport is treated via gray flux-limited diffusion. As snec does not include the physics responsible

for driving CCSNe, the explosion must be artificially-driven. snec uses a thermal bomb explosion

method, where a user-defined amount of energy is distributed through the innermost part of the

star. The stellar equation of state is that of Paczynski (1983) which includes contributions from

ions, radiation, and electron with approximate degeneracy. This is coupled with a Saha ionization

solver that calculates ionization fractions. In the present work we follow ionization of 1H, 3He, and
2https://stellarcollapse.org/SNEC.html
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Figure 4.1 Progenitor properties of the Sukhbold et al. (2016) set used in this work, including
envelope mass (top), presupernova mass (middle), and presupernova radius (bottom).
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4He. At high temperatures, snec uses OPAL type II opacities (Iglesias & Rogers, 1996) which are

supplemented at low temperatures by the opacities of Ferguson et al. (2005). For more details of

the implementation, see Morozova et al. (2015).

Supernova light curves are determined not only by the energetics of the explosion, but by the

distribution of the matter. Mixing at sharp compositional interfaces, due to Rayleigh-Taylor and

Richtmyer-Meshkov instabilities, smooths out compositional boundaries and mixes lighter elements

inwards and heavier elements outwards. Mixing of radioactive 56Ni plays a particularly important

role, as it can impact plateau brightness and duration (Kasen & Woosley, 2009; Kozyreva et al.,

2019). snec mimics hydrodynamical mixing by applying a “boxcar” smoothing algorithm. We use

the fiducial boxcar smoothing values of Morozova et al. (2015), which uses a averaging width of

Δ𝑀 = 0.4M⊙.

The late, post-plateau phase emission is dominated by heating due to the radioactive decay

chain 56Ni → 56Co → 56Fe which produces gamma emission and a small positron component.

This 56Ni is produced during the explosion after the initial shock revival and is mixed outwards by

hydrodynamic effects. Diffusion of gamma rays and positrons from these decays provide a long

term source of energy. snec follows the heating due to 56Ni decay by a gray treatment of Swartz

et al. (1995). Positron contributions are small and neglected. snec does not include a nuclear

reaction network, and nuclear burning from 1D, artificial explosions is unreliable, so 56Ni must be

manually added to the stellar profile. snec allows for the injection of a specified amount of 56Ni to

be distributed over a specified amount of mass. We set the mass of synthesized 56Ni as described

in Section 4.2.1. The distribution of this material is, in principle, a free parameter. In order to keep

the size of our model grid from growing too large, we must standardize the 56Ni distribution. We

mix the 56Ni outwards in the stellar profile just slightly into the envelope.

snec -like simulations require removing the innermost part of the stellar profile – corresponding

to what might become the compact object – as a “mass cut.” This is necessary as this high density,

gravitationally bound material would dominate the hydrodynamical timestep and greatly increase

computational cost. As snec cannot self-consistently determine the mass of the formed compact
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object, this is done manually. At present, we take a constant 1.8M⊙ mass cut for all of the model

grid. While likely larger than the neutron star that would be produced for the lowest mass models

in our grid (see, e.g., Sukhbold et al., 2016; Ebinger et al., 2019; Couch et al., 2020), it remains a

reasonable choice in absence for more sophisticated calculations.

Finally, snec requires injecting the energy to drive the explosion by hand. This is done by adding

an amount of heat over the innermost part of the ejecta nearly instantaneously (see Morozova et al.,

2015, for implementation details). When injecting the explosion energies as laid out in Section 4.2.1,

we inject sufficient energy such that we achieve the desired asymptotic explosion energy. That is,

the injected energy is adjusted for the binding energy of the progenitor.

4.2.4 Light Curve Fitting

Fitting light curves requires a choice of what is fit and through what error metric. In principle,

the choice of error metric can have an impact on the results (Barker et al., 2022). Here, we adopt

the 𝐿2 error metric for quantity 𝑞

𝐿2(𝑞) =
1
𝑁

𝑡𝑁∑︁
𝑡∗=𝑡1

(𝑞(𝑡∗) − 𝑞∗(𝑡∗))2 (4.3)

where a ∗ denotes observation, i.e., 𝑞∗(𝑡∗) is an observation of 𝑞 at time 𝑡∗ and 𝑞(𝑡∗) is the synthetic

quantity at the same time. For comparison, synthetic quantities are interpolated to the same time

as observed data. In practice the quantities used are normalized.

We explore minimization of the error in the light curve as well as a combined error metric

including both bolometric luminosity and ejecta velocity, i.e.,

𝜀 = 0.5 𝐿2(𝐿bol) + 0.5 𝐿2(𝑣ejecta). (4.4)

Simultaneously fitting both luminosity and ejecta velocity can, in principle, provide a more con-

strained fit as it includes more information than luminosity alone (e.g., Ricks & Dwarkadas, 2019;

Goldberg et al., 2019; Goldberg & Bildsten, 2020; Martinez & Bersten, 2019; Barker et al., 2022;

Martinez et al., 2020).
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Figure 4.2 𝐿2 norm for SN2017eaw as a function of ZAMS mass and explosion energy. Here the
𝐿2 is computed using only the bolometric luminosity.

4.3 Results

We begin by exploring the degeneracy landscape for SN2017eaw. Here we find the best fit

model from our grid by minimizing error in the light curve, 𝐿2(𝐿bol). Figure 4.3 shows the 𝐿2

norm computed this way as a function of ZAMS mass and explosion energy. The best fit model is

(�̂�ZAMS, �̂�expl) = (21.9M⊙, 0.6 foe). However, it is immediately clear that the observation is not

well constrained. Even at fixed explosion energy, the spread in ZAMS mass is large.

The spread in ZAMS mass in Figure 4.3 merits quantification. We define a deviation 𝜎(𝐸) that

is the 16% percentile of the 𝐿2 norm taken at a given explosion energy. That is, we find the vertical

deviation at a given energy in Figure 4.3. We define the set of models with norms within 1𝜎 as

M𝜎 = {𝑀 | | �̂�2 − 𝐿2(𝑀, �̂�, 𝑀Ni) | ≤ 𝜎} (4.5)

where a hat denotes the best fit values, i.e., �̂�2 is the minimum norm. For the case of SN2017eaw,

we find that M𝜎 = {𝑀 | 𝑀 ∈ [15.9, 24.0]} – an 8M⊙ spread in | M𝜎 |.

Figure 4.3 shows observations of SN2017eaw (green squares) along with the best fit model

(purple) and M𝜎 models (gold). The left panel shows the bolometric light curve and the right

panel shows ejecta velocity. For the observed velocities, we present the common Fe II 𝜆5169 line

velocities. For the models, on the other hand, we show 𝜏 = 2/3 photospheric velocities.

We observe a few features of note. The best fit model (purple) fits the observations very well,

with exception of the radioactive tail, which is simply due to there being too few values of nickel
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Figure 4.3 Left: Observational light curve data for SN2017eaw (green squares), best fit synthetic
light curve model (purple), and models within 1 − 𝜎 (𝑀 ∈ M𝜎) (gold). Right: Observational Fe
II 𝜆5169 for SN2017eaw (green squares), best fit model (purple), and 1 − 𝜎 models (gold). Here
the 𝐿2 is computed using only the bolometric luminosity. The 1𝜎 models span 15.9 to 21.9M⊙
and have fixed explosion energy.

mass in the model grid G. Many of the M𝜎 models are still very close, and those which fit visibly

more poorly are still within, or close to, observational uncertainty. The photospheric velocities, on

the other hand, are a poor match. This is due, perhaps, to different definitions of the velocities.

The observations correspond to Fe II 𝜆5169 line velocity, while the model velocities are 𝜏 = 2/3

photospheric velocities, that is, not an observable quantity. While spectral line velocities are not

immediately available from a gray radiation hydrodynamics code like snec, it can be approximately

under the Sobolev approximation (Mihalas & Mihalas, 1984) and tends to give better agreement

with observation (see, e.g., Goldberg et al., 2019; Barker et al., 2022, and references therein).

To further highlight issues with using the photospheric velocity, we seek to minimize the

combined 𝐿2 norm of both bolometric luminosity and ejecta velocity. The results are shown in

Figure 4.3. Here we have a much better fit for the velocity evolution, but the light curve fit is very

poor. We notice that a much larger explosion energy is required to achieve the necessary ejecta

velocities. This necessitates adoption of a better synthetic velocity quantity.

4.3.1 Radius Measurements

It has been demonstrated that radius inferences might help to constrain progenitor and explosion

property inferences (Goldberg & Bildsten, 2020). These stellar radius inferences typically arise

from pre-explosion imaging measuring the stellar luminosity and temperature. For SN2017eaw

such measurements exist with log(𝐿/𝐿⊙) = 4.9 ± 0.2 and 𝑇eff = 3350+450
−250K (Kilpatrick & Foley,
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Figure 4.4 The same as Figure 4.3 except we fit both bolometric luminosity and ejecta velocity.

2018). As the propagation of asymmetric uncertainties, without knowledge of the underlying

probability distribution, is not possible, we make the conservative simplifying assumption to use

the larger of the two uncertainties on the stellar temperature. This will likely overestimate the

propagated uncertainty on the radius. With this in mind, these values correspond to a radius

inference of 892.4R⊙ ± 271.9R⊙. For comparison, using the lower value results in a radius of

853.3R⊙ ± 132.7R⊙. We use a Monte Carlo error propagation procedure to avoid assumptions of

normality, linearity, or small errors common in traditional error propagation methods.

The impact of including a radius inference on model selection is shown in Figure 4.3.1.

Presupernova radius as a function of ZAMS mass is shown with markers. The radius inference

is shown with the horizontal green band with the optimal value denoted by a dashed line. The

M𝜎 mass set is denoted with the vertical gray shaded region. The best fit model is shown with

the gray dashed line. The intersection of the radius inference and M𝜎 regions is shaded blue,

representing the additional constraints from the radius inference. There are a few features of note:

first, the models closer to the optimal radius value are technically within M𝜎, but far from the best

fit model. Additionally, the best fit model is barely within the radius uncertainties (indeed, using

the lower bound radius error excludes the best fit model). Also, The radius band includes a large

amount of low mass models that do not fit the observations. Radius measurements, as expected,

help in constraining the model selection but should be used carefully and with their associated

uncertainties.
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Figure 4.5 Presupernova radius (markers) as a function of ZAMS mass with several regions of
interest noted. The horizontal green band (forward slash hatching) denotes the 1𝜎 uncertainty
band on the radius of SN2017eaw, with the optimal value denotes by a green dashed line. The
gray vertical band (backwards slash hatching) denotes the M𝜎 set of masses from light curve
fitting with the best fit mass denoted by dashed gray line. The intersection of these two regions is
shaded blue. Data that fit into neither band are denoted with purple circles, data that falls into the
radius inference band, but not the M𝜎 band, as gold triangles, and data in the intersection are
denoted as pink stars.

4.4 Discussion and Conclusions

We construct a dense grid of artificial explosion models with corresponding synthetic light

curves. These models span 9 to 24 solar masses with 127 models in that range. Each model is

injected with a thermal bomb to each asymptotic explosion energies in the range 0.2 to 2.0 foe,

with a cadence of 0.2 foe. This grid finely samples the range of values that might produce a type

II CCSN. With this model grid we compare to SN 2017eaw in order to construct the degeneracy

landscape.

We fit SN2017eaw to our model grid, finding a best fit model with (MZAMS, E) = (21.9M⊙, 0.6

foe). There is, however, large spread in the error metric, particularly as a function of ZAMS mass.

Defining an uncertainty 𝜎, we find models spanning 8M⊙ within 1𝜎 of the best fit, which reaches

the upper bound of the mass grid. While acceptable agreement is found between bolometric light

curves, very poor agreement is found between ejecta velocities. This highlights the difference

between the photospheric velocity often used in gray radiation hydrodynamics calculations and the

line velocities observed. Using a fitting procedure that seeks to fit both the light curve and ejecta
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velocity finds highly energetic models that, while matching the velocity evolution well, match the

light curve very poorly. This cements the need for more realistic model velocities when comparing

to observations.

We explore the impact of radius measurements on model constraint. We find, as expected, that

the inclusion of radius information can help to constrain the set of possible masses. However, we find

that the models close to the optimal radius measurement, while still a decent fit to the observations,

are quite far from the best fit explosion models. Additionally, if overly liberal assumptions about

the radius uncertainty are taken, then the best fit model’s stellar radius might not lie within the

uncertainty on the inferred stellar radius.

This work is a step towards providing better constrains on observed supernova progenitor and

explosion properties. While parametric explosions models remain unable to tightly constrain

observations, the effort here helps pose the problem as a statistical, reproducible one.
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CHAPTER 5

THORNADO-HYDRO: A DISCONTINUOUS GALERKIN METHOD FOR SUPERNOVA
HYDRODYNAMICS WITH NUCLEAR EQUATIONS OF STATE

To Whom the unceasing suns

belong,

And cause is one with

consequence,

To Whose divine inclusive

sense

The moan is blended with the

song.

Ambrose Bierce, Invocation

This chapter is based on the published work of D. Pochik, B. L. Barker, et al. 2021 ApJS 253 21.

5.1 Abstract

This paper describes algorithms for non-relativistic hydrodynamics in the toolkit for high-order

neutrino radiation hydrodynamics (thornado), which is being developed for multiphysics simula-

tions of core-collapse supernovae (CCSNe) and related problems with Runge–Kutta discontinuous

Galerkin (RKDG) methods. More specifically, thornado employs a spectral type nodal collocation

approximation, and we have extended limiters — a slope limiter to prevent non-physical oscillations

and a bound-enforcing limiter to prevent non-physical states — from the standard RKDG framework

to be able to accommodate a tabulated nuclear equation of state (EoS). To demonstrate the efficacy

of the algorithms with a nuclear EoS, we first present numerical results from basic test problems

in idealized settings in one and two spatial dimensions, employing Cartesian, spherical-polar, and

cylindrical coordinates. Then, we apply the RKDG method to the problem of adiabatic collapse,

shock formation, and shock propagation in spherical symmetry, initiated with a 15 𝑀⊙ progenitor.

We find that the extended limiters improve the fidelity and robustness of the RKDG method in
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idealized settings. The bound-enforcing limiter improves robustness of the RKDG method in the

adiabatic collapse application, while we find that slope limiting in characteristic fields is vulnerable

to structures in the EoS — more specifically, in the phase transition from nuclei and nucleons to

bulk nuclear matter. The success of these applications marks an important step toward applying

RKDG methods to more realistic CCSN simulations with thornado in the future.

5.2 Introduction

Stars with zero-age main sequence (ZAMS) masses𝑀ZAMS ≳ 8𝑀⊙ end their lives as spectacular

explosions known as core-collapse supernovae (CCSNe). These explosions are at the heart of some

of the most important questions in astrophysics. They are the primary catalysts of galactic chemical

evolution, producing and dispersing many of the elements heavier than hydrogen and helium, and

provide feedback into the interstellar medium. They may even be a source of the lighter first

peak r-process elements (Martínez-Pinedo et al., 2014), though neutron star mergers are likely the

primary production site for the r-process (Kasen et al., 2017). Their cores are the foundries for

compact objects including those recently detected by Advanced LIGO and Virgo (Abbott et al.,

2016, 2017a,b, 2020). Through their observables and the compact objects left behind, we may even

begin to probe the nature of nuclear matter (Schneider et al., 2019).

Throughout their lives, these massive stars undergo successive cycles of nuclear fusion, forging

heavier elements in their cores. At the end of a star’s lifetime, fusion processes build up a degenerate

iron core that is unable to undergo nuclear fusion itself. This iron core, supported thus far by

electron degeneracy pressure, grows to the effective Chandrasekhar mass (Baron & Cooperstein,

1990) and, no longer able to balance gravity, subsequently collapses. During collapse, runaway

electron capture processes accelerate the collapse and produce vast numbers of neutrinos, while

photodissociation of iron group nuclei robs the core of more energy. Eventually the core reaches

nuclear density and the nuclear strong force becomes repulsive, effectively stiffening the Equation

of State (EoS) tremendously, and collapse is halted in the inner core. The collapse rebounds and

produces a strong shock that is driven through the outer core. Ultimately, through a combination of

neutrino cooling and dissociation of iron group nuclei, the shock runs out of energy and stalls before

98



escaping the core, becoming an accretion shock. Meanwhile, the inner core regains equilibrium in

the form of a newborn proto-neutron star (PNS).

Providing a mechanism to revive the stalled shock and drive the explosion is among the forefront

questions in the study of CCSNe. Of the proposed mechanisms, the most favored has been the

delayed neutrino-driven mechanism (Bethe & Wilson, 1985). Neutrinos emitted from the surface

of the cooling PNS, aided by hydrodynamic and magnetohydrodynamic instabilities, deposit energy

below the stalled shock and reinvigorate the explosion. Of the other proposed mechanisms, the

magneto-rotational mechanism – wherein a rapidly rotating PNS supplies energy to power the

shock (Akiyama et al., 2003) – has potential, but likely doesn’t account for most CCSNe. A key

characteristic of magneto-rotationally driven SNe is the formation of collimated jets, which are not

seen in the vast majority of supernova remnants (e.g., see Soderberg et al., 2010). Additionally, for

this mechanism to be effective the stellar core must be very rapidly rotating, beyond the rotation

rates commonly achieved through stellar evolution (Heger et al., 2005). Ultimately, any successful

mechanism must not only revive the shock but also explain the observations of supernovae (e.g.,

light curves and spectra).

For several decades this was the state of the field. These mechanisms saw little success

until relatively recently: spherically symmetric (spatially one-dimensional [1D]) simulations of

CCSNe consistently failed to produce explosions. It wasn’t until computing resources allowed

for axisymmetric (spatially two-dimensional [2D]), and eventually full-physics three-dimensional

(3D), simulations that successful explosions could be consistently produced without modified or

parametrized physics. Ultimately, the reason for this is 1D fails to capture the fundamentally

non-spherical nature of CCSNe and hydrodynamic instabilities are unable to develop. The CCSN

explosion mechanism has been the subject of decades of work and still remains incompletely

described (for in-depth reviews, see, e.g., Bethe, 1990; Mezzacappa, 2001, 2005; Janka et al.,

2012, 2016; Burrows, 2013; Hix et al., 2014; Müller et al., 2016; Couch, 2017).

Hydrodynamics, along with gravity and neutrino transport, plays a key role in the dynamics

of CCSNe. This starts with the progenitors, which in nature are multi-dimensional and likely
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involve a complicated mixing of elements in the convectively burning shells (see, e.g., Arnett &

Meakin (2011)). Further, it has been shown that asphericities in progenitors can mean the difference

between a model that explodes, and a model that doesn’t (Couch & Ott, 2013). However, regardless

of the progenitor, after the core rebounds it is known that the shocked fluid develops instabilities.

Once the bounce-shock stalls and the neutrino hearing (or gain) region is established below

the shock, at least two hydrodynamical instabilities may contribute to the evolution of the shock:

neutrino-driven convection (Herant et al., 1992) and the Standing Accretion Shock Instability (SASI;

Blondin et al. (2003)). Both of these instabilities create turbulence in the post-shock flow, and that

turbulence contributes ram pressure that enlarges the extent of the gain region (Murphy et al.,

2013), thus increasing the efficacy of neutrino heating, thus aiding the explosion (see Couch & Ott

(2015), and references therein). Which effect is more dynamically important, however, may depend

on the progenitor mass (Müller et al., 2012; Hanke et al., 2013; Summa et al., 2016; Vartanyan

et al., 2019). Regardless of which effect is dominant, simulations should be able to satisfactorily

quantify the turbulence, and in particular should be able to capture the turbulent energy cascade

from the energy carrying scale through the inertial scale, down to the (numerical) dissipation

scale. However, a consensus has not yet been reached as to what, in terms of angular resolution,

is required to adequately capture the turbulent energy cascade. In particular, Radice et al. (2015),

Abdikamalov et al. (2015), and Casanova et al. (2020) suggest that resolutions much lower than 1◦

may be necessary (due to the numerical dissipation of the scheme, which creates a “bottleneck”

for energy transfer at a scale set by the scheme), but recently Melson et al. (2020) argued that

1◦ resolution is sufficient to obtain a clear distinction between the inertial and dissipation scales.

Additionally, Endeve et al. (2012) showed that turbulence from the SASI can amplify magnetic

fields, and more recently, Müller & Varma (2020) found that turbulently amplified magnetic fields

can aid neutrino-driven explosions, even in slowly-rotating progenitors. See Radice et al. (2018)

for a recent review of turbulence in CCSNe.

In addition to the hydrodynamic instabilities occurring in the shocked mantle, the PNS undergoes

convection and potentially other instabilities due to entropy and electron fraction gradients (Bruenn
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et al., 2004), which has an effect on the luminosity of heavy flavored neutrinos as well as the

mean energies of all neutrino flavors (Buras et al., 2006). This may not directly affect the shock

dynamics, but it does give rise to the recently discovered Lepton Number Emission Self-Sustained

Asymmetry (LESA; Tamborra et al. (2014)), which may hold implications for the composition of

the ejecta. For more detailed discussions on the role of hydrodynamic instabilities in CCSNe, we

refer to the recent review by Müller (2020).

Insight into hydrodynamic phenomena can often be gained by treating the fluid as polytropic (in

the CCSN context, see, e.g., Yahil, 1983; Blondin et al., 2003); i.e. the fluid pressure 𝑝 is assumed

to be proportional to a power law of the mass density 𝜌, which gives rise to the polytropic EoS,

𝑝 ∝ 𝜌Γ, where Γ =
( 𝜕 ln 𝑝
𝜕 ln 𝜌

)
is the adiabatic index.1 However, relating the state variables by this

expression neglects the nuclear interactions and compositions in stellar collapse; e.g. the polytropic

EoS fails to capture the response in pressure due to the thermal or compositional changes that are

typical in a stellar environment. For the conditions prevalent in stellar interiors, particularly in the

high-density regimes of stellar collapse, a simple analytic form for the EoS likely does not exist.

Instead, an EoS for this case is often created by minimizing a thermodynamic potential — e.g.

the Helmholtz free energy — for a system of particles under stellar conditions (see, e.g., Swesty,

1996; Fryxell et al., 2000; Timmes & Swesty, 2000). Once the free energy is known, other relevant

quantities, such as pressure, internal energy, and entropy, can easily be obtained.

The task of developing an equation of state for realistic CCSN simulations has remained a

pertinent objective for several decades. Important contributions toward this effort include the

Lattimer & Douglas Swesty (1991) (LS) and Shen et al. (1998) (STOS) EoSs. The LS EoS used

a compressible liquid-drop model (see, e.g., Lattimer et al., 1985), while STOS used a relativistic

mean field (RMF) model with the TM1 parameter set (see, e.g. Sugahara & Toki, 1994). However,

due to the importance of including light nuclei in CCSN simulations, a notable drawback for both

the LS and STOS EoS was their exclusion of all light nuclei other than alpha particles (Hempel

et al., 2012; Steiner et al., 2013b). Further advances include the hadronic EoSs from G. Shen (Shen
1Contrary to a realistic model, the adiabatic index for a polytropic model remains constant through space and time.

101



et al., 2011a,b), which build upon the NL3 (Lalazissis et al., 1997) and FSUgold (Todd-Rutel &

Piekarewicz, 2005) parameter sets. Additionally, unlike the LS and STOS EoSs, the statistical

model of Hempel et al. (2012) (HS) (see also Steiner et al., 2013b) does not use the single-nucleus

approximation for heavy nuclei, but includes a more realistic compositional distribution of nuclei.

Moreover, recent neutron star observations (see, e.g., Greif et al., 2020; Steiner et al., 2013a) and

observations of other astronomical phenomena (see, e.g, Greif et al., 2020, and references therein),

experiments in nuclear physics (see, e.g., Greif et al., 2020), and experiments in relativistic heavy-

ion collisions (see, e.g., Oertel et al., 2017, and references therein), have led to the development of

multiple EoSs for dense nuclear matter that are applicable to CCSN simulations (see, e.g., Steiner

et al., 2013a,b). These equations of state provide thermodynamic quantities as functions of density,

temperature, and electron fraction. The SHFo/SFHx EoSs from Steiner et al. (2013a,b) build upon

the statistical model used in HS and constrain properties of nucleonic matter with an RMF model

(see, e.g., Shen et al., 1998, 2011a,b). The most probable mass-radius relationship derived from

neutron star (NS) observations was used to build the “optimal" SFHo EoS, while the “extreme"

SFHx EoS is built around a minimized radius model for low-mass NSs (Steiner et al., 2010, 2013a).

For our purposes, the importance of these equations of state lies in their ability to resolve various

physical regimes in CCSNe, including the phase transition from nuclei and nucleons to bulk nuclear

matter at high densities (𝜌 ∼ 1014 g cm−3) (Steiner et al., 2013b), and the high-density rebound of

the core, which determines the initial strength of the shock (Shen et al., 1998). We note that these

EoSs do not include lower density/temperature regimes; i.e., they do not describe matter out of

nuclear statistical equilibrium (NSE); but see, e.g., Bruenn et al. (2020) for treatment of non-NSE

regions in CCSN models.

Clearly, multidimensional, multiphysics models of CCSNe require advanced simulation tools

and massive computational resources, and to that end there are several production codes in existence;

e.g., Aenus-Alcar (Just et al., 2015), Castro (Almgren et al., 2010), Chimera (Bruenn et al., 2020),

CoCoNuT-Vertex (Müller et al., 2010), FLASH (Fryxell et al., 2000; Dubey et al., 2009; O’Connor

& Couch, 2018), Fornax (Skinner et al., 2019), Prometheus-Vertex (Rampp & Janka, 2002), and
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Zelmani (Ott et al., 2009; Roberts et al., 2016), and the codes of Sumiyoshi & Yamada (2012);

Nagakura et al. (2014), and Kuroda et al. (2016). To solve the equations of hydrodynamics — with

the aim of capturing shocks and resolving turbulent flows — these codes use variations of either the

finite-difference or the finite-volume high-resolution shock capturing method, in either an Eulerian

or semi-Lagrangian framework. In particular, the finite-volume method divides the computational

domain into finite cells (or volumes), formulates the hydrodynamics equations in integral form, and

solves for physical quantities (e.g., mass density) in terms of cell averages. The cell averages are

updated by accounting for (1) fluxes through the surface enclosing each cell and (2) volume sources

(e.g., due to gravity). The integral formulation leads naturally to good conservation properties, and

allows for discontinuous solutions (e.g., shocks). In computing the surface fluxes, local polynomials

are reconstructed using cell averages of the local cell and its neighbors. The local polynomials are

then used to assign left and right states at each cell interface as inputs to a Riemann solver, which

provides the numerical flux. To avoid non-physical oscillations around shocks, limiters are applied

to the reconstructed polynomial to enforce some degree of monotonicity, which can degrade the

formal order of accuracy of the hydrodynamics scheme. (We refer to the above citations for further

details on the hydrodynamics algorithms implemented in the specific codes listed.)

As discussed above, turbulence is ubiquitous in the supernova environment and plays a role in

the explosion mechanism. It is therefore desirable to maintain good spectral resolution to resolve

as much of the turbulent spectrum as possible for a given spatial resolution, and this motivates

the use of accurate Riemann solvers and high-order methods. On the other hand, due to their

multiphysics nature, CCSN simulations with neutrino transport are computationally expensive, and

must run efficiently on distributed memory architectures; e.g., using message passing interface

(MPI). Furthermore, because of the high number of degrees of freedom involved in neutrino

transport computations (a momentum space is attached to each spatial point), memory limitations

require the number of spatial cells assigned to any given MPI process to not be large. For a code to

scale well, the number of ghost cells should be limited relative to the number of compute cells to

manage the communication overhead, since each MPI process will have a halo region comprised
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of ghost cells populated with data from neighboring processes. While finite-difference and finite-

volume methods can achieve high-order accuracy, the computational stencil width increases with

increasing order of accuracy, thereby increasing the size of the halo region and the ratio of ghost

cells to compute cells, thus impeding good scalability (e.g., Miller & Schnetter, 2017).

The discontinuous Galerkin (DG) method (e.g., Cockburn, 2001) is an alternative approach to

solving the system of hydrodynamics equations (and many other systems). Similar to finite-volume

methods, DG methods divide the computational domain into cells (or elements), and formulate

the equations in integral form. However, contrary to finite-volume and finite-difference methods,

in the DG method the solution is approximated by a local polynomial within each element, which

implies that more local information is tracked in the solution process (i.e., not just the cell average).

Because the full polynomial representation in each element is evolved, the reconstruction step

needed in the finite-volume approach is not necessary. Meanwhile, Riemann solvers developed in

the context of finite-volume methods can readily be used with DG methods to evaluate numerical

fluxes on element interfaces. The DG method is a finite-element method, but does not demand

continuity of the local polynomial approximation across element boundaries, and consequently, is

well suited to capture shocks and other discontinuities. To prevent non-physical oscillations in the

vicinity of a discontinuity, limiters are applied to the local polynomial to enforce monotonicity.

More recently, so-called structure-preserving discretizations, which maintain fundamental physical

properties of the system under consideration (e.g., positive mass density and pressure), have been

developed within the DG framework (e.g., Zhang & Shu, 2011). Another advantage offered by the

DG method is high-order spatial accuracy on a compact stencil. Only information from nearest

neighbors is needed, independent of the order of accuracy. This makes the DG method well-suited

for application on massively parallel architectures, since increasing the order of accuracy does

not increase the communication overhead as much as other high-order methods (e.g., Miller &

Schnetter, 2017). The desired combination of shock-capturing capabilities, high-order accuracy

in smooth flows, and good scalability make DG methods an appealing choice. Additionally, DG

methods are also amenable to ℎ𝑝-adaptivity (Remacle et al., 2003), wherein refinement of either the
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spatial mesh (ℎ-refinement) or the local degree of the polynomial approximation (𝑝-refinement) can

be used to improve the accuracy of the method near shocks while maintaining high-order accuracy

in regions of smooth flow. DG methods are also well-suited for problems involving curvilinear

coordinates (Teukolsky, 2016).

The DG method was introduced already in the 1970s by Reed & Hill (1973) to solve the steady

state neutron transport equation, and the initial framework for solving time-dependent problems with

explicit Runge–Kutta time integration (commonly referred to as RKDG methods) was established

in a series of papers by Cockburn & Shu (Cockburn & Shu, 1989; Cockburn et al., 1989, 1990;

Cockburn & Shu, 1991; Cockburn & Shu, 1998). Today, DG methods are widely used in science

and engineering applications, and are rapidly gaining popularity in the computational astrophysics

community (see, e.g., Radice & Rezzolla, 2011; Schaal et al., 2015; Teukolsky, 2016; Kidder et al.,

2017; Fambri et al., 2018, and references therein), but have so far not been applied to multiphysics

CCSN simulations.

The toolkit for high-order neutrino radiation hydrodynamics2 (thornado) is being developed

with the goal of realizing multiphysics simulations of CCSNe and related problems with high-

order methods. To this end, the hydrodynamics and neutrino transport algorithms in thornado

are based on the DG method (see, e.g., Endeve et al., 2019; Chu et al., 2019; Laiu et al., 2020).

It should be noted that, in addition to exhibiting favorable parallel scalability, DG methods are

also an attractive choice for discretizing the neutrino transport equations because they recover the

correct asymptotic behavior in the so-called diffusion limit (e.g., Larsen & Morel, 1989; Adams,

2001), which is characterized by frequent neutrino–matter interactions. Then, since the matter

and neutrinos are strongly coupled in the CCSN environment, employing the DG method also for

the hydrodynamics is most natural, as this enables treatment of the coupled physics in a unified

mathematical framework. Currently, thornado is being developed as a collection of modules,

focusing on single-node performance for updating structured data blocks using CPUs and/or GPUs,

with the future aim of leveraging an external framework — e.g., AMReX3 (Zhang et al., 2019) —

2https://github.com/endeve/thornado
3https://amrex-codes.github.io
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to support mesh adaptivity.

This paper describes the DG algorithms for non-relativistic hydrodynamics in thornado. We

adapt a three-covariant formalism that is sufficiently general to accommodate Cartesian, spherical-

polar, and cylindrical spatial coordinates. Although we presented preliminary results obtained with

similar algorithms for non-relativistic and relativistic hydrodynamics in the context of an ideal EoS

in Endeve et al. (2019), this paper provides a more comprehensive description of the methods in

thornado, and, more important, develops the algorithms further in order to accommodate a nuclear

EoS. Introducing a nuclear matter EoS leads to more realistic models, but also complicates the

numerical procedure. For instance, when solving the conservation equations for mass, momentum,

and energy, the implementation of a nuclear EoS requires an additional conservation law for

electrons, (see, e.g., Colella & Glaz, 1985; Zingale & Katz, 2015, for similar modifications).

Moreover, on-the-fly numerical evaluation of a realistic EoS is computationally expensive (Swesty,

1996); thus, for computational expediency, EoSs are provided in tabulated form, and interpolations

are used to access quantities away from table vertices, where a thermodynamically consistent

interpolation scheme may be required (see, e.g., Swesty, 1996; Timmes & Swesty, 2000; Fryxell

et al., 2000, for a discussion of such interpolation schemes). To limit the scope of this paper,

we exclusively consider the SFHo EoS (Steiner et al., 2013a), which is provided in tabulated

form by CompOSE4. In thornado, the interface to the tabulated EoS is through the WeakLib

library5, which provides auxiliary functionality needed for computations (e.g., input/output and

interpolation). As such, the EoS is currently treated as a black box.

The Euler equations in curvilinear coordinates, extended to accommodate a nuclear EoS and

self-gravity, are listed in Section 7.2. Then, in Section 5.4, we present the RKDG method in

thornado. Sections 5.4.1 and 5.4.2 provide the spatial and temporal discretizations, respectively,

which are based on the standard framework from Cockburn (2001). More specifically, we employ

a nodal DG method (e.g., Hesthaven & Warburton, 2008) and adopt the spectral type nodal

collocation approximation investigated by Bassi et al. (2013). Sections 5.4.3 and 5.4.4 discuss

4https://compose.obspm.fr
5https://github.com/starkiller-astro/weaklib
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the slope limiter (to prevent non-physical oscillations) and the bound-enforcing limiter (to prevent

non-physical states), respectively. The extension of these limiters to the case with a tabulated

nuclear EoS is nontrivial. First, since slope limiting is most effective when applied to characteristic

variables, we provide the characteristic decomposition of the flux Jacobian matrices for a nuclear

EoS (Appendix 9C). Second, since the domain of validity of the nuclear EoS is more complex

than the ideal case, we develop an enhanced version of the bound-enforcing limiter of Zhang &

Shu (2010). Section 5.4.5 describes the Poisson solver for use in spherically symmetric problems

with self-gravity, which uses the finite-element method. Section 5.4.6 provides details on the

interpolation methods used to evaluate the tabulated EoS. We use basic trilinear interpolation, which

is commonly employed in supernova simulation codes (e.g., Bruenn et al., 2020). In Section 5.5, to

demonstrate the efficacy of the algorithms, we present numerical results from basic test problems

(advection and Riemann problems) in idealized settings in one and two spatial dimensions. We

also include a test of the Poisson solver. Then, in Section 5.6, we apply the DG method to the

problem of adiabatic collapse, shock formation, and shock propagation in spherical symmetry,

using a 15 𝑀⊙ progenitor. Here we focus on aspects of the limiters, resolution dependence, and

total energy conservation. Our major goals in this paper are to (1) present the key algorithmic

components of the hydrodynamics in thornado, (2) assess the implementation given the initial set

of algorithmic choices, and (3) identify potential areas for improvement. This will clear the way

for incorporating DG methods for neutrino transport and future neutrino radiation-hydrodynamics

simulations with thornado.

5.3 Physical Model

5.3.1 Euler Equations

In this paper we adopt the non-relativistic Euler equations of gas dynamics in a coordinate basis

(e.g., Rezzolla & Zanotti, 2013), supplemented with a nuclear equation of state (EoS), which are

given by the mass conservation equation

𝜕𝑡𝜌 +
1
√
𝛾
𝜕𝑖

(√
𝛾 𝜌 𝑣𝑖

)
= 0, (5.1)

107



the momentum equation

𝜕𝑡 (𝜌 𝑣 𝑗 ) +
1
√
𝛾
𝜕𝑖

(√
𝛾 Π𝑖

𝑗

)
=

1
2
Π𝑖𝑘 𝜕𝑗𝛾𝑖𝑘 − 𝜌 𝜕𝑗Φ, (5.2)

the energy equation

𝜕𝑡𝐸 + 1
√
𝛾
𝜕𝑖

(√
𝛾 [ 𝐸 + 𝑝 ] 𝑣𝑖

)
= −𝜌 𝑣𝑖 𝜕𝑖Φ, (5.3)

and the electron conservation equation

𝜕𝑡𝐷e +
1
√
𝛾
𝜕𝑖

(√
𝛾 𝐷e 𝑣

𝑖
)
= 0, (5.4)

where 𝜌 represents mass density, 𝑣𝑖 the components of the fluid three-velocity, Π𝑖
𝑗
= 𝜌 𝑣𝑖 𝑣 𝑗 + 𝑝 𝛿𝑖 𝑗

the stress tensor, 𝑝 the fluid pressure, 𝐷e = 𝜌Ye, where Ye is the electron fraction, 𝐸 = 𝜖 𝜌 + 1
2𝜌𝑣

2

the total fluid energy density (internal plus kinetic), and 𝜖 is the specific internal energy. The

Euler equations are closed with the EoS, where the pressure and specific internal energy are

given functions of density, temperature 𝑇 , and the electron fraction; e.g., 𝑝 = 𝑝(𝜌, 𝑇,Ye). Thus,

Equation (5.4) is necessary for the inclusion of a nuclear EoS. (Unless stated otherwise, we use

the Einstein summation convention where repeated latin indices run from 1 to 3.) Included on

the right-hand sides of Equations (5.2) and (5.3), are gravitational sources from the Newtonian

gravitational potential Φ, which is obtained from the Poisson equation

1
√
𝛾
𝜕𝑖

(√
𝛾 𝛾𝑖 𝑗𝜕𝑗Φ

)
= 4𝜋 𝐺 𝜌, (5.5)

where 𝐺 is Newton’s constant.

The use of curvilinear coordinates is enabled through the spatial metric tensor 𝛾𝑖𝑘 , which gives

the squared proper spatial interval

𝑑𝑠2
𝒙 = 𝛾𝑖𝑘 𝑑𝑥

𝑖 𝑑𝑥𝑘 . (5.6)

The determinant of the spatial metric is denoted 𝛾. The metric tensor is also used to raise and

lower indices on vectors and tensors; e.g., 𝑣𝑖 = 𝛾𝑖𝑘 𝑣𝑘 . In this paper we only consider the commonly

adopted Cartesian, cylindrical, and spherical-polar coordinate systems (see Table 5.1 for relevant

quantities associated with each of these systems). Thus, the metric tensor is diagonal, and we assume
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that it is time independent. Note that we also list the scale factors ℎ1, ℎ2, and ℎ3 in Table 5.1.

By specifying the scale factors, components of the spatial metric are obtained from 𝛾11 = ℎ1ℎ1,

𝛾22 = ℎ2ℎ2, and 𝛾33 = ℎ3ℎ3, and the square root of the metric determinant is √𝛾 = ℎ1ℎ2ℎ3.

For the discussion of the numerical method in Section 5.4, we rewrite Equations (5.1)–(5.4) in

a more convenient way as a system of hyperbolic balance equations

𝜕𝑡U + 1
√
𝛾
𝜕𝑖

(√
𝛾 F𝑖 (U)

)
= S(U,Φ), (5.7)

where

U =



𝜌

𝜌𝑣 𝑗

𝐸

𝐷e


, F𝑖 (U) =



𝜌 𝑣𝑖

Π𝑖
𝑗

(𝐸 + 𝑝) 𝑣𝑖

𝐷e 𝑣
𝑖


, and S(U,Φ) =



0
1
2 Π

𝑖𝑘 𝜕𝑗𝛾𝑖𝑘 − 𝜌 𝜕𝑗Φ

−𝜌 𝑣𝑖 𝜕𝑖Φ

0


(5.8)

are the vector of evolved quantities, the flux vectors, and the source vector, respectively. We split

the source vector further as S(U,Φ) = S𝛾 (U) + SΦ(U,Φ), where

S𝛾 (U) =



0
1
2 Π

𝑖𝑘 𝜕𝑗𝛾𝑖𝑘

0

0


and SΦ(U,Φ) = −𝜌



0

𝜕𝑗Φ

𝑣𝑖 𝜕𝑖Φ

0


. (5.9)

Table 5.1 Metric quantities for Cartesian, cylindrical, and spherical-polar coordinate systems.

Coordinates 𝑥1 𝑥2 𝑥3 ℎ1 ℎ2 ℎ3 𝛾11 𝛾22 𝛾33
√
𝛾 1

𝛾22

𝜕𝛾22
𝜕𝑥1

1
𝛾33

𝜕𝛾33
𝜕𝑥1

1
𝛾33

𝜕𝛾33
𝜕𝑥2

Cartesian 𝑥 𝑦 𝑧 1 1 1 1 1 1 1 0 0 0
Cylindrical 𝑅 𝑧 𝜙 1 1 𝑅 1 1 𝑅2 𝑅 0 2/𝑅 0
Spherical 𝑟 𝜃 𝜙 1 𝑟 𝑟 sin 𝜃 1 𝑟2 𝑟2 sin2 𝜃 𝑟2 sin 𝜃 2/𝑟 2/𝑟 2 cot 𝜃
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5.3.2 Equation of State

The EoS provides thermodynamic quantities such as pressure, internal energy, and entropy

(dependent variables) as functions of the independent variables; e.g., density, temperature, and

electron fraction. (Other choices for the independent variables — e.g., density, entropy, and electron

fraction — are of course also possible, but in the nuclear astrophysics modeling community it is

perhaps most common to use 𝜌, 𝑇 , and Ye.) These dependent variables, and in some cases their

derivatives, are crucial for modeling hydrodynamics, nuclear reactions, and neutrino transport in

core-collapse supernovae. Of particular importance for numerical methods for the hydrodynamics,

is the relationship between the EoS and the well-posedness of the system given by Equation (5.7).

Specifically, the system is said to be hyperbolic if the Jacobian matrices 𝜕F𝑖/𝜕U can be diagonalized

with a set of real eigenvalues {𝜆𝑖1, . . . , 𝜆
𝑖
6} and has a set of linearly independent right eigenvectors

{r𝑖1, . . . , r
𝑖
6} such that (cf. LeVeque, 1992; Rezzolla & Zanotti, 2013)(

𝜕F𝑖/𝜕U
)
r𝑖𝑗 = 𝜆

𝑖
𝑗 r𝑖𝑗 , for 𝑗 = 1, . . . , 6. (5.10)

(In Equation (5.10), repeated indices do not imply summation, but rather that it must hold for

each of the three flux vectors.) For the system in Equation (5.7), the eigenvalues are given by

{ 𝑣𝑖 − 𝑐s
√︁
𝛾𝑖𝑖, 𝑣𝑖, 𝑣𝑖, 𝑣𝑖, 𝑣𝑖, 𝑣𝑖 + 𝑐s

√︁
𝛾𝑖𝑖 }, where 𝑐s is the sound speed; 𝑐2

s =
(
𝜕𝑝/𝜕𝜌

)
𝑠,Ye

, where 𝑠

is the entropy per baryon. A fundamental property of hyperbolic equations is that they are well-

posed, which makes them suitable for numerical solution (see, e.g., Rezzolla & Zanotti, 2013, for

a discussion). Thus, a necessary condition for our system to be suitable for numerical solution is

𝑐2
s > 0. When the independent variables are chosen to be 𝜌, 𝑇 , and Ye, the square of the sound

speed can be written explicitly in terms of thermodynamic derivatives as

𝑐2
s =

(𝜕𝑝
𝜕𝜌

)
𝑠,Ye

=

(𝜕𝑝
𝜕𝜌

)
𝑇,Ye

−
( 𝜕𝑠
𝜕𝑇

)−1

𝜌,Ye

(𝜕𝑝
𝜕𝑇

)
𝜌,Ye

( 𝜕𝑠
𝜕𝜌

)
𝑇,Ye

. (5.11)

The sound speed, or a related quantity, is typically included with a tabulated EoS. In addition,

advanced numerical methods make use of the eigenvectors in Equation (5.10), e.g., for the char-

acteristic limiting described in Section 5.4.3. These eigenvectors in turn depend on additional

thermodynamic derivatives, whose estimation from the EoS table is discussed in 5.4.6. For use
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in computations, thornado has been developed to use the EoS infrastructure provided by the

WeakLib library. (Specifically, WeakLib supplies trilinear interpolation, and derivatives computed

by analytic differentiation of the trilinear interpolation formula.)

5.4 Numerical Method

5.4.1 Discontinuous Galerkin Method

In thornado we employ the Runge-Kutta discontinuous Galerkin (RKDG) method to solve the

Euler equations given by Equation (5.7). (We refer to Cockburn (2001) for an excellent review on

the RKDG method, and Shu (2016) for a summary of more recent developments.) To this end, the

𝑑-dimensional computational domain 𝐷 ⊂ R𝑑 is subdivided into the union T of non-overlapping

elements 𝑲 such that 𝐷 = ∪𝑲∈T𝑲. We take each element to be a logically Cartesian box

𝑲 =
{
𝒙 : 𝑥𝑖 ∈ 𝐾 𝑖 := (𝑥𝑖L, 𝑥𝑖H), 𝑖 = 1, . . . , 𝑑

}
, (5.12)

where 𝑥𝑖L and 𝑥𝑖H are the low and high boundaries of the element in the 𝑖th dimension. We also

define the surface elements �̃�𝑖 = ×𝑑
𝑗≠𝑖
𝐾 𝑗 (so that 𝑲 = �̃�𝑖 × 𝐾 𝑖), the set 𝒙 = {𝑥𝑖, �̃�𝑖} to distinguish

coordinates parallel and perpendicular to the 𝑖th dimension, and the element width Δ𝑥𝑖 = (𝑥𝑖H − 𝑥𝑖L)

and center 𝑥𝑖C = 1
2 (𝑥

𝑖
L + 𝑥𝑖H). We also define |𝑲 | = ∏𝑑

𝑖=1 Δ𝑥
𝑖 and |�̃�𝑖 | = ∏𝑑

𝑗=1, 𝑗≠𝑖 Δ𝑥
𝑗 . We let the

volume of an element be denoted

𝑉𝑲 =

∫
𝑲
𝑑𝑉ℎ, where 𝑑𝑉ℎ =

√
𝛾ℎ

𝑑∏
𝑖=1

𝑑𝑥𝑖, (5.13)

where 𝛾ℎ is the determinant of the approximate spatial metric (𝛾ℎ)𝑖 𝑗 . We will discuss the approxi-

mation to the spatial metric in more detail below.

On each element, we define the approximation space consisting of functions 𝜓ℎ

V𝑘
ℎ =

{
𝜓ℎ : 𝜓ℎ |𝑲 ∈ Q𝑘 (𝑲),∀𝑲 ∈ T

}
, (5.14)

where Q𝑘 is the tensor product space of one-dimensional polynomials of maximal degree 𝑘 . In the

DG method, the functions in V𝑘
ℎ

can be discontinuous across element interfaces. In thornado we

use Lagrange polynomials,

ℓ𝑝 (𝜉𝑖) =
𝑁∏
𝑞=1
𝑞≠𝑝

𝜉𝑖 − 𝜉𝑖𝑞
𝜉𝑖𝑝 − 𝜉𝑖𝑞

, (5.15)
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where 𝑁 = 𝑘 + 1 and the polynomials ℓ𝑝 are defined on the unit reference interval 𝐼𝑖 = { 𝜉𝑖 :

𝜉𝑖 ∈ (−1
2 ,

1
2 ) } (𝑖 = 1, . . . , 𝑑). The physical coordinate 𝑥𝑖 is related to the reference coordinate 𝜉𝑖

by the transformation 𝑥𝑖 (𝜉𝑖) = 𝑥𝑖C + Δ𝑥𝑖 𝜉𝑖. For the Lagrange polynomials, we define the set of

interpolation points 𝑆𝑖
𝑁
= {𝜉𝑖1, . . . , 𝜉

𝑖
𝑁
} ⊆ 𝐼𝑖. Note that for 𝜉𝑖𝑞 ∈ 𝑆𝑖

𝑁
, we have ℓ𝑝 (𝜉𝑖𝑞) = 𝛿𝑝𝑞, where

𝛿𝑝𝑞 is the Kronecker delta. As an example, the multi-dimensional basis function 𝜙𝒊 (𝒙(𝝃)) ∈ V𝑘
ℎ

takes the form

𝜙𝒊 (𝝃) = 𝜙{𝑖1,...,𝑖𝑑} (𝜉1, . . . , 𝜉𝑑) = ℓ𝑖1 (𝜉1) × . . . × ℓ𝑖𝑑 (𝜉𝑑), (5.16)

where we have introduced the multi-index 𝒊 = {𝑖1, . . . , 𝑖𝑑} ∈ N𝑑 (a 𝑑-tuple) to achieve a more com-

pact notation. To further illustrate, in each element 𝑲 we approximate the solution to Equation (5.7)

by 𝑼ℎ, which is given by an expansion of functions in V𝑘
ℎ

of the form

𝑼ℎ (𝒙, 𝑡) =
𝑵∑︁
𝒊=1

𝑼𝒊 (𝑡) 𝜙𝒊 (𝒙(𝝃)) =
𝑁∑︁
𝑖1=1

. . .

𝑁∑︁
𝑖𝑑=1

𝑼{𝑖1,...,𝑖𝑑} (𝑡) ℓ𝑖1 (𝜉1) × . . . × ℓ𝑖𝑑 (𝜉𝑑), (5.17)

where 𝑵 ∈ N𝑑 is the 𝑑-tuple {𝑁, . . . , 𝑁}. The DG method does not require that the approximate

multidimensional solution is constructed from one-dimensional polynomials of the same degree 𝑘

in each dimension, but we make this choice. In the multidimensional setting, we denote the set

of interpolation points in element 𝑲 by 𝑺𝑁 = ⊗𝑑
𝑖=1𝑆

𝑖
𝑁

. For 𝝃 𝒋 ∈ 𝑺𝑁 , we have 𝜙𝒊 (𝝃 𝒋) = 𝛿𝒊 𝒋 =

𝛿𝑖1 𝑗1 × . . . × 𝛿𝑖𝑑 𝑗𝑑 , which follows from the Kronecker delta property of the Lagrange polynomials

emphasized above. Therefore, for 𝝃 𝒋 ∈ 𝑺𝑁 , a direct evaluation in Equation (5.17) shows that

𝑼ℎ (𝒙(𝝃 𝒋)) = 𝑼 𝒋 (𝑡); i.e., the expansion coefficients in Equation (5.17) — the unknowns to be

determined by the DG method — are simply the evolved quantities evaluated in the interpolation

points on each element.

We are now ready to state the DG formulation, which forms the basis for the DG method

implemented in thornado. The semi-discrete DG problem is to find𝑼ℎ ∈ V𝑘
ℎ
, which approximates

𝑼 in Equation (5.7), such that

⟨ 𝜕𝑡𝑼ℎ, 𝜓ℎ ⟩𝑲 = BFlx
ℎ

(
𝑼ℎ, 𝜓ℎ

)
𝑲 + ⟨ 𝑺(𝑼ℎ,Φℎ), 𝜓ℎ ⟩𝑲 ≡ Bℎ

(
𝑼ℎ,Φℎ, 𝜓ℎ

)
𝑲 (5.18)
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holds for all test functions 𝜓ℎ ∈ V𝑘
ℎ

and all elements 𝑲 ∈ T . In Equation (5.18),

⟨ 𝜕𝑡𝑼ℎ, 𝜓ℎ ⟩𝑲 =

∫
𝑲
𝜕𝑡𝑼ℎ 𝜓ℎ 𝑑𝑉ℎ, (5.19)

and we have defined the contributions from the fluxes as

BFlx
ℎ

(
𝑼ℎ, 𝜓ℎ

)
𝑲 = −

𝑑∑︁
𝑖=1

∫
�̃�𝑖

(√
𝛾ℎ 𝑭

𝑖 (𝑼ℎ) 𝜓ℎ |𝑥𝑖H−
√
𝛾ℎ 𝑭

𝑖 (𝑼ℎ) 𝜓ℎ |𝑥𝑖L
)
𝑑�̃�𝑖+

𝑑∑︁
𝑖=1

∫
𝑲
𝑭𝑖 (𝑼ℎ) 𝜕𝑖𝜓ℎ 𝑑𝑉ℎ,

(5.20)

and the contributions from the sources as

⟨ 𝑺(𝑼ℎ,Φℎ), 𝜓ℎ ⟩𝑲 =

∫
𝑲
𝑺(𝑼ℎ,Φℎ) 𝜓ℎ 𝑑𝑉ℎ. (5.21)

The approximation to the Newtonian gravitational potential, denoted Φℎ (not to be confused with

the basis functions 𝜙𝒊 in Equation (5.17)), is obtained by solving Equation (5.5) using a finite

element method. We discuss this in Section 5.4.5.

In Equation (5.20), the numerical flux 𝑭𝑖 (𝑼ℎ) is introduced to define a unique flux in the 𝑖th

surface of 𝑲. This numerical flux is computed from a numerical flux function (obtained, e.g., from

solving an approximate Riemann problem)

𝑭𝑖 (𝑼ℎ; 𝑥𝑖, �̃�𝑖) = 𝒇 𝑖
(
𝑼ℎ (𝑥𝑖,−, �̃�𝑖),𝑼ℎ (𝑥𝑖,+, �̃�𝑖)

)
, (5.22)

where superscripts −/+ in the arguments of 𝑼ℎ (𝑥𝑖,−/+, �̃�𝑖) indicate that the approximation is evalu-

ated to the immediate left/right of the interface located at 𝑥𝑖. In thornado we have implemented

the HLL (Harten et al., 1983a) and HLLC (Toro et al., 1994) flux functions, but in the numerical

experiments in Sections 5.5 and 5.6, we use exclusively the HLL flux function given by

𝒇 𝑖
(
𝑼−
ℎ ,𝑼

+
ℎ

)
=
𝛼𝑖,+ 𝑭𝑖 (𝑼−

ℎ
) + 𝛼𝑖,− 𝑭𝑖 (𝑼+

ℎ
) − 𝛼𝑖,−𝛼𝑖,+

(
𝑼+
ℎ
−𝑼−

ℎ

)
𝛼𝑖,− + 𝛼𝑖,+ , (5.23)

where 𝑼±
ℎ
= 𝑼ℎ (𝑥𝑖,±, �̃�𝑖), and where 𝛼𝑖,− and 𝛼𝑖,+ are wave speed estimates for the fastest (in

absolute value; 𝛼𝑖,± ≥ 0) left and right propagating waves, respectively. For these estimates we

simply use (Davies, 1988)

𝛼𝑖,− = max
𝑗∈{1,...,6}

(
0, −𝜆𝑖𝑗 (𝑼−

ℎ ), −𝜆
𝑖
𝑗 (𝑼+

ℎ)
)

and 𝛼𝑖,+ = max
𝑗∈{1,...,6}

(
0, +𝜆𝑖𝑗 (𝑼−

ℎ ), +𝜆
𝑖
𝑗 (𝑼+

ℎ)
)
, (5.24)
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where 𝜆𝑖
𝑗

are the eigenvalues of the flux Jacobian introduced in Equation (5.10).

Motivated by results presented by Bassi et al. (2013), we employ a spectral-type collocation

nodal DG method in thornado. To this end, we use Legendre–Gauss (LG) points to construct

the interpolation points comprising 𝑺𝑁 . See the left panel of Figure 5.1 for the distribution of

the interpolation points 𝑺𝑁 in the two-dimensional case with 𝑘 = 2 (black, filled circles). In

the collocation nodal DG method, these interpolation points are also used as quadrature points to

evaluate integrals in Equation (5.18). One of the benefits of this collocation method is computational

efficiency since, even when using curvilinear coordinates, the mass matrix associated with the

term in Equation (5.19) is diagonal and easily invertible. On the other hand, demanding exact

evaluation of integrals — e.g., by using an extended quadrature set — results in mass matrices

that are non-diagonal and vary from element to element because of the spatially dependent metric

determinant in 𝑑𝑉ℎ in Equation (5.19). The use of LG points, as opposed to Legendre–Gauss–

Lobatto (LGL) points, provides better accuracy in evaluating the integrals. In the one-dimensional

setting, the 𝑁-point LG quadrature evaluates polynomials of degree up to 2𝑁 − 1 exactly, while

the corresponding LGL quadrature evaluates polynomials of degree up to 2𝑁 − 3 exactly. Let

𝑄𝑖
𝑁

denote the one-dimensional 𝑁-point LG quadrature on the interval 𝐼𝑖 with abscissas {𝜉𝑖𝑞}𝑁𝑞=1

and weights {𝑤𝑖𝑞}𝑁𝑞=1, normalized so that
∑𝑁
𝑞=1 𝑤

𝑖
𝑞 = 1. (Note that quadrature points and weights

defined on the commonly used reference interval [−1, 1] (e.g., Cockburn, 2001) must be scaled by

a factor of 1
2 before use on the reference interval [−1

2 ,
1
2 ] used in thornado.) Multidimensional

integrals are evaluated by tensorization of one-dimensional quadratures. For volume integrals over

the multidimensional reference element 𝑰 = ×𝑑
𝑖=1𝐼

𝑖, we let 𝑸𝑁 = ⊗𝑑
𝑖=1𝑄

𝑖
𝑁

denote the tensorization of

one-dimensional 𝑁-point LG quadrature rules with abscissas {𝝃𝒒}𝑵𝒒=1 and weights {𝑤𝒒}𝑵𝒒=1, where

𝒒 = {𝑞1, . . . , 𝑞𝑑} ∈ N𝑑 , 𝝃𝒒 = {𝜉1
𝑞1
, . . . , 𝜉𝑑𝑞𝑑 }, and 𝑤𝒒 = 𝑤𝑞1 × . . . × 𝑤𝑞𝑑 , so that the integral of a
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polynomial 𝑃(𝒙) ∈ V𝑘
ℎ

in element 𝑲 is evaluated as∫
𝑲
𝑃(𝒙) 𝑑𝒙 = |𝑲 |

∫
𝑰
𝑃(𝝃) 𝑑𝝃 = |𝑲 | 𝑸𝑁

[
𝑃(𝝃)

]
= |𝑲 |

𝑵∑︁
𝒒=1

𝑤𝒒 𝑃(𝝃𝒒)

= Δ𝑥1 × . . . × Δ𝑥𝑑
𝑁∑︁

𝑞1=1
. . .

𝑁∑︁
𝑞𝑑=1

𝑤𝑞1 × . . . × 𝑤𝑞𝑑 𝑃(𝜉1
𝑞1
, . . . , 𝜉𝑑𝑞𝑑 ). (5.25)

Similarly, for surface integrals over the reference surface element 𝑰𝑖 = ×𝑑
𝑗=1, 𝑗≠𝑖 𝐼

𝑗 , we let �̃�𝑖
𝑁

=

⊗𝑑
𝑗=1, 𝑗≠𝑖𝑄

𝑗

𝑁
denote the tensorization of one-dimensional 𝑁-point LG quadrature rules with abscissas

{𝝃𝑖�̃�𝑖 }
𝑵
�̃�𝑖=1 and weights {𝑤 �̃�𝑖 }𝑵�̃�𝑖=1, where �̃�𝑖 = {𝑞 𝑗 }𝑑𝑗=1, 𝑗≠𝑖 ∈ N𝑑−1, 𝝃𝑖�̃�𝑖 = {𝜉 𝑗𝑞 𝑗

}𝑑
𝑗=1, 𝑗≠𝑖, and 𝑤 �̃�𝑖 =∏𝑑

𝑗=1, 𝑗≠𝑖 𝑤𝑞 𝑗
, so that for 𝑃(𝑥𝑖, �̃�𝑖) ∈ V𝑘

ℎ
, the integral over the surface element �̃�𝑖 is evaluated as∫

�̃�𝑖

𝑃(𝑥𝑖, �̃�𝑖) 𝑑�̃�𝑖 = |�̃�𝑖 |
∫
𝑰𝑖
𝑃(𝑥𝑖, 𝝃𝑖) 𝑑𝝃𝑖 = |�̃�𝑖 | �̃�𝑖

𝑁

[
𝑃(𝑥𝑖, 𝝃𝑖)

]
= |�̃�𝑖 |

𝑵∑̃︁
𝒒𝑖=1

𝑤 �̃�𝑖 𝑃(𝑥𝑖, 𝝃𝑖�̃�𝑖 )

(𝑖=1)
= Δ𝑥2 × . . . × Δ𝑥𝑑

𝑁∑︁
𝑞2=1

. . .

𝑁∑︁
𝑞𝑑=1

𝑤𝑞2 × . . . × 𝑤𝑞𝑑 𝑃(𝑥1, 𝜉2
𝑞2
, . . . , 𝜉𝑑𝑞𝑑 ), (5.26)

where the specific case with 𝑖 = 1 is given in the second line. The points used to evaluate volume

integrals with the 𝑸𝑁 quadrature rule for the case with 𝑑 = 𝑘 = 2 are shown as black, filled circles

in the right panel in Figure 5.1. (Note that these points are identical to the interpolation points

displayed as black, filled circles in the left panel in Figure 5.1.) The quadrature points used to

evaluate surface integrals with �̃�1 and �̃�2 are shown as the gray, open squares on the boundary of

the element.

By inserting the expansion in Equation (5.17), letting 𝜓ℎ = 𝜙 𝒑, where 𝜙 𝒑 is one of the basis

functions in the expansion in Equation (5.17), and using the quadrature rule in Equation (5.25), we

can evaluate Equation (5.19) as

⟨ 𝜕𝑡𝑼ℎ, 𝜙 𝒑 ⟩𝑲 := 𝑤 𝒑 |𝑲 | √𝛾 𝒑 𝜕𝑡𝑼 𝒑, (5.27)

where 𝑤 𝒋 |𝑲 | √𝛾 𝒋 are the elements of the diagonal mass matrix and 𝛾 𝒋 = 𝛾ℎ (𝒙 𝒋). Similarly, using
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Figure 5.1 Reference elements with interpolation and quadrature points used in the DG method
implemented in thornado for the two-dimensional case (𝑑 = 2) with polynomials of degree
𝑘 = 2 (𝑁 = 3). In the left panel, interpolation points are shown for the hydrodynamics variables
[𝑺𝑁 (based on LG quadrature points; black, filled circles)] and the geometry scale factors and the
Newtonian gravitational potential [�̂�𝑁 (based on LGL quadrature points; gray, open circles)]. In
the right panel, quadrature points associated with volume integrals (black, filled circles) and
surface integrals (gray, open squares) are shown. Note that in the collocation nodal DG method,
the interpolation points in the left panel, 𝑺𝑁 , coincide with the quadrature points in the right
panel. The quadrature points on the surface of the element are obtained as the projection of the
quadrature points inside the element onto each surface.

the quadrature in Equation (5.26), the contributions from fluxes can be written as

BFlx
ℎ

(
𝑼ℎ, 𝜙 𝒑

)
𝑲 := −

𝑑∑︁
𝑖=1

𝑤 �̃�𝑖 |�̃�𝑖 |
( √︃

𝛾ℎ (𝑥𝑖H, �̃�𝑖�̃�𝑖 ) 𝑭
𝑖 (𝑥𝑖H, �̃�𝑖�̃�𝑖 ) ℓ𝑝𝑖 (𝑥

𝑖,−
H ) −

√︃
𝛾ℎ (𝑥𝑖L, �̃�𝑖�̃�𝑖 ) 𝑭

𝑖 (𝑥𝑖L, �̃�𝑖�̃�𝑖 ) ℓ𝑝𝑖 (𝑥
𝑖,+
L )

)
+

𝑑∑︁
𝑖=1

𝑤 �̃�𝑖 |�̃�𝑖 |
𝑁∑︁
𝑞𝑖=1

𝑤𝑞𝑖

√︃
𝛾ℎ (𝑥𝑖𝑞𝑖 , �̃�𝑖�̃�𝑖 ) 𝑭

𝑖 (𝑥𝑖𝑞𝑖 , �̃�
𝑖
�̃�𝑖
)
𝜕ℓ𝑝𝑖

𝜕𝜉𝑖
(𝜉𝑖𝑞𝑖 ). (5.28)

Finally, the source term becomes

⟨ 𝑺(𝑼ℎ,Φℎ), 𝜙 𝒑 ⟩𝑲 := 𝑤 𝒋 |𝑲 | √𝛾 𝒑 𝑺 𝒑, (5.29)

where 𝑺 𝒑 is the source vector in Equation (5.8), evaluated in 𝒙 𝒑. Combining Equations (5.27),

(5.28), and (5.29), we can now write the spectral-type collocation DG approximation to the semi-

discrete DG problem in Equation (5.18) in terms of an evolution equation for the expansion
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coefficient 𝑼 𝒑 in element 𝑲 as

𝜕𝑡𝑼 𝒑 = −
𝑑∑︁
𝑖=1

1
𝑤𝑝𝑖Δ𝑥

𝑖 √𝛾 𝒑

( √︃
𝛾ℎ (𝑥𝑖H, �̃�𝑖�̃�𝑖 ) 𝑭

𝑖 (𝑥𝑖H, �̃�𝑖�̃�𝑖 ) ℓ𝑝𝑖 (𝑥
𝑖,−
H ) −

√︃
𝛾ℎ (𝑥𝑖L, �̃�𝑖�̃�𝑖 ) 𝑭

𝑖 (𝑥𝑖L, �̃�𝑖�̃�𝑖 ) ℓ𝑝𝑖 (𝑥
𝑖,+
L )

)
+

𝑑∑︁
𝑖=1

1
𝑤𝑝𝑖Δ𝑥

𝑖 √𝛾 𝒑

𝑁∑︁
𝑞𝑖=1

𝑤𝑞𝑖

√︃
𝛾ℎ (𝑥𝑖𝑞𝑖 , �̃�𝑖�̃�𝑖 ) 𝑭

𝑖 (𝑥𝑖𝑞𝑖 , �̃�
𝑖
�̃�𝑖
)
𝜕ℓ𝑝𝑖

𝜕𝜉𝑖
(𝜉𝑖𝑞𝑖 ) + 𝑺 𝒑 . (5.30)

(For an example of Equation (5.30) in the simpler one-dimensional setting, see Endeve et al. (2019);

their Equation (11).)

The cell averages in element 𝑲, defined as

𝑼𝑲 =
1
𝑉𝑲

∫
𝑲
𝑼ℎ 𝑑𝑉ℎ :=

∑𝑵
𝒑=1 𝑤 𝒑

√
𝛾 𝒑𝑼 𝒑∑𝑵

𝒑=1 𝑤 𝒑
√
𝛾 𝒑

, where 𝑉𝑲 = |𝑲 |
𝑵∑︁
𝒑=1

𝑤 𝒑
√
𝛾 𝒑, (5.31)

play an important role in the analysis and implementation of the DG method given by Equa-

tion (5.30). (Examples of the use of the cell averages are given in Sections 5.4.3 and 5.4.4, where

we discuss limiting techniques.) From the definition of the cell average in Equation (5.31) and from

Equation (5.30), the equation for the cell average can be written as

𝜕𝑡𝑼𝑲 = − |𝑲 |
𝑉𝑲

𝑑∑︁
𝑖=1

�̃�𝑖
𝑁

[√
𝛾ℎ (𝑥𝑖H, �̃�𝑖)𝑭𝑖 (𝑥𝑖H, �̃�𝑖) −

√
𝛾ℎ (𝑥𝑖L, �̃�𝑖)𝑭𝑖 (𝑥𝑖L, �̃�𝑖)

]
/Δ𝑥𝑖 + 𝑺𝑲 , (5.32)

where we used the quadrature rule in Equation (5.26) to represent the surface integrals, while the

source term can be written in terms of the quadrature rule in Equation (5.25)

𝑺𝑲 =
|𝑲 |
𝑉𝑲

𝑸𝑁

[√
𝛾ℎ (𝒙) 𝑺(𝒙)

]
. (5.33)

To arrive at Equation (5.32), we used the property of the Lagrange polynomial in Equation (5.15)

that
∑𝑁
𝑝=1 ℓ𝑝 (𝜉𝑖) = 1 for any 𝜉𝑖 ∈ 𝐼𝑖. Equation (5.32) exhibits the expected conservation form,

with quadrature rules replacing integrals over the surface of 𝑲. In the absence of sources, the

DG discretization in Equation (5.30) is conservative for mass, momentum, energy, and electron

number. We also note that Equation (5.32) is familiar from the literature on finite-volume (FV)

methods, which only evolve the cell averages. The DG and FV methods are in fact equivalent in the

first-order case, when 𝑘 = 0. However, for the extension to higher-order, FV methods reconstruct

a local polynomial using cell averages in neighboring elements, while DG methods evolve all the
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degrees-of-freedom in the local polynomial representation, so that the reconstruction step is not

needed. Thus, one benefit of avoiding the reconstruction step becomes clear in the high-order case:

while the FV stencil width increases with increasing spatial order of accuracy, the DG method only

requires data from the local element and its nearest neighbors, independent of the order of accuracy.

We complete the specification of the basic DG method implemented in thornado by discussing

the source terms due to the use of curvilinear coordinates and gravitational fields. In particular, we

write [cf. Equation (5.9)]

𝑺 𝒑 = 𝑺𝛾𝒑 + 𝑺Φ𝒑 . (5.34)

5.4.1.1 Geometric Source Terms

For the sources due to curvilinear coordinates, 𝑺𝛾𝒑, the only nonzero components appear in the

components of the momentum equation, which can be written in terms of the scale factors where,

due to the diagonal metric, 𝛾𝑖𝑖 = ℎ𝑖ℎ𝑖 and 𝛾𝑖𝑖 = 1/𝛾𝑖𝑖

1
2
Π𝑖𝑘𝜕𝑗𝛾𝑖𝑘 =

1
2
Π11𝜕𝑗𝛾11 +

1
2
Π22𝜕𝑗𝛾22 +

1
2
Π33𝜕𝑗𝛾33 = Π1

1
1
ℎ1

𝜕ℎ1

𝜕𝑥 𝑗
+ Π2

2
1
ℎ2

𝜕ℎ2

𝜕𝑥 𝑗
+ Π3

3
1
ℎ3

𝜕ℎ3

𝜕𝑥 𝑗
.

(5.35)

For the coordinate systems we consider here, the scale factors are independent of 𝑥3, and only

the first and second components of Equation (5.35) are nonzero (i.e., 𝑗 = 1, 2; cf. Table 5.1).

Note that ℎ1 = 1 for all the coordinate systems; therefore, spatial derivatives of ℎ1 vanish. For

Cartesian coordinates, the scale factors are unity, and all the components of 𝑺𝛾𝒑 vanish. For

cylindrical coordinates, only ℎ3 = 𝑅 contributes, while for spherical-polar coordinates both ℎ2 = 𝑟

and ℎ3 = 𝑟 sin 𝜃 contribute. In thornado, we approximate the scale factors by polynomials in each

element. To this end, we define 𝒉 =
(
ℎ1, ℎ2, ℎ3

)𝑇 and let the scale factors in 𝑲 be given by the

expansion

𝒉ℎ (𝒙) =
𝑵∑︁
𝒊=1

𝒉𝒊 𝜙𝒊 (𝒙) ∈ V𝑘
ℎ, (5.36)

where 𝜙𝒊 (𝒙) are basis functions, similar to those defined in Equation (5.16). However, we demand

that the scale factors are continuous across element interfaces. To achieve this we let 𝑆𝑖
𝑁

=

{𝜉1, . . . , 𝜉
𝑖
𝑁
} ⊆ 𝐼𝑖 denote the set of LGL points in the unit reference interval, since the LGL
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points include the endpoints of 𝐼𝑖. For the scale factors (and, as discussed below, the Newtonian

gravitational potential), we then let the interpolation points on 𝑲 be given by �̂�𝑁 = ⊗𝑑
𝑖=1𝑆

𝑖
𝑁

. The

distribution of the interpolation points �̂�𝑁 , used for the scale factors and the Newtonian gravitational

potential, for the two-dimensional case with 𝑘 = 2 are shown in the left panel of Figure 5.1 (gray,

open circles). Hence, 𝜙𝒊 (𝒙) is defined as in Equation (5.16), but with the Lagrange polynomials in

Equation (5.15) constructed with the LGL points �̂�𝑁 , and the expansion coefficients 𝒉𝒊 are given

by the exact value of the scale factors in the LGL points. Scale factors in the LG points 𝒙𝒊 ∈ 𝑺𝑁 ,

which are needed, e.g., to compute the determinant of the spatial metric, are obtained from direct

evaluation of Equation (5.36), 𝒉ℎ (𝒙𝒊), so that 𝛾𝒊 = 𝛾ℎ (𝒙𝒊) := 𝛾(𝒉ℎ (𝒙𝒊)). Derivatives of the scale

factors, needed for the source terms in Equation (5.35), are evaluated by analytic differentiation of

Equation (5.36). Since in the present case the metric is time independent, the needed scale factors

and their derivatives can be precomputed at program startup and stored for later use. Note that scale

factors are polynomials and at most linear functions of the spherical-polar or cylindrical radius, so

the representation is exact in the 𝑥1-dimension if 𝑁 ≥ 2. However, for spherical-polar coordinates,

ℎ3 is a trigonometric function in the 𝑥2-dimension, and the representation in Equation (5.36) is only

approximate.

Next we consider a special case where the geometric source terms, 1
2Π

𝑖𝑘𝜕𝑗𝛾𝑖𝑘 , and the divergence

of the stress tensor, 1√
𝛾
𝜕𝑖

(√
𝛾 Π𝑖

𝑗

)
, appearing in the components of the momentum equation,

Equation (5.2), must balance each other. Specifically, for a fluid associated with an isotropic and

spatially homogeneous stress tensor, i.e., Π𝑖
𝑘
= 𝑝0 𝛿

𝑖
𝑘

(𝑝0 = constant), the divergence of the stress

tensor must balance the geometry source exactly to prevent inducing spurious flows.

Considering Equation (5.32), with Equations (5.33) and (5.35), in spherical-polar coordinates

and in the absence of gravity, assuming an isotropic and spatially homogeneous stress tensor, the

equation for the first component of the momentum density (cf. Equation (5.8)), in the sense of the
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cell-average, can be written as

𝜕𝑡 (𝜌𝑣1)𝑲 = −𝑝0
|�̃�1 |
𝑉𝑲

{
�̃�1
𝑁

[√
𝛾ℎ (𝑥1

H, �̃�
1) − √

𝛾ℎ (𝑥1
L, �̃�

1)
]
− 𝑸𝑁

[
2
√
𝛾ℎ (𝒙)/𝑥1 ] }

= −𝑝0
|�̃�1 |
𝑉𝑲

�̃�1
𝑁

[
(sin 𝜃)ℎ

(
(𝑟2

H − 𝑟2
L) − 2𝑄1

𝑁

[
𝑟
] ) ]

, (5.37)

where (sin 𝜃)ℎ is the polynomial approximation to sin 𝜃. Because the stress tensor is isotropic and

spatially homogeneous, the numerical flux in the first component of the momentum equation is

simply 𝐹𝑖(𝜌𝑣1) = 𝑝0𝛿
𝑖
1. The right-hand side of Equation (5.37) vanishes because the LG quadrature,

with 𝑁 ≥ 1, is exact for the radial integral; i.e., 2𝑄1
𝑁

[
𝑟
]
= (𝑟2

H − 𝑟2
L). Similarly, the second

component of the momentum equation can be written as

𝜕𝑡 (𝜌𝑣2)𝑲 = −𝑝0
|�̃�2 |
𝑉𝑲

�̃�2
𝑁

[
𝑟2 (

(sin 𝜃H − sin 𝜃L) −𝑄2
𝑁

[
𝜕𝜉2 (sin 𝜃)ℎ

] ) ]
. (5.38)

Since (sin 𝜃)ℎ is approximated by a polynomial of degree 𝑘 = 𝑁 − 1, the 𝑁-point LG quadrature

in the 𝜃-direction is evaluated exactly, so that 𝑄2
𝑁

[
𝜕𝜉2 (sin 𝜃)ℎ

]
= (sin 𝜃H − sin 𝜃L), which implies

that the right-hand side of Equation (5.38) vanishes. Note that these properties hold for polynomial

approximations with 𝑘 ≥ 1. The first-order accurate scheme (𝑘 = 0) requires special treatment,

and is not discussed here. (See, e.g., Mönchmeyer & Müller (1989) and Blondin & Lufkin (1993),

for finite-volume schemes and associated challenges when using spherical-polar coordinates.)

In cylindrical coordinates, the source term in Equation (5.35) contributes only to the first

component of the momentum equation. In this case, the equation for the cell-average can be written

as

𝜕𝑡 (𝜌𝑣1)𝑲 = −𝑝0
|�̃�1 |
𝑉𝑲

�̃�1
𝑁

[
(𝑅H − 𝑅L) −𝑄1

𝑁

[
𝜕𝜉1𝑅

] ]
. (5.39)

Again, since the quadrature in the 𝑅-direction is exact, 𝑄1
𝑁

[
𝜕𝜉1𝑅

]
= (𝑅H − 𝑅L), and the right-hand

side of Equation (5.39) vanishes, as is desired under the conditions of an isotropic and spatially

homogeneous stress tensor.

5.4.1.2 Gravitational Source Terms

For the gravitational source terms appearing in the momentum and energy equations, our

approach is similar to that used for the geometric sources discussed above. The gravitational
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potential in element 𝑲 is approximated by the polynomial

Φℎ (𝒙) =
𝑵∑︁
𝒊=1

Φ𝒊 𝜙𝒊 (𝒙), (5.40)

constrained to be continuous on the element interfaces, so that

Φℎ (𝑥𝑖,+L/H, �̃�
𝑖) = Φℎ (𝑥𝑖,−L/H, �̃�

𝑖). (5.41)

(Continuity of the potential on the element interfaces is guaranteed by the finite-element method in

Section 5.4.5.) We then compute derivatives of the gravitational potential by analytic differentiation

of the expansion in Equation (5.40), and write the momentum and energy sources in the interpolation

point 𝒙 𝒑 ∈ 𝑺𝑁 as

(
𝑆Φ𝜌𝑣 𝑗

)
𝒑 = −𝜌 𝒑 (𝜕𝑗Φℎ) 𝒑 and

(
𝑆Φ𝐸

)
𝒑 = −

𝑑∑︁
𝑗=1

(𝜌𝑣 𝑗 ) 𝒑 (𝜕𝑗Φℎ) 𝒑, (5.42)

where, 𝜌 𝒑, (𝜌𝑣 𝑗 ) 𝒑, and (𝜕𝑗Φℎ) 𝒑 are, respectively, the mass density, momentum density, and the

derivative of Equation (5.40), evaluated in 𝒙 𝒑. We note that the source terms in Equation (5.42) are

not well-balanced, i.e. designed specifically to capture steady states (e.g., hydrostatic equilibrium),

which would require special treatment (see, e.g., Käppeli & Mishra, 2016; Li & Xing, 2018).

5.4.2 Time Integration

After application of the DG spatial discretization, Equation (5.18) can be viewed as a system

of ordinary differential equations (ODEs), which can be written as

𝑑

𝑑𝑡
⟨𝑼ℎ, 𝜓ℎ ⟩𝑲 = Bℎ

(
𝑼ℎ,Φℎ, 𝜓ℎ

)
𝑲 . (5.43)

This system of ODEs is evolved with the explicit strong stability-preserving Runge-Kutta (SSP-RK)

methods of Shu & Osher (1988) (see also Gottlieb et al., 2001; Cockburn, 2001). Denoting the

fluid fields and the gravitational potential at time 𝑡𝑛 by 𝑼𝑛
ℎ

and Φ𝑛
ℎ
, respectively, the time stepping

algorithm advancing the solution from 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡𝑛 with 𝑠 stages is, ∀𝜓ℎ ∈ V𝑘
ℎ

and ∀𝑲 ∈ T ,
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⟨𝑼(0)
ℎ
, 𝜓ℎ⟩𝑲 := Λbe {

Λtvd {
⟨𝑼𝑛

ℎ
, 𝜓ℎ⟩𝑲

}}
Φ

(0)
ℎ

:= Φ𝑛
ℎ

for 𝑖 = 1, . . . , 𝑠 do

⟨𝑼(𝑖)
ℎ
, 𝜓ℎ⟩𝑲 := Λbe

{
Λtvd

{
𝑖−1∑
𝑗=0
𝛼𝑖 𝑗

(
⟨𝑼( 𝑗)

ℎ
, 𝜓ℎ⟩𝑲 + 𝛽𝑖 𝑗

𝛼𝑖 𝑗
Δ𝑡𝑛 B ( 𝑗)

ℎ

) } }
,

where B ( 𝑗)
ℎ

:= Bℎ
(
𝑼( 𝑗)
ℎ
,Φ

( 𝑗)
ℎ
, 𝜓ℎ

)
, with Φ

( 𝑗)
ℎ

:= Φ

(
𝑼( 𝑗)
ℎ

)
Φ

(𝑖)
ℎ

:= Φ

(
𝑼(𝑖)
ℎ

)
end
⟨𝑼𝑛+1

ℎ
, 𝜓ℎ⟩𝑲 := ⟨𝑼(𝑠)

ℎ
, 𝜓ℎ⟩𝑲

Φ𝑛+1
ℎ

:= Φℎ

(
𝑼𝑛+1
ℎ

)
Algorithm 5.1 Algorithm for SSP-RK time integration.

Note that line 6 in Algorithm 5.1 invokes the Poisson solver for the gravitational potential. Details

about the coefficients 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 can be found in Cockburn (2001). In order to for the evolution of

the cell-average of the solution to be stable, the time step must satisfy the Courant–Friedrichs–Lewy

(CFL) condition,

Δ𝑡 ≤ 𝐶cfl

𝑑 (2𝑘 + 1) × min
𝑖∈{1,...,𝑑}

(
Δ𝑥𝑖

|𝜆𝑖 |

)
, (5.44)

where 𝑑 is the number of spatial dimensions, 𝑘 is the maximal degree of the one-dimensional

polynomials comprising V𝑘
ℎ
, 𝐶cfl ≲ 1 is the CFL number, and 𝜆𝑖 is the largest (in magnitude)

eigenvalue of the flux Jacobian in Equation (5.10), corresponding to the fastest-moving wave in the

𝑖th spatial dimension.

In principle, one would also need an additional restriction on the time step to guarantee that the

solution remains in the set of physically admissible states (see Section 5.4.4). However, we do not

enforce such a condition because in practice we find the CFL condition given by Equation (5.44)

to be sufficient.

The operatorsΛtvd andΛbe invoked in lines 1 and 4 in Algorithm 5.1 represent slope and bound-

enforcing limiters, respectively, and play an important role in RKDG methods. In particular, the

slope limiter is required in order for the SSP-RK method to guarantee stability when applied to

non-linear problems (Cockburn, 2001).
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5.4.3 Slope Limiting

To improve stability of the Runge-Kutta DG (RKDG) algorithm and prevent unphysical oscil-

lations in the solutions around discontinuities, it is necessary to implement a limiting procedure for

the polynomial Uℎ. To this end, we use the basic minmod-type total variation diminishing (TVD)

slope limiter (see, e.g., Cockburn & Shu, 1998) in conjunction with the troubled-cell indicator (TCI)

proposed by Fu & Shu (2017). The TCI prevents excessive limiting by only flagging elements where

limiting is needed. When using the basic TVD limiter one assumes that any spurious oscillations

are evident in the part of the solution that is represented by piecewise linear functions, and under-

and over-shoots of the higher-order solution at inter-cell boundaries are detected by comparing

local slopes with slopes constructed using cell averages of the target cell and its neighbors. Our

implementation follows closely the description in Schaal et al. (2015) for the case of an ideal EoS.

Recall from Eq. (5.17) that in each cell the solution is expressed in the nodal form. It is convenient,

however, for limiting purposes to express the solution in 𝑲 using a modal representation

Uℎ (𝒙, 𝑡) =
𝑵∑︁
𝒊=1

𝑪𝒊 (𝑡) 𝜙𝒊 (𝒙), (5.45)

where the multidimensional modal basis functions 𝜙𝒊 (𝒙(𝝃)) ∈ V𝑘
ℎ

are constructed from one-

dimensional Legendre polynomials {𝑃ℓ (𝜉𝑖)}𝑁−1
ℓ=0 by tensorization; i.e.,

𝜙𝒊 (𝝃) = 𝜙{𝑖1,...,𝑖𝑑} (𝜉1, . . . , 𝜉𝑑) = 𝑃𝑖1−1(𝜉1) × . . . × 𝑃𝑖𝑑−1(𝜉𝑑). (5.46)

The Legendre polynomials are orthogonal on the unit interval 𝐼𝑖, and in thornado we use a

normalization such that 𝑃0(𝜉𝑖) = 1 and 𝑃1(𝜉𝑖) = 𝜉𝑖 (i.e., the polynomials are orthogonal, but

not orthonormal with respect to the standard 𝐿2 inner product on 𝐼𝑖). Note that the case with

𝒊 = {𝑖1, . . . , 𝑖𝑑} = {1, . . . , 1} = 1 corresponds to 𝜙1(𝒙) = 𝑃0(𝜉1) × . . . × 𝑃0(𝜉𝑑) = 1; therefore, the

expansion coefficient 𝑪1 is equal to the cell average when Cartesian coordinates are used (𝛾ℎ = 1);

i.e.,

𝑪1 =
1
|𝑲 |

∫
𝑲
𝑼ℎ 𝑑𝒙. (5.47)

In our multi-index notation we define |𝒊 | = ∑𝑑
𝑗=1 𝑖 𝑗 , so that the basis functions 𝜙𝒊 with 𝒊 satisfying

|𝒊 | = 𝑑 + 1 are linear in one of the coordinates. For example, for the three-dimensional case (𝑑 = 3)
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we have exactly three basis functions satisfying |𝒊 | = 𝑑 + 1 = 4

𝜙{2,1,1} (𝒙) = 𝑃1(𝜉1) × 𝑃0(𝜉2) × 𝑃0(𝜉3) = 𝑃1(𝜉1) = 𝜉1, (5.48)

𝜙{1,2,1} (𝒙) = 𝑃0(𝜉1) × 𝑃1(𝜉2) × 𝑃0(𝜉3) = 𝑃1(𝜉2) = 𝜉2, and (5.49)

𝜙{1,1,2} (𝒙) = 𝑃0(𝜉1) × 𝑃0(𝜉2) × 𝑃1(𝜉3) = 𝑃1(𝜉3) = 𝜉3, (5.50)

which are linear in the reference coordinates 𝜉1, 𝜉2, and 𝜉3, respectively. From orthogonality of the

Legendre polynomials, we can identify the expansion coefficients satisfying |𝒊 | = 4 in the modal

representation in Equation (5.45) as the average derivative of 𝑼ℎ with respect to the reference

coordinates 𝜉1, 𝜉2, and 𝜉3, respectively; i.e.,

𝑪{2,1,1} =
1
|𝑲 |

∫
𝑲
(𝜕𝜉1𝑼ℎ) 𝑑𝒙, 𝑪{1,2,1} =

1
|𝑲 |

∫
𝑲
(𝜕𝜉2𝑼ℎ) 𝑑𝒙, and 𝑪{1,1,2} =

1
|𝑲 |

∫
𝑲
(𝜕𝜉3𝑼ℎ) 𝑑𝒙.

(5.51)

These coefficients are here obtained by taking the derivative of Equation (5.45) with respect to 𝜉1,

𝜉2, and 𝜉3, respectively, and integrating over the element.

We demand the representations of the solution in Equations (5.17) and (5.45) be equivalent in

the least squares sense

𝑵∑︁
𝒊=1

∫
𝑲

(
𝑼𝒊 (𝑡) 𝜙𝒊 (𝒙) − 𝑪𝒊 (𝑡) 𝜙𝒊 (𝒙)

)
𝜓ℎ (𝒙) 𝑑𝒙 = 0, ∀𝜓ℎ ∈ V𝑘

ℎ, (5.52)

which provides a change of basis between Lagrange and Legendre polynomial representations,

and relates the coefficients of nodal and modal representations by linear transformations. Setting

𝜓ℎ = 𝜙 𝒋 in Equation (5.52) gives the nodal coefficients in terms of the modal coefficients

𝑼 𝒋 =

𝑵∑︁
𝒊=1

𝜙𝒊 (𝝃 𝒋) 𝑪𝒊, (5.53)

while setting 𝜓ℎ = 𝜙 𝒋 in Equation (5.52) gives the modal coefficients in terms of the nodal

coefficients
𝑵∑︁
𝒊=1

∫
𝑰
𝜙 𝒋 (𝝃) 𝜙𝒊 (𝝃) 𝑑𝝃 𝑪𝒊 =

𝑵∑︁
𝒊=1

∫
𝑰
𝜙 𝒋 (𝝃) 𝜙𝒊 (𝝃) 𝑑𝝃 𝑼𝒊, (5.54)

where the matrix on the left-hand side is diagonal and easily invertible. The matrix on the right-

hand side is the same for all elements, and can be precomputed at program startup and stored with
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minimal storage requirements. As illustrated in Equations (5.47) and (5.51), the representation in

terms of Legendre polynomials {𝑃ℓ}𝑁−1
ℓ=0 is more convenient for limiting because the polynomial

degree increases with increasing ℓ, and the identification of the expansion coefficients with average

values and average derivatives is more straightforward. In the Lagrange basis, all the basis functions

have the same polynomial degree.

We perform slope limiting by comparing the weights 𝑪𝒊 — which for |𝒊 | = 𝑑+1 and appropriate

normalization of the Legendre polynomials are equal to the first derivatives of the solution in the

cell — with the limited weights 𝑪𝒊, computed from

M 𝑪𝒊 = minmod
(
M 𝑪𝒊, 𝛽Tvd M (𝑪+

1 − 𝑪1), 𝛽Tvd M (𝑪1 − 𝑪−
1 )

)
, (∀𝒊 satisfying |𝒊 | = 𝑑 + 1)

(5.55)

where the multivariate minmod function is defined as

minmod
(
𝑎1, 𝑎2, 𝑎3

)
=


𝑠 × min{ |𝑎1 |, |𝑎2 |, |𝑎3 | }, if 𝑠 = sign(𝑎1) = sign(𝑎2) = sign(𝑎3)

0, otherwise.
(5.56)

The minmod function returns the minimum argument if they all have the same sign, and zero oth-

erwise. In three spatial dimensions we estimate limited slopes independently for all the coefficients

in Equation (5.51), and limiting is applied to a component of𝑼ℎ whenever the corresponding linear

coefficient in the modal expansion in Equation (5.45) exceeds a given threshold value. Here we

apply slope limiting when |𝐶𝒊 − 𝐶𝒊 | > 10−6𝐶𝒊, for any 𝒊 satisfying |𝒊 | = 𝑑 + 1. (𝐶𝒊 and 𝐶𝒊 are

arbitrary components of the vectors 𝑪𝒊 and 𝑪𝒊, respectively.) In Equation (5.55), the parameter

𝛽Tvd takes values in the closed interval [1, 2], and determines how aggressively to apply limiting.

The minimal 𝛽Tvd corresponds to a total variation diminishing scheme, which is more dissipative

than a scheme with the maximal 𝛽Tvd, which is potentially more oscillatory. Increasing 𝛽Tvd puts

more weight on the neighboring cell averages, making the minmod function more likely to set

𝑪𝒊 = 𝑪𝒊, which results in no limiting being applied. The superscripts −/+ on the 𝑪1 coefficients in

the minmod function in Equation (5.55) indicate that the coefficient belongs to the expansion in the

previous/next element in the coordinate direction of the slope to be limited. Figure 5.2 illustrates
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how the minmod limiter works in the one-dimensional case when applied to a scalar field 𝑈 (𝑥).

The transformation matrix M is included in Equation (5.55) to allow for limiting in characteristic

fields (see discussion below). For component-wise limiting, M is set to the identity matrix. Thus,

when slope limiting is applied, the local solution is truncated as

𝑼ℎ (𝒙, 𝑡) := 𝑼ℎ (𝒙, 𝑡) =
𝑵∑︁
𝒊=1

|𝒊 |≤𝑑+1

𝑪𝒊 (𝑡) 𝜙𝒊 (𝒙), (5.57)

where 𝑪𝒊 = 0 for all 𝒊 with |𝒊 | > 𝑑 + 1, and

𝑪1 := 𝑼𝑲 − 1
𝑉𝑲

𝑵∑︁
𝒊=1

|𝒊 |=𝑑+1

∫
𝑲
𝜙𝒊 (𝒙) 𝑑𝑉ℎ 𝑪𝒊 . (5.58)

Thus, the minmod limiter reduces the local polynomial degree to at most 𝑘 = 1. If the arguments

in the minmod function in Equation (5.55) have different signs, the minmod limiter further reduces

the polynomial degree to 𝑘 = 0. Because of this, we use the TCI as discussed below. Although

not considered for thornado yet, we note that it is possible to generalize or improve the limiting

strategy to maintain higher order of accuracy; see e.g., Biswas et al. (1994); Krivodonova (2007);

Dumbser et al. (2014).

The readjustment of 𝑪1 in Equation (5.58), which occurs after computing the limited slopes

in Equation (5.55), is necessary to preserve the cell average as defined in Equation (5.31), and is

due to the use of curvilinear coordinates (see also related discussion by Radice & Rezzolla, 2011,

their Section C1). Preservation of the cell average in the limiting procedure is needed, e.g., to

conserve mass. Without the ‘conservative correction’ in Equation (5.58), the limiter preserves

the cell average defined in Equation (5.47), which is undesirable in curvilinear coordinates. Note

that the second term on the right-hand side of Equation (5.58) vanishes in Cartesian coordinates

because of orthogonality of the Legendre polynomials. However, in curvilinear coordinates, this

term does not vanish since the Legendre polynomials are not orthogonal with respect to the inner

product weighted by √
𝛾ℎ. In practice, we have found that the conservative correction is small, but

necessary to maintain conservation to machine precision.
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Figure 5.2 Illustration of how the minmod slope limiter works when applied to a one-dimensional,
scalar field𝑈 (𝑥). The original, high-order polynomial𝑈ℎ (𝑥) =

∑𝑁
𝑖=1𝐶𝑖 𝜙𝑖 (𝑥) is represented by the

thick solid black curve, while its constant and linear contributions, 𝐶1𝜙1(𝑥) and 𝐶2𝜙2(𝑥), are
represented by solid and dash-dot black lines, respectively. The slopes (Δ𝐶1)+ = 𝐶+

1 − 𝐶1 and
(Δ𝐶1)− = 𝐶1 − 𝐶−

1 — the second and third argument in the minmod function in Equation (5.55),
respectively — are represented by the blue and red dashed lines, respectively. In this example, all
three slopes have the same sign. Then, since (Δ𝐶1)− < (Δ𝐶1)+ < 𝐶1, 𝐶2 := (Δ𝐶1)−.

We note that, in order to improve the evolution of the electron fraction, Ye = 𝐷e/𝜌, we also

apply the minmod limiter directly to the electron fraction, and enforce limiting of both 𝜌ℎ and 𝐷e,ℎ

whenever oscillations in Ye are detected by the minmod function.

In order to determine where slope limiting is necessary, we use the TCI of Fu & Shu (2017) to

prevent excessive limiting. For example, it is well-known that the minmod limiter is overly diffusive

around smooth extrema, where 𝑪𝒊 = 0, which kills off all the high-order accuracy. We note in

passing that other TCIs have been proposed (see, e.g., Qiu & Shu, 2005), but we have chosen the

one by Fu & Shu (2017) for its relative ease of implementation. This TCI is based on the function

𝐼𝑲 (𝐺ℎ) =
∑
𝑗 |𝐺𝑲 − 𝐺 ( 𝑗)

𝑲 |

max( max 𝑗 |𝐺 ( 𝑗)
𝑲 ( 𝑗 ) |, |𝐺𝑲 | )

, (5.59)

where 𝐺ℎ ∈ 𝑮ℎ ⊆ 𝑼ℎ is in the subset of fields used to detect troubled cells. In Equation (5.59), the
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sum in the numerator is taken over all the neighboring elements 𝑲 ( 𝑗) sharing a boundary with the

target element 𝑲, while the max in the denominator is taken over neighboring elements 𝑲 ( 𝑗) and the

target element 𝑲. The cell average of 𝐺ℎ in 𝑲 is denoted 𝐺𝑲 , and is here given by the right-hand

side of Equation (5.47) — i.e., without the weighting factor √𝛾ℎ used in the proper definition of the

cell average in Equation (5.31). Computed in the same way, 𝐺 ( 𝑗)
𝑲 is the corresponding cell average

computed by extrapolating the polynomial representation from the neighboring elements 𝑲 ( 𝑗) into

the target 𝑲, and 𝐺 ( 𝑗)
𝑲 ( 𝑗 ) is the cell average native to the neighbor element 𝑲 ( 𝑗) . An illustration of

the troubled-cell indicator is given in Figure 5.3 for the one-dimensional case applied to a single

field 𝐺 (𝑥).

An element is flagged for limiting if, for any 𝐺ℎ ∈ 𝑮ℎ, 𝐼𝑲 (𝐺ℎ) > 𝐶TCI(𝐺), where 𝐶TCI(𝐺) is a

user-defined threshold, which can be set differently for each 𝐺. In the numerical results presented

in Section 5.5, we use the mass density, fluid energy, and electron fraction as the variables to detect

troubled cells; i.e., 𝑮 = (𝜌, 𝐸,Ye)𝑇 .

When solving a system of hyperbolic conservation laws, experience has shown that the slope

limiting described above is more efficient when performed on the so-called ‘characteristic variables’,

as opposed to the conserved variables Uℎ (see, e.g., Cockburn & Shu, 1998, for a description).

Because the Euler equations form a system of hyperbolic partial differential equations (see, e.g.,

LeVeque, 1992), the flux Jacobian in Equation (5.10) can be decomposed as

𝜕F𝑖 (U)
𝜕U

= R𝑖 Λ𝑖 (R𝑖)−1 (𝑖 = 1, . . . , 𝑑), (5.60)

where the columns of the 6 × 6 matrix R𝑖 contain the right eigenvectors of the flux Jacobian, the

rows of (R𝑖)−1 contain the left eigenvectors, and Λ𝑖 is a diagonal matrix containing the eigenvalues

of the flux Jacobian. For hyperbolic systems, the eigenvalues are real and the eigenvectors form

a complete set (see e.g., LeVeque, 1992). At this point, we introduce the characteristic variable

w = R−1U. Recall in Equation (5.55) that we introduced the transformation matrix M. If we

let M = (R𝑖)−1, limiting is performed on the characteristic variables. (For linear systems, the

characteristic variables evolve independently, and limiting of one characteristic variable does not

affect the others.) Once M 𝑪𝒊 is estimated in the characteristic variables as in Equation (5.55), the
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Figure 5.3 Illustration of how the troubled-cell indicator works in the one-dimensional case on a
scalar field 𝐺 (𝑥), to determine if limiting is needed in the target element 𝐾 , where the polynomial
representation is given by 𝐺ℎ (𝑥) (solid black curve), and the cell average is 𝐺𝐾 (solid gray line).
The polynomial representation in the left element, 𝐾 (1) , is given by 𝐺 (1)

ℎ
(𝑥) (solid red curve), with

cell average 𝐺 (1)
𝐾 (1) (solid light red line). Similarly, the polynomial representation in the right

element, 𝐾 (2) , is given by 𝐺 (2)
ℎ

(𝑥) (solid blue curve), with cell average 𝐺 (2)
𝐾 (2) (solid light blue

line). The extrapolations of 𝐺 (1)
ℎ

(𝑥) and 𝐺 (2)
ℎ

(𝑥) into the target element are given by the dashed
red and blue curves, respectively. Finally, the cell averages of the extrapolations of 𝐺 (1)

ℎ
(𝑥) and

𝐺
(2)
ℎ

(𝑥), computed over the target cell, are denoted 𝐺 (1)
𝐾

(dashed light red line) and 𝐺 (2)
𝐾

(dashed
light blue line), respectively. The element is flagged for limiting if the difference in the cell
averages, |𝐺𝐾 − 𝐺 (2)

𝐾
| and/or |𝐺𝐾 − 𝐺 (2)

𝐾
|, becomes too large.

limited slopes in the conserved variables are obtained by left multiplication with M−1 (see e.g.,

Cockburn & Shu, 1998; Schaal et al., 2015), and the limiting process proceeds as in Equations (5.57)

and (5.58). It should be noted that R𝑖 and (R𝑖)−1 are computed using cell averages of the conserved

and metric variables.

While this process of characteristic limiting has been done for an ideal EoS, and shown (e.g.,

Schaal et al., 2015) to give superior results when compared to component-wise limiting (especially

for the high-order case; 𝑘 ≥ 1), the extension to the tabulated nuclear EoS case is nontrivial. The
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reasons for this are (1) the increased complexity and dimensionality of the system due to the added

electron conservation equation in Equation (5.4), and (2) the additional care that must be taken when

computing the thermodynamic derivatives associated with the flux Jacobian. In the case of an ideal,

or other simplified EoS, the necessary thermodynamic derivatives (such as derivatives of pressure)

are analytically defined. For a nuclear EoS, the derivatives do not have analytic expressions and the

necessary eigenvectors must be constructed generally. We provide the characteristic decomposition

of the flux Jacobian for the Euler system with a nuclear EoS in Appendix 9C.

5.4.4 Bound-Enforcing Limiting

When solving the Euler equations of gas dynamics with an ideal EoS, the mass density 𝜌 and

pressure 𝑝 (or, equivalently, internal energy density 𝑒) must remain positive. However, this property

is not guaranteed by the basic DG method, which encourages the use of a more advanced procedure

(Zhang & Shu, 2010). The internal energy density is given in terms of the conserved quantities as

𝑒(𝑼) = 𝐸 − 𝑚2

2𝜌
, (5.61)

where 𝑚2 = 𝑚 𝑗𝑚
𝑗 , 𝐸 is the fluid energy density, and 𝑚 𝑗 = 𝜌𝑣 𝑗 are the components of the

momentum density. For the ideal EoS case, the set of physically admissible states is given by

G̃ =
{
𝑼 = (𝜌,𝒎, 𝐸)T | 𝜌 > 0 and 𝑒(𝑼) > 0

}
. (5.62)

If mass density is positive, the internal energy density is a concave function of𝑼, and G̃ is a convex

set (Zhang & Shu, 2010). For many EoSs (including the ideal EoS), where the pressure only depends

on the mass density and internal energy density, 𝑼 must remain in G̃ as defined in Equation (5.62),

otherwise the initial value problem is ill-posed. To maintain 𝑼 ∈ G̃, the combination of a suitable

time step restriction, a strong stability-preserving time integrator, and a bound-enforcing limiter is

used (e.g., Zhang & Shu, 2010). The time step restriction is derived as a sufficient condition to

ensure that the updated cell average satisfies 𝑼𝑛+1
𝑲 ∈ G̃, and requires 𝑼𝑛

ℎ
∈ G̃ point-wise within

each element, while the limiter, which relies on 𝑼𝑛+1
𝑲 ∈ G̃ and the convexity of G̃, is used to again

enforce point-wise 𝑼𝑛+1
ℎ

∈ G̃ within each element. (We do not attempt to derive a sufficient time

step restriction for the present setting in this paper, and simply use the condition in Equation (5.44).)
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We note here that for two arbitrary elements 𝑼𝑎,𝑼𝑏 ∈ G̃, since the set G̃ is convex, the convex

combination 𝑼𝑐 := 𝜗𝑼𝑎 + (1 − 𝜗)𝑼𝑏, where 𝜗 ∈ [0, 1], is also in G̃; i.e., 𝑼𝑐 ∈ G̃. Moreover,

𝑒(𝑼) in Equation (5.61) is concave since Jensen’s inequality — 𝑒(𝑼𝑐) ≥ 𝜗 𝑒(𝑼𝑎) + (1 − 𝜗) 𝑒(𝑼𝑏)

— holds. The property of convex combinations is commonly used to design constraint-preserving

numerical methods for systems where — for physical reasons — the dynamics is constrained to a

convex set (see, e.g., Xing et al., 2010; Olbrant et al., 2012; Wu & Tang, 2015; Endeve et al., 2015;

Chu et al., 2019, for examples beyond the non-relativistic Euler equations with an ideal EoS).

To maintain physically admissible states in the present setting with thornado, we draw in-

spiration from the limiting strategy proposed for an ideal EoS by Zhang & Shu (2010), which

we have modified to work satisfactorily with a tabulated nuclear EoS. Specifically, thermody-

namic quantities, including the specific internal energy 𝜖 = 𝑒/𝜌, are tabulated in terms of mass

density, temperature, and electron fraction, which cover finite extents; i.e., 𝜌 ∈ [𝜌min, 𝜌max],

𝑇 ∈ [𝑇min, 𝑇max], and Ye ∈ [𝑌𝑒,min, 𝑌𝑒,max]. We use some of the table bounds to define the set of

admissible states as

G =
{
𝑼 = (𝜌,𝒎, 𝐸, 𝐷e)T | (𝜌, 𝐷e)T ∈ G𝒖 and 𝜖 (𝑼) ≥ 𝜖min ≡ 𝜖 (𝜌, 𝑇min,Ye)

}
, (5.63)

where we have defined the subset

G𝒖 =
{
𝒖 = (𝜌, 𝐷e)T | 𝜌min ≤ 𝜌 ≤ 𝜌max, 𝐷e > 0, and 𝑌e,min ≤ Ye(𝒖) ≤ 𝑌e,max

}
, (5.64)

and seek to maintain 𝑼ℎ ∈ G.

First, we note that it is straightforward to show that the subset G𝒖 is convex. To do this, it is

sufficient to show that a convex combination of two arbitrary elements of G𝒖 also belongs to G𝒖.

To this end, let 𝒖𝑎 ≡ (𝜌𝑎, 𝐷e,𝑎)T ∈ G𝒖, 𝒖𝑏 ≡ (𝜌𝑏, 𝐷e,𝑏) ∈ G𝒖, and define the convex combination

𝒖𝑐 = 𝜗 𝒖𝑎 + (1−𝜗) 𝒖𝑏, where 𝜗 ∈ [0, 1]. Then the first component of 𝒖𝑐 is 𝜌𝑐 = 𝜗 𝜌𝑎 + (1−𝜗) 𝜌𝑏.

Since, by assumption, 𝜌𝑎, 𝜌𝑏 ∈ [𝜌min, 𝜌max] and 𝜗 ∈ [0, 1], it follows that 𝜌𝑐 ∈ [𝜌min, 𝜌max].

Similarly, the second component of 𝒖𝑐 is 𝐷e,𝑐 = 𝜗 𝐷e,𝑎 + (1− 𝜗) 𝐷e,𝑏. Then, since 𝐷e,𝑎, 𝐷e,𝑏 > 0,
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it follows that 𝐷e,𝑐 > 0. Finally, we can write

Ye(𝒖𝑐) =
𝐷e,𝑐

𝜌𝑐
=
𝜗 𝐷e,𝑎 + (1 − 𝜗) 𝐷e,𝑏

𝜗 𝜌𝑎 + (1 − 𝜗) 𝜌𝑏
= 𝛼

𝐷e,𝑎

𝜌𝑎
+ (1 − 𝛼) 𝐷e,𝑏

𝜌𝑏
= 𝛼Ye(𝒖𝑎) + (1 − 𝛼) Ye(𝒖𝑏),

(5.65)

where

𝛼 =
𝜗 𝜌𝑎

𝜗 𝜌𝑎 + (1 − 𝜗) 𝜌𝑏
. (5.66)

Since 𝜌𝑎, 𝜌𝑏 ≥ 𝜌min > 0 and 𝜗 ∈ [0, 1], we have 𝛼 ≥ 0. We also have 𝛼 ≤ 1. Therefore, 𝛼 ∈ [0, 1],

which implies Ye(𝒖𝑐) ∈ [𝑌e,min, 𝑌e,max] and 𝒖𝑐 ∈ G𝒖. Thus, the subset G𝒖 is convex.

While, strictly speaking, the Euler equations in Section 7.2 are valid for any mass density

𝜌 > 0, we note that there are physical reasons for maintaining the mass density within the finite

table bounds, which are 𝜌min ≈ 1.66 × 103 g cm−3 and 𝜌max ≈ 3.16 × 1015 g cm−3 for the tables

used in this paper. Indeed, in CCSN simulations, it is possible for the cell averaged mass density to

evolve outside these limits, which would require extending the table bounds. However, when the

mass density approaches the upper bound, a relativistic description should be adopted, and when

the mass density approaches the lower bound, the nuclear EoS adopted here is invalid because the

matter is not in nuclear statistical equilibrium. These bounds must, however, also be enforced to

avoid algorithm failure. For the purpose of the bound-enforcing limiter, the finite bounds on the

mass density in Equation (5.63) are included in case the bounds are violated for certain points

within an element, e.g., in the vicinity of a shock, while the cell averaged mass density is still

inside the table bounds. (The limiter developed here will not work if the cell averaged mass density

exceeds the table bounds.) We have also equipped the set of admissible states G with the bounds

Ye ∈ [𝑌e,min, 𝑌e,max] ⊆ [0, 1], which are also required to avoid algorithm failure. (In this work,

𝑌e,min = 0.01 and 𝑌e,max = 0.7). We note, however, that for the test problems in Section 5.5 and

the application in Section 5.6, we did not encounter a situation in which the mass density or the

electron fraction exceeded their respective table bounds.

On the other hand, a complication that frequently arises in gravitational collapse simulations is

that the specific internal energy falls below the minimum tabulated value (i.e., 𝜖 < 𝜖min) — especially

around core bounce and shock formation, which we discuss in further detail in Section 5.6. When
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this happens, the EoS is not invertible for the temperature when given the state vector (𝜌, 𝜖,Ye)T,

and the algorithm fails since the temperature is needed to compute the pressure as well as other

thermodynamic quantities. It is not feasible to merely generate tables with lower 𝑇min, since —

particularly for high mass densities — the specific internal energy does not tend to zero as 𝑇 → 0

due to the degeneracy (or zero temperature) contribution to the internal energy, as can be seen in

Figure 5.4. In CCSN simulations, where the iron core is degenerate at the onset of collapse, the

initial specific internal energy is already close to the minimum value. Then, around core bounce

and shock formation, where steep gradients in the evolved fields form, conditions with 𝑼ℎ ∉ G

can easily arise within certain elements, and a limiting strategy is needed. Fortunately, we have

observed that𝑼𝑲 ∈ G is always satisfied (although we do not seek to establish sufficient conditions

to guarantee this here). This allows us to pursue the limiting strategy proposed by Zhang & Shu

(2010), which we detail below.

There is, however, an additional complication that may cause the limiting strategy of Zhang &

Shu (2010) to fail: the surface of specific internal energy at the minimum temperature 𝑇min — that

is 𝜖min(𝜌,Ye) ≡ 𝜖 (𝜌, 𝑇min,Ye) — is not globally convex in the sense that the second derivatives

(𝜕2𝜖min/𝜕𝜌2)Ye and (𝜕2𝜖min/𝜕Y2
e)𝜌 are not strictly positive everywhere, which implies that the

set G in Equation (5.63) is not strictly convex. We illustrate this in Figure 5.5, which shows

𝜖 (𝜌, 𝑇min,Ye) as a function of 𝜌 and Ye for the SFHo EoS (Steiner et al., 2013b). Therefore,

adopting the limiting procedure from the ideal EoS case to enforce 𝑼ℎ ∈ G — even if 𝑼𝑲 ∈ G —

can compromise the robustness of the limiter. The reason is that the amount of limiting applied

to the polynomial 𝑼ℎ is determined by finding the intersection point of the boundary of G and the

straight line connecting the cell average 𝑼𝑲 and a non-physical point value 𝑼𝒒 ∉ G. If G is not

convex, there may be multiple intersection points, which can cause the limiter to fail. However, the

issue of globally non-convex G is avoided if the limiter is only activated in regions for which G

is locally convex. That is, for the elements that require limiting, the cell average 𝑼𝑲 and the DG

solution 𝑼ℎ, evaluated in the required quadrature points within each element 𝑲, are in a locally

convex region and sufficiently close to each other in G. The latter is typically the case in regions
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Figure 5.4 Relationship between specific internal energy and temperature from the SFHo EoS for
select values of mass density and electron fraction. (Note that the electron fraction is only
sampled from the narrow range encountered in the adiabatic simulations discussed in Section 5.6.)
Due to degeneracy, the specific internal energy for all profiles demonstrates asymptotic behavior
for low temperatures. Thus, the lower boundary on 𝜖 would not change if the table was
reconstructed with a lower temperature limit.

of the flow characterized by small gradients, but may not be the case in the vicinity of a shock.

Fortunately, as discussed further in Section 5.6, we do not encounter any situations in which the

non-convexity of G causes the limiter to fail, but this needs to be further investigated in the context of

multidimensional models with higher physical fidelity (i.e., models that include neutrino transport),

which sample a larger part of the EoS than the simulations discussed in this paper.

The bound-enforcing limiter is completely local to each element, and can thus be discussed in

terms of a single element 𝑲. As in (Zhang & Shu, 2010), we define a point set 𝑺+, which includes

the volumetric nodal points in an element 𝑲, as well as the points on the interface of 𝑲. For the

two-dimensional case with 𝑘 = 2, the point set is given by the union of all the points displayed in

the right panel in Figure 5.1. Thus, 𝑺+ comprises the points where 𝑼ℎ is evaluated to construct

the update for each 𝑼 𝒑 in Equation (5.30). Using Equation (5.17), the solution is evaluated at all

134



the points 𝒙𝒒 ∈ 𝑺+, and limiting is applied if, for any point 𝒙𝒒 ∈ 𝑺+, 𝑼𝒒 ≡ 𝑼ℎ (𝒙𝒒) ∉ G. The

step-by-step procedure for bound-enforcing limiting is described next, where it is assumed that the

cell average satisfies 𝑼𝑲 ∈ G.

5.4.4.1 Step 1: Mass Density and Electron Density

The first step is to enforce 𝜌𝒒 ∈ [𝜌min, 𝜌max] and 𝐷e,𝒒 ≥ 𝛿𝐷e > 0 for all 𝒙𝒒 ∈ 𝑺+, where 𝛿𝐷e

is arbitrarily small. (The bound 𝐷e,𝒒 > 0 is needed in Step 2 below.) Following Zhang & Shu

(2010), we use the linear scaling limiter from Liu & Osher (1996), and replace the polynomial

𝒖ℎ (𝒙) =
(
𝜌ℎ (𝒙), 𝐷e,ℎ (𝒙)

)T with the limited polynomial

𝒖(1)
ℎ

(𝒙) := (1 − 𝜗1) 𝒖𝑲 + 𝜗1 𝒖ℎ (𝒙) (𝜗1 ∈ [0, 1]), (5.67)

where the limiter parameter 𝜗1 ∈ [0, 1] is found by a simple backtracing algorithm. Specifically,

for any point 𝒙𝒒 ∈ 𝑺+ with 𝒖𝒒 = 𝒖ℎ (𝒙𝒒) ∉ G𝒖, we start with 𝜗1,𝒒 = 1, which is recursively reduced

(by 5%) until

𝒖(1)
𝒒 = (1 − 𝜗1,𝒒) 𝒖𝑲 + 𝜗1,𝒒 𝒖𝒒 ∈ G𝒖 . (5.68)

(In practice, to reduce the number of iterations, we set 𝜗1,𝒒 = 0 whenever the backtracing algorithm

has brought the value below 0.01.) We then set 𝜗1 := min𝒒 𝜗1,𝒒, where the minimum is taken over

all the points within the element where 𝒖ℎ was found to violate the bounds associated with Step 1.

The limiter in Equation (5.67) simply scales 𝒖ℎ as evaluated in the points within the element towards

the cell average, and the value for 𝜗1 is determined in order to scale the solution in the points just

enough to ensure that the bounds are satisfied for all 𝒙𝒒 ∈ 𝑺+. In the worst case scenario, 𝜗1 = 0,

and the DG solution is set equal to the cell average everywhere within the element. Note that this

step is conservative and does not change the cell averages; i.e., 𝒖(1)
𝑲 = 𝒖𝑲 . Also note that if the

bounds on the mass density and electron density are not violated, then 𝜗1 = 1 and 𝒖(1)
ℎ

(𝒙) = 𝒖ℎ (𝒙).

5.4.4.2 Step 2: Electron Fraction

In the second step, we enforce 𝑌e,𝒒 ≡ 𝐷e,ℎ (𝒙𝒒)/𝜌ℎ (𝒙𝒒) ∈ [𝑌e,min, 𝑌e,max] for all 𝒙𝒒 ∈ 𝑺+. To

do this, we follow a procedure similar to the previous step, and replace 𝒖(1)
ℎ

(𝒙) with the limited
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polynomial

𝒖(2)
ℎ

(𝒙) := (1 − 𝜗2) 𝒖𝑲 + 𝜗2 𝒖
(1)
ℎ

(𝒙) (𝜗2 ∈ [0, 1]), (5.69)

where

𝜗2 =
𝛼 𝜌𝑲

𝛼 𝜌𝑲 + (1 − 𝛼) 𝜌(1)𝛼
and 𝛼 = min

{
1,

����𝑌e,min − 𝑌e,𝑲

𝑚Ye − 𝑌e,𝑲

���� , ����𝑌e,max − 𝑌e,𝑲

𝑀Ye − 𝑌e,𝑲

���� }
, (5.70)

and where we have defined

𝑀Ye = max
𝒙∈𝑺+

Ye
(
𝒖(1)
ℎ

(𝒙)
)
, 𝑚Ye = min

𝒙∈𝑺+
Ye

(
𝒖(1)
ℎ

(𝒙)
)
, and 𝑌e,𝑲 = 𝐷e,𝑲/𝜌𝑲 . (5.71)

and with the cell average for mass density and electron density computed according to the definition

in Equation (5.31); i.e.

𝜌𝑲 =

∑𝑵
𝒑=1 𝑤 𝒑

√
𝛾 𝒑 𝜌 𝒑∑𝑵

𝒑=1 𝑤 𝒑
√
𝛾 𝒑

and 𝐷e,𝑲 =

∑𝑵
𝒑=1 𝑤 𝒑

√
𝛾 𝒑 𝐷e, 𝒑∑𝑵

𝒑=1 𝑤 𝒑
√
𝛾 𝒑

, (5.72)

respectively. In the expression for 𝜗2 in Equation (5.70), we simply set 𝜌(1)𝛼 = max𝑥∈𝑺+ 𝜌(1)ℎ (𝒙),

which is sufficient, but may not give the optimal value for 𝜗2 (i.e., this choice may not give the

largest 𝜗2 while still maintaining 𝒖(2)
ℎ

∈ G𝒖).

Step 2 is also conservative and does not change the cell averages; i.e., 𝒖(2)
𝑲 = 𝒖(1)

𝑲 = 𝒖𝑲 . Also,

if the bounds on the electron fraction are not violated, 𝜗2 = 𝛼 = 1 and 𝒖(2)
ℎ

(𝒙) = 𝒖(1)
ℎ

(𝒙). After the

completion of Steps 1 and 2, we have ensured 𝒖(2)
ℎ

(𝒙𝒒) ∈ G𝒖 for all 𝒙𝒒 ∈ 𝑺+.

5.4.4.3 Step 3: Specific Internal Energy

In the third, and final, step we enforce 𝜖𝒒 ≥ 𝜖min,𝒒 for all 𝒙𝒒 ∈ 𝑺+. To this end, we define

𝑼(2)
ℎ

=
(
𝜌
(2)
ℎ
,𝒎ℎ, 𝐸ℎ, 𝐷

(2)
e,ℎ

)T, which is the full solution vector after steps 1 and 2. Using 𝑼(2)
ℎ

, the

specific internal energy and electron fraction in each point 𝒙𝒒 ∈ 𝑺+ are computed as

𝜖
(2)
𝒒 = 𝜖

(
𝑼(2)
ℎ

(𝒙𝒒)
)
=

(
𝐸𝒒 −

𝑚2
𝒒

2 𝜌(2)𝒒

)
/𝜌(2)𝒒 and 𝑌

(2)
e,𝒒 = Ye

(
𝑼(2)
ℎ

(𝒙𝒒)
)
= 𝐷

(2)
e,𝒒/𝜌(2)𝒒 , (5.73)

respectively. Then, if 𝜖 (2)𝒒 < 𝜖
(2)
min,𝒒 ≡ 𝜖

(
𝜌
(2)
𝒒 , 𝑇min, 𝑌

(2)
e,𝒒

)
for any 𝒙𝒒 ∈ 𝑺+, we replace 𝑼(2)

ℎ
with the

limited polynomial

𝑼(3)
ℎ

(𝒙) := (1 − 𝜗3)𝑼𝑲 + 𝜗3 𝑼
(2)
ℎ

(𝒙) (𝜗3 ∈ [0, 1]). (5.74)
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Here, the polynomial representation of the full solution is written as a convex combination of the

cell average and the polynomial representation after Step 2. Since we assume 𝑼𝑲 ∈ G, setting

𝜗3 = 0 will ensure 𝑼(3)
ℎ

(𝒙) ∈ G. However, setting 𝜗3 = 0, so that 𝑼(3)
ℎ

= 𝑼𝑲 , kills off all the

high-order accuracy of the polynomial representation, which is undesirable. Instead, one would

want to find the largest value for 𝜗3 to retain as much high-order accuracy as possible and enforce

𝑼(3)
ℎ

(𝒙) ∈ G for all 𝒙𝒒 ∈ 𝑺+. As discussed above, this is complicated by the fact that G is not

strictly convex. It is further complicated by the fact that the surface 𝜖min
(
𝜌,Ye

)
is only available at

discrete points from the EoS table. Because of this, we will assume that G is locally convex and

first obtain 𝜗3,𝒒 by solving

𝜖
(
𝒔(𝜗3,𝒒)

)
= (1 − 𝜗3,𝒒) 𝜖min,𝑲 + 𝜗3,𝒒 𝜖

(2)
min,𝒒, (5.75)

for each 𝒙𝒒 where 𝜖 (2)𝒒 < 𝜖
(2)
min,𝒒. On the left-hand side of Equation (5.75) we have defined

𝒔(𝜗3,𝒒) = (1 − 𝜗3,𝒒)𝑼𝑲 + 𝜗3,𝒒𝑼
(2)
𝒒 , (5.76)

while on the right-hand side of Equation (5.75) we have defined 𝜖min,𝑲 = 𝜖 (𝜌𝑲 , 𝑇min, 𝑌e,𝑲). Then

we set

𝜗3 := min
𝒒
𝜗3,𝒒, (5.77)

where the minimum is taken over all the points in 𝑺+ where the specific internal energy fell below

the minimum value.

We note that the limiter in Equation (5.74) is conservative in all the fields in the sense that the

cell average is preserved; i.e.,

1
𝑉𝑲

∫
𝑲
𝑼(3)
ℎ
𝑑𝑉ℎ = (1 − 𝜗3)𝑼𝑲 + 𝜗3

1
𝑉𝑲

∫
𝑲
𝑼(2)
ℎ
𝑑𝑉ℎ = (1 − 𝜗3)𝑼𝑲 + 𝜗3 𝑼𝑲 = 𝑼𝑲 . (5.78)

The motivation for solving Equation (5.75) is as follows (cf. Zhang & Shu, 2010, for the ideal

EoS case): 𝒔(𝜗3,𝒒) is the parametrized straight line connecting the cell average 𝑼𝑲 and the point

value 𝑼(2)
𝒒 . Since 𝑼𝑲 ∈ G, we know that

𝜖𝑲 ≡
(
𝐸𝑲 −

𝑚2
𝑲

2𝜌𝑲

)
/𝜌𝑲 ≥ 𝜖min,𝑲 . (5.79)
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On the other hand, if 𝑼(2)
𝒒 ∉ G, there is at least one intersection point of the line 𝒔(𝜗3,𝒒) and

the boundary of G; i.e. the surface 𝜖min(𝜌,Ye). (If G is convex, which we assume in this step,

there is exactly one intersection point.) Since we do not know the exact shape of the surface, we

approximate it by the line segment connecting the boundary points 𝜖min,𝑲 and 𝜖 (2)min,𝒒, and by the

convexity assumption, this line lies above the surface 𝜖min(𝜌,Ye). Thus, in Equation (5.75), the

solution 𝜗3,𝒒 provides the intersection point between the line connecting the points 𝜖𝑲 and 𝜖 (2)𝒒 and

the line connecting the points 𝜖min,𝑲 , 𝜖
(2)
min,𝒒. See Figure 5.6 for an illustration.

Equation (5.75) is solved for 𝜗3,𝒒 with a simple bisection algorithm, using the end points 𝜗3,𝒒 = 0

and 𝜗3,𝒒 = 1 as starting points. We note that, in practice, the solution to Equation (5.75) does not

have to be accurate to many significant digits, and the bisection algorithm can be terminated after a

few iterations. We also note that since 𝜖min(𝜌,Ye) is not strictly convex, as is shown in Figure 5.5,

Equation (5.75) can have multiple roots, and the bisection algorithm may result in a limited solution

that is still outside G. We have, however, not encountered a situation where this happens. On the

contrary, in the numerical examples presented in Section 5.5, we find that the limiting procedure

discussed in this section significantly improves the robustness of the DG algorithm. As can be

seen by looking ahead to Figure 5.20 in Section 5.6, the bound-enforcing limiter is continuously

activated, with 𝜗3 ∈ [0.4, 1], in a short time interval around core bounce in an adiabatic collapse

simulation.

Finally, we have assumed that the cell average satisfies 𝑼𝑲 ∈ G when the limiter is applied. If

this assumption does not hold, the bound-enforcing limiter will fail. By considering the equation

for the cell average in Equation (5.32), in combination with forward Euler time stepping, it may be

possible to derive a sufficient restriction on the time step such that𝑼𝑛+1
𝑲 ∈ G, provided𝑼𝑛

𝑲 ∈ G and

𝑼𝑛
𝒒 ∈ G (possibly with additional points included in the set 𝑺+). We do, however, not pursue this

endeavor here. Instead, we use the time step restriction given in Equation (5.44), which may not be

sufficient. In the absence of an explicit expression for a sufficient time step restriction (assuming

one exists), one may design a time step control algorithm where the step size is recursively reduced,

and the time step retaken, until a physically admissible cell average is obtained. On the other hand,
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we have yet to encounter an application in which a solution with cell average 𝑼𝑲 ∉ G is passed to

the bound-enforcing limiter.

5.4.5 Poisson Solver

In thornado, the approximate Newtonian gravitational potential, Φℎ, is obtained using the

Poseidon code (Roberts et al., in preparation). Poseidon solves Equation (5.5) on a spherical-polar

grid with a combination of an angular spectral expansion using spherical harmonics and a radial

finite element solution method. Here, we discuss the case of spherical symmetry, and thus limit the

angular expansion to the monopole harmonic function. Therefore we will focus only on the finite

element method (Larson & Bengzon, 2013) used in the radial expansion. Because the Newtonian

gravitational potential is expected to be continuous in space, we require the approximate solution,

Φℎ, to be 𝐶0 continuous across element interfaces. To enforce this continuity, Poseidon uses the

continuous Galerkin (CG) finite element method instead of the DG method to solve the Poisson

equation. However, we note that the DG method can also be used to solve elliptic equations (e.g.,

Rivière, 2008; Vincent et al., 2019).

The CG method expresses the approximate solution, Φℎ, to Equation (5.5) as a continuous

expansion of functions of the form

Φℎ (𝑟, 𝑡) =
𝑁𝐷∑︁
𝑖=1

Φ𝑖 (𝑡)𝑣𝑖 (𝑟), (5.80)

where 𝑁𝐷 is the total number of interpolation nodes on the domain 𝐷, and Φ𝑖 (𝑡) are spatially

constant expansion coefficients. As the method used to solve the Poisson equation is a purely

spatial in nature, we will omit the time parameter, 𝑡, for the rest of this section. The basis functions

𝑣𝑖 (𝑟) belong to the approximation space, 𝑉ℎ, defined by

𝑉ℎ =
{
𝜓ℎ : 𝜓ℎ |𝐾 ( 𝑗 ) ∈ 𝑃𝑘 (𝐾 ( 𝑗)), 𝑗 = 1, . . . , 𝑁𝑒

}
, (5.81)

where 𝑃𝑘 is a space of one-dimensional piecewise polynomials of degree 𝑘 , and 𝐾 ( 𝑗) are the radial

elements of the same decomposition of the computational domain as expressed in Section 5.4.1.

Given this choice of approximation space and domain decomposition, 𝑁𝐷 is given by 𝑁𝐷 = 𝑁𝑒𝑘+1,

where 𝑁𝑒 is the number of radial elements on the domain.
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Continuity is achieved through the choice of interpolation points and approximation space poly-

nomials. Within a specific element𝐾 ( 𝑗) , the interpolation points, 𝑆 𝑗 = {𝜉 𝑗 ,1, . . . , 𝜉 𝑗 ,𝑚, . . . , 𝜉 𝑗 ,𝑘+1} ⊂

𝐼 = [−1
2 ,

1
2 ], are chosen to be the Legendre–Gauss–Lobatto (LGL) points. The physical coordinate

𝑟 is related to the reference coordinate 𝜉 ∈ 𝐼 by the transformation

𝑟
(
𝜉
)
= 𝑟c, 𝑗 + Δ𝑟 𝑗𝜉, (5.82)

where 𝑟c, 𝑗 is the physical coordinate for the center of element 𝐾 ( 𝑗) and is such that

𝑟
(
𝜉 𝑗 ,𝑘+1

)
= 𝑟

(
𝜉 𝑗+1,1

)
. (5.83)

The inverse relationship,

𝜉 (𝑟) =
(
𝑟 − 𝑟c, 𝑗

)
Δ𝑟 𝑗

, (5.84)

allows us to express the chosen approximation space polynomials 𝑣𝑖 (𝑟) ∈ 𝑉ℎ as

𝑣𝑖 (𝑟) =


ℓ 𝑗 ,𝑚

(
𝜉 (𝑟)

)
for 𝑟 ∈ 𝐾 ( 𝑗)

0 else
, (5.85)

where ℓ 𝑗 ,𝑚 are the Lagrange polynomials in Equation (5.15) constructed with the LGL points, 𝑆 𝑗 .

Each approximation function 𝑣𝑖 (𝑟) is associated with a node 𝜉 𝑗 ,𝑚 such that 𝑣𝑖
(
𝑟 (𝜉 𝑗 ,𝑚)

)
= 1 by the

Kronecker delta property of the Lagrange polynomials. This choice of interpolation points and

approximation functions enforces the𝐶0 continuity of the solution. See Figure 5.7 for an illustration

of elements and associated basis functions in the CG method for the case with 𝑘 = 2.

The CG method seeks to find Φℎ ∈ 𝑉ℎ, which approximates Φ in Equation (5.5) such that

⟨ ∇2Φℎ, 𝜓ℎ⟩𝐷 = ⟨ 4𝜋𝐺𝜌, 𝜓ℎ⟩𝐷 (5.86)

holds for all test functions 𝜓ℎ ∈ 𝑉ℎ. In Equation (5.86),

⟨ ∇2Φℎ, 𝜓ℎ⟩𝐷 = 4𝜋
∫ 𝑅H

𝑅L
∇2Φℎ 𝜓ℎ 𝑟

2𝑑𝑟, (5.87)

and

⟨ 4𝜋𝐺𝜌, 𝜓ℎ⟩𝐷 = 16𝜋2𝐺

∫ 𝑅H

𝑅L
𝜌 𝜓ℎ 𝑟

2𝑑𝑟, (5.88)
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where 𝑅L and 𝑅H are the low and high radial boundary locations of the domain, respectively. Using

integration by parts on Equation (5.87), Equation (5.86) becomes the weak form of Equation (5.5),

−⟨ 𝜕𝑟Φℎ, 𝜕𝑟𝜓ℎ⟩𝐷 +
(
𝜕𝑟Φℎ

)
𝜓ℎ |𝑅H

𝑅L
= ⟨ 4𝜋𝐺𝜌, 𝜓ℎ⟩𝐷 . (5.89)

For the gravitational collapse problem discussed in Section 5.6, we impose the Neumann

boundary condition,

𝜕𝑟Φℎ (𝑅L) = 0, (5.90)

on the inner boundary (𝑅L = 0) to preserve the symmetry of the solution, and the Dirichlet boundary

condition,

Φℎ (𝑅H) = −𝐺𝑀enc

𝑅H
, (5.91)

on the outer boundary, where 𝑀enc is the total enclosed mass given by

𝑀enc = 4𝜋
∫ 𝑅H

𝑅L
𝜌ℎ (𝑟) 𝑟2𝑑𝑟. (5.92)

The Neumann condition in Equation (5.90) reduces Equation (5.89) to

−⟨ 𝜕𝑟Φℎ, 𝜕𝑟𝜓ℎ⟩𝐷 +
(
𝜕𝑟Φℎ (𝑅H)

)
𝜓ℎ (𝑅H) = ⟨ 4𝜋𝐺𝜌, 𝜓ℎ⟩𝐷 . (5.93)

Next, the expansion in Equation (5.80) and 𝜓ℎ = 𝑣 𝑗 are substituted into Equation (5.93) to give

𝑁𝐷∑︁
𝑖=1

Φ𝑖

(
− ⟨ 𝜕𝑟𝑣𝑖, 𝜕𝑟𝑣 𝑗 ⟩𝐷 +

(
𝜕𝑟𝑣𝑖 (𝑅H)

)
𝑣 𝑗 (𝑅H)

)
= ⟨ 4𝜋𝐺𝜌, 𝑣 𝑗 ⟩𝐷 , 𝑗 = 1, · · · , 𝑁𝐷 . (5.94)

To enforce the Dirichlet condition, the expansion coefficient Φ𝑁 is set to the boundary value given

by Equation (5.91), and the dimensionality of the problem is reduced to 𝑁𝐷 − 1, eliminating the(
𝜕𝑟𝑣𝑖 (𝑅H)

)
𝑣 𝑗 (𝑅H) term as 𝑣 𝑗 (𝑅H) = 0, ∀ 𝑗 ≠ 𝑁𝐷 . Equation (5.94) then becomes

𝑁𝐷−1∑︁
𝑖=1

−Φ𝑖 ⟨ 𝜕𝑟𝑣𝑖, 𝜕𝑟𝑣 𝑗 ⟩𝐷 = ⟨ 4𝜋𝐺𝜌, 𝑣 𝑗 ⟩𝐷 , 𝑗 = 1, · · · , 𝑁𝐷 − 1. (5.95)

Defining the stiffness matrix as

𝑆 =
{
𝑠𝑖 𝑗

}𝑁𝐷−1
𝑖, 𝑗=1 , 𝑠𝑖 𝑗 = −⟨ 𝜕𝑟𝑣𝑖, 𝜕𝑟𝑣 𝑗 ⟩𝐷 , (5.96)
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the load vector as

𝐿 =
{
⟨ 4𝜋𝐺𝜌, 𝑣 𝑗 ⟩𝐷

}𝑁𝐷−1
𝑗=1 , (5.97)

and the unknown coefficient vector as

𝐶 = {Φ𝑖}𝑁𝐷−1
𝑖=1 , (5.98)

the system in Equation (5.95) can then be written in matrix form as

𝑆𝐶 = 𝐿. (5.99)

The matrix 𝑆 is a sparse symmetric band matrix, with bandwidth equal to 𝑘 . When 𝑘 = 1, the

matrix 𝑆 is tridiagonal. When 𝑘 > 1, an overlapping block structure occurs within the diagonal

band of 𝑆, see Figure 5.8. The sparsity of the matrix is given by

Sparsity =
𝑁𝑒𝑘

2 − 𝑁𝑒 + 1
𝑁2
𝑒 𝑘

2 + 2𝑁𝑒𝑘 + 1
. (5.100)

To reduce memory overhead, 𝑆 is stored in compressed column storage (CCS) format. The system

is then solved using a CCS compatible Cholesky factorization. Once these coefficients are known

the approximate solution can be reconstructed anywhere within the domain using Equation (5.80).

5.4.6 Table Interpolation

As in Bruenn (1985), Mezzacappa & Messer (1999), and Bruenn et al. (2020), we obtain a

thermodynamic quantity 𝐹 and its derivatives from the tabulated EoS through trilinear interpolation

in the space spanned by
(
log10(𝜌), log10(𝑇), Ye

)
. The software to compute these are provided by

the WeakLib library, and, for completeness, we restate formulas here. To simplify the notation,

let 𝑋 = log10(𝜌), 𝑌 = log10(𝑇), and 𝑍 = Ye. Then, �̄� = �̄� (𝑋,𝑌, 𝑍), where �̄� is related to

the thermodynamic quantity by 𝐹 = 10�̄� − 𝐹offset. That is, trilinear interpolations are performed

on logged quantities, and the offset is used to ensure that �̄� is well-defined when 𝐹 is negative.

Obtaining 𝐹 first requires the eight points (𝑋𝑎, 𝑌𝑏, 𝑍𝑐) : 𝑎, 𝑏, 𝑐 ∈ {0, 1} from the table that make

up the corners of a "cube" of the points closest to (𝑋,𝑌, 𝑍). These points then satisfy

𝑋1 − 𝑋0 =
1
𝑁𝜌
, 𝑌1 − 𝑌0 =

1
𝑁𝑇
, and 𝑍1 − 𝑍0 =

1
𝑁Ye

, (5.101)
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where 𝑁𝜌 and 𝑁𝑇 are the number of the points per decade in 𝜌 and 𝑇 , respectively, and 𝑁Ye is the

number of points per unit interval in Ye. �̄� is then given by the trilinear interpolation formula, e.g.,

found in Eq. (32) in Mezzacappa & Messer (1999), which, in multi-index notation, can be written

compactly as

�̄� (𝑿) =
1∑︁
𝒊=0

𝑤 𝒊 (𝑿)�̄�𝒊, (5.102)

where 𝑿 = (𝑋,𝑌, 𝑍). In this context, the weights 𝑤 𝒊 (𝑿) are given by

𝑤 𝒊 (𝑿) = 𝐵𝑖1 (𝑋)𝐵𝑖2 (𝑌 )𝐵𝑖3 (𝑍), (5.103)

where 𝐵𝑖1 (𝑋) (𝑖1 ∈ {0, 1}) are linear Lagrange polynomials

𝐵0(𝑋) =
𝑋1 − 𝑋
𝑋1 − 𝑋0

and 𝐵1(𝑋) =
𝑋 − 𝑋0

𝑋1 − 𝑋0
, (5.104)

and 𝐵𝑖2 (𝑌 ) and 𝐵𝑖3 (𝑍) are similarly defined by replacing 𝑋 with 𝑌 or 𝑍 , respectively.

As in Mezzacappa & Messer (1999), derivatives with respect to 𝜌, 𝑇 , and Ye are calculated

directly from this expression; i.e.(
𝜕𝐹

𝜕𝜌

)
𝑇,Ye

=
(𝐹 + 𝐹offset)

𝜌

(
𝜕�̄�

𝜕𝑋

)
𝑌,𝑍

=
(𝐹 + 𝐹offset)

𝜌

1∑︁
𝒊=0

𝜕𝑤 𝒊

𝜕𝑋
�̄�𝒊, (5.105)

(
𝜕𝐹

𝜕𝑇

)
𝜌,Ye

=
(𝐹 + 𝐹offset)

𝑇

(
𝜕�̄�

𝜕𝑌

)
𝑋,𝑍

=
(𝐹 + 𝐹offset)

𝑇

1∑︁
𝒊=0

𝜕𝑤 𝒊

𝜕𝑌
�̄�𝒊, (5.106)

(
𝜕𝐹

𝜕Ye

)
𝜌,𝑇

= (𝐹 + 𝐹offset)
(
𝜕�̄�

𝜕𝑍

)
𝑋,𝑌

= (𝐹 + 𝐹offset)
1∑︁
𝒊=0

𝜕𝑤 𝒊

𝜕𝑍
�̄�𝒊 . (5.107)

We note that this interpolation scheme does not, by construction, satisfy the Maxwell relations

of thermodynamics. While this may impact the ability to resolve adiabatic flows (see Swesty (1996)

and Timmes & Swesty (2000) for further discussion), we do not observe any clear evidence of this

being a problem in our computations. In addition, while we believe that the low-order accuracy of

the trilinear interpolation scheme may play a role in both the convergence rates observed with the

high-order RKDG scheme in Section 5.5.1 and the issues with characteristic limiting around the

phase transition observed in Section 5.6, additional investigations are required.
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5.5 Numerical Results

In this section, we present results obtained with the DG method as implemented in thornado

for various test problems relevant to CCSNe and other astrophysical phenomena. With the exception

of few reference calculations obtained using an ideal EoS in Section 5.5.1.1, all the results were

obtained using a tabulated version of the SFHo EoS of Steiner et al. (2013b), which covers the

ranges 𝜌 ∈ [1.66 × 103, 3.16 × 1015] g cm−3, with 𝑁𝜌 = 25, 𝑇 ∈ [1.16 × 109, 1.84 × 1012] K,

with 𝑁𝑇 = 50, and Ye ∈ [0.01, 0.7], with 𝑁Ye = 100. (See, however, Endeve et al. (2019)

for a documentation of results obtained with thornado using an ideal EoS.) In the first two

subsections, we begin by presenting results from one-dimensional advection tests using Cartesian

coordinates, and one- and two-dimensional Riemann problems using Cartesian, spherical-polar,

and cylindrical coordinates (Sections 5.5.1 and 5.5.2, respectively). These tests serve as an initial

gauge of the implementation of the DG algorithm in thornado with a nuclear EoS. Using Riemann

problems with initial conditions adapted from their ideal EoS counterparts, we aim to investigate

the performance of our implementation in curvilinear coordinates, as well as the slope limiter

presented in Section 5.4.3 and the bound-enforcing limiter presented in Section 5.4.4. The Poisson

solver is tested in Section 5.5.3. Then, in Section 5.6, our focus turns to the main application,

adiabatic gravitational collapse in spherical symmetry, where we investigate the performance of

thornado’s DG algorithm by investigating various aspects of the solver with an eye towards future

spherically symmetric — and eventually multidimensional — supernova simulations with neutrino

transport. In all the tests, the CFL number in Equation (5.44) is set to 𝐶cfl = 0.5.

5.5.1 Advection Tests

5.5.1.1 Rate of Convergence

The accuracy of the DG method can be manipulated by changing the number of nodes per

cell 𝑁 = 𝑘 + 1 and/or the total number of cells 𝐾 . The number of nodes per cell (or element)

governs the expected order of accuracy of the method. (𝑁th order spatial accuracy is expected

with 𝑁 nodes.) This section covers the rate at which changing the number of degrees of freedom

𝑛DOF = (𝑘 + 1) × 𝐾 impacts the accuracy; i.e. the convergence rate. Inspired by Suresh & Huynh
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(1997), this test is performed over the 1D computational domain 𝐷 = [−100, 100] km, with smooth

initial conditions, and periodic boundary conditions. The initial state for the tabulated EoS case is

set with the primitive state vector P as

P =
(
𝜌, 𝑢, 𝑝,Ye

)T
=

(
𝜌0

(
1 + 0.1 sin4(𝜋𝑥/𝐿)

)
, 𝑣0, 𝑝0, 0.3

)T
,

where 𝜌0 = 1012 g cm−3 is the background density, 𝑣0 = 0.1 𝑐 is the velocity, 𝑝0 = 0.01 𝜌0 𝑐
2

the background pressure, and 𝐿 = 200 km is the domain length. In this test, the mass density, a

quartic sine wave, is advected for one period without any limiting, while the velocity, pressure, and

electron fraction remain constant. The error in mass density between the initial and final states is

then calculated in the 𝐿1 error norm,

𝐿1 ≡
𝑛DOF∑︁
𝑗=1

��𝜌 𝑗 ,final − 𝜌 𝑗 ,initial
�� . (5.108)

In Figure 5.9 we plot this quantity, scaled by both 𝑛DOF and a background density 𝜌0, versus 𝑛DOF

(crosses). (For reference, we also plot results obtained with an ideal EoS case with Γ = 1.4; open

circles.) The solutions are obtained using 𝑁 = 2 (black symbols) and 𝑁 = 3 (red symbols) nodes

with second and third-order time integration schemes, respectively. For each 𝑁 , we use seven

different values of 𝐾 : 8, 16, 32, 64, 128, 256, and 512. For this smooth problem we always

observe that for a fixed 𝑛DOF the scheme with 𝑁 = 3 is significantly more accurate than the scheme

with 𝑁 = 2. For the nuclear EoS case, the 𝐿1 error for the second-order scheme (𝑁 = 2) crosses

zero and generates a cusp at 𝑛DOF = 512. Otherwise, the results obtained with the second-order

method agree well with the expected convergence rate for both the tabulated and ideal EoS cases.

For 𝑁 = 3, the ideal EoS case exhibits third-order accuracy throughout. However, for 𝑛DOF > 96,

the results for 𝑁 = 3 with the tabulated EoS appear to undergo a transition from third-order to

second-order accuracy. We suspect that the trilinear interpolation method discussed in 5.4.6 may

be the cause of the loss of accuracy for large 𝑛DOF, but this requires further investigation.

5.5.1.2 Discontinuous Multi-Wave

This test from Suresh & Huynh (1997) involves the advection of a discontinuous initial state

for mass density, which includes a Gaussian wave, a square wave, a triangular wave, and a semi-
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ellipse (see light red lines in Figure 5.10). This test is performed over a periodic 1D domain

𝐷 = [−100, 100] km, with the initial state given as

P =
(
𝜌, 𝑢, 𝑝,Ye

)T
=

(
𝜌(𝑥, 0), 𝑣0, 𝑝0, 0.3

)T
,

where 𝑣0 and 𝑝0 are given the same values as in the previous test, and 𝜌 (𝑥, 0) is a piece-wise

function defined as

𝜌(𝑥, 0) = 𝜌0

(
1 + 0.1 exp

(
− log (2) (𝑥/𝐿 + 0.7)2 /(0.0009)

))
if −80 km ≤ 𝑥 ≤ −60 km

𝜌(𝑥, 0) = 𝜌0 (1 + 0.1) if −40 km ≤ 𝑥 ≤ −20 km
𝜌(𝑥, 0) = 𝜌0 (1 + 0.1 (1 − |10 (𝑥/𝐿 − 0.1) |)) if 0 km ≤ 𝑥 ≤ 20 km

𝜌(𝑥, 0) = 𝜌0

(
1 + 0.1

(
1 − 100 (𝑥/𝐿 − 0.5)2

)1/2
)

if 40 km ≤ 𝑥 ≤ 60 km

𝜌(𝑥, 0) = 𝜌0 otherwise,

where 𝐿 = 100 km.

We compare the performance of second- and third-order schemes in this test. Thus, a second-

and third-order SSP-RK time integration scheme was used for 𝑘 = 1 and 𝑘 = 2, respectively.

This test used the characteristic limiting procedure described in Section 5.4.3 with a TCI threshold

𝐶TCI = 1.0 × 10−3 and a total variation diminishing parameter 𝛽TVD = 1.5. Figure 5.10 shows

the initial density profile (light red lines) along with four different cases of the mass density being

evolved one (medium red lines) and ten (dark red lines) times across the periodic domain. Results

obtained with the second-order method are displayed in the top panels, while results obtained with

the third-order method are displayed in the bottom panels. Note that the results displayed in the

top left and top right panels were obtained using the same total number of degrees of freedom

as the results displayed in the bottom left and bottom right panels, respectively. Analytically, the

evolved solution should match up exactly with the initial condition after each full domain crossing.

However, the numerical solution is distorted by dissipation and dispersion. For fixed 𝑛DOF, the

third-order method appears to provide more accurate results. As the solution is evolved in the

𝑘 = 1 case, accuracy is lost primarily around sharp edges, namely for the Gaussian and triangular

waveforms. For the 𝑘 = 1 case with 384 elements, the solution is not well-resolved around the

base of each waveform, but some accuracy is gained around the maxima. Loss of accuracy around
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sharp edges is also observed with the third-order method using 128 elements (bottom left panel).

However, as is seen in the bottom right panel, the features of the solution are better captured with

the third-order method using 256 elements. For the third-order method, we note that most of the

distortion of the initial profile occurs in the first domain crossing, as the profiles after one and ten

crossings are almost on top of each other. This is not so much the case for the second-order scheme,

where the results after one and ten crossings are more easily distinguished. However, there is a

trade-off between numerical accuracy and computational expense.

5.5.2 Riemann Problems

5.5.2.1 Sod Shock Tube: Cartesian Coordinates

This test is based on the classic Riemann problem from Sod (Sod, 1978). It involves an initially

stationary fluid with a discontinuity separating two states – left and right – with high pressure and

density on the left and low pressure and density on the right. This initial state evolves into a shock

propagating into the low density region, followed by a contact discontinuity, and a rarefaction wave

propagating back into the high density state. Shock tube problems such as this stress a method’s

ability to capture shocks and contact discontinuities without smearing or introducing unphysical

oscillations. Given the importance of shocks in CCSNe, this serves as a critical first test for any

method designed to model these explosions.

Here, the problem is modified to use physical units in a regime realizable in simulations of

CCSNe. The computational domain is 𝐷 = [−5, 5] km with the discontinuity initially at 𝑥 = 0 km,

separating the left and right states

PL = ( 𝜌, 𝑣, 𝑝, Ye )T
L =

(
1012 g cm−3, 0 , 1032 erg cm−3, 0.4

)T (5.109)

PR = ( 𝜌, 𝑣, 𝑝, Ye )T
R =

(
1.25 × 1011 g cm−3, 0 , 1031 erg cm−3, 0.3

)T
. (5.110)

(Note that the initial Ye profile is also discontinuous.)

The problem is evolved until 𝑡 = 0.021 ms, using 100 uniform elements with 𝛽Tvd = 1.75,

and no troubled-cell indicator (𝐶TCI = 0), so that limiting is applied everywhere. We use third-

order spatial discretization (𝑘 = 2) and third-order temporal integration (SSP-RK3). A main
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focus with this test is to compare results obtained with component-wise and characteristic limiting

(discussed in Section 5.4.3). Figure 5.11 shows results for mass density (upper left), pressure (upper

right), velocity (lower left), and electron fraction (lower right), using both characteristic (blue) and

component-wise limiting (red), compared to a reference solution (black) computed using the first-

order accurate spatial method (𝑘 = 0), third-order time integration, and 10000 elements. We note

that both limiting schemes capture the general nature of the solution, including the rarefaction

wave, which extends from about −3 to 0 km, the contact discontinuity, which is located at about

2 km, and the shock, located at about 4 km. The scheme based on characteristic limiting, however,

is better at suppressing oscillations, and is less dissipative across the contact discontinuity. These

observations are consistent with those made by Schaal et al. (2015) in the ideal EoS case.

5.5.2.2 Sod Shock Tube: Spherical-Polar and Cylindrical Coordinates

As a test of thornado’s ability to work with non-Cartesian coordinate systems, we also solve

a spherically symmetric version of the Sod shock tube problem in 1D spherical-polar and 2D

cylindrical coordinates. For spherical-polar coordinates, the domain is 𝐷 = [0, 10] km, with

the initial discontinuity placed at 𝑟 = 5 km, while, for cylindrical coordinates, our domain is

𝐷 = [0, 10] km × [−10, 10] km, and the discontinuity is placed at 𝑟 =
√
𝑅2 + 𝑧2 = 5 km. For the

initial left and right states, we use those given in the 1D Cartesian Sod test in Equations (5.109)-

(5.110), with the exception that the electron fraction is given a constant value of Ye = 0.4 across

the entire domain. We evolve both tests until 𝑡 = 0.025 ms using 100 elements in the spherical case

and 100 × 200 elements in the cylindrical case. Both tests use the third-order methods (𝑘 = 2 and

SSP-RK3), characteristic limiting with 𝛽Tvd = 1.75, and no troubled cell indicator (𝐶TCI = 0). We

note that for the 2D test with cylindrical coordinates, we used thornado’s interface to AMReX to

take advantage of AMReX’s MPI infrastructure.

Results are shown in Figure 5.12. In the left panel of Figure 5.12, we show the 2D density

distribution for the cylindrical test. In the right panel of Figure 5.12, we show the density,

velocity, and pressure profiles of the spherical-polar test (solid lines), along with scatter plots of the

corresponding quantities from the cylindrical test versus spherical-polar radius 𝑟 for comparison.
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We note that the characteristics of the solution profiles are similar to those obtained by others

using an ideal EoS (e.g., Omang et al., 2006). There is also good agreement between the results

obtained with spherical-polar and cylindrical coordinates. As in the Cartesian test, we note the clear

resolution of the shock and contact discontinuity with no discernible oscillations. Furthermore,

we note some spread in the scatter plots from the cylindrical solution, most notably in the velocity

profile across the contact discontinuity. However, despite the truly multidimensional setup in the

cylindrical case, there is decent preservation of the spherical symmetry inherit in the test.

5.5.2.3 Shock Tube Provoking the Bound-Enforcing Limiter

This test, performed in 1D with Cartesian coordinates, is similar to the Sod shock tube discussed

in Section 5.5.2.1, but with initial conditions tuned to provoke the bound-enforcing limiter developed

in Section 5.4.4. The goal is to demonstrate that the limiter keeps the solution within the set of

admissible states (specifically that 𝜖 ≥ 𝜖min) while also conserving the total mass, energy, and

electron number in time, given, respectively, by∫
𝐷

{
𝜌ℎ (𝑥, 𝑡), 𝐸ℎ (𝑥, 𝑡), 𝐷e,ℎ (𝑥, 𝑡)

}
𝑑𝑥. (5.111)

The computational domain is 𝐷 = [−5, 5] km, and a discontinuity is placed at 𝑥 = 0 km, which

separates the left and right states of the Riemann problem

PL = (𝜌, 𝑣, 𝑝,Ye)T
L =

(
1.00 × 1013 g cm−3, 0 m s−1, 1.070 × 1031 erg cm−3, 0.04

)𝑇
PR = (𝜌, 𝑣, 𝑝,Ye)T

R =

(
1.25 × 1012 g cm−3, 0 m s−1, 1.023 × 1030 erg cm−3, 0.10

)T
.

The numerical solution is evolved to 𝑡 = 0.2 ms, using 256 elements with polynomial degree 𝑘 = 2

and SSP-RK3 time integration. To fully test the bound-enforcing limiter, we run this test without the

slope limiter discussed in Section 5.4.3. Moreover, it is possible to design an initial state for the Sod

shock tube problem that does not place the solution close to or below the minimum table boundary.

An example of this is seen in section 5.5.2.1, where the bound enforcing limiter is not required

to keep the solution within the set of admissible states. However, we note that this particular test

(using the initial condition described immediately above) fails without the bound enforcing limiter,
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regardless of whether or not the slope limiter is implemented.6 Thus, the bound enforcing limiter

allows for a wider selection of initial states that would otherwise cause the algorithm to fail.

Numerical results from this test are displayed in Figure 5.13. In the left panel, we plot the

specific internal energy versus position at the end of the simulation (solid black curve). We also

plot the minimum internal energy 𝜖min(𝜌,Ye) (dashed red curve). Around the shock, 𝜖 is very

close to the minimum value, as can be seen in the inset in left panel of Figure 5.13. In fact, the

specific internal energy remains very close to the minimum value throughout this test. The middle

panel displays a space-time plot of the limiter parameter 𝜗3(𝑥, 𝑡) in Equation (5.74), and shows

the activation sites for the bound-enforcing limiter, where the average value for 𝜗3 when limiting

is required is 0.9 and it ranges from 0.60 < 𝜗3 < 0.99. The bound-enforcing limiter is activated

due to small oscillations slightly ahead of the shock, and produces a trace of the shock trajectory

as seen in the middle panel in Figure 5.13. The slope of the prominent trace in 𝜗3(𝑥, 𝑡) indicates a

shock velocity of 𝑣shock ≈ 1800 km s−1. Finally, the right panel in Figure 5.13 shows the relative

change in the conserved quantities versus time. The change in these quantities are due to machine

roundoff, indicating that the bound-enforcing limiter is sufficiently conservative for this test.

5.5.2.4 Shu-Osher Shock Tube

This test adopted from Shu & Osher (1988) involves a Mach=3 shock interacting with a lower

density region with a sinusoidal perturbation. As the shock propagates and interacts with the density

perturbations, the perturbations move upstream, forming high frequency oscillations just behind the

shock. This problem tests the ability of a shock-capturing method to limit unphysical oscillations

without destroying physical, small-scale features of the post-shock flow. We note that small-scale

features resulting from hydrodynamical instabilities, such as turbulence and convection, are crucial

to CCSN explosion dynamics (e.g., Murphy & Meakin, 2011; Murphy et al., 2013; Couch &

Ott, 2015; Radice et al., 2016; Mabanta & Murphy, 2018; Couch et al., 2020) and many other

astrophysical applications.

Here, the problem is modified to use physical units in a regime relevant to CCSNe. The
6Even when slope limiting is used, the bound enforcing limiter is required for this test, but we decide to deactivate

the slope limiter to provoke the bound enforcing limiter even more.
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computational domain is 𝐷 = [−5, 5] km, with a discontinuity initially located at 𝑥 = 1 km

separating the left and right states

PL = ( 𝜌, 𝑣, 𝑝, Ye )T
L =

(
3.60632 × 1012 g cm−3, 7.425 × 104 km s−1, 1.333 × 1032 erg cm−3, 0.5

)T

PR = ( 𝜌, 𝑣, 𝑝, Ye )T
R =

( [
1 + 0.2 × sin(5 km−1 𝑥)

]
× 1012 g cm−3, 0, 1.0 × 1031 erg cm−3, 0.5

)T
.

The fluid is evolved until 𝑡 = 0.0625 ms, using 256 uniform elements and 𝛽Tvd = 2.0. We use

third-order spatial discretization (𝑘 = 2) and third-order temporal integration (SSP-RK3). In this

test we compare results obtained with characteristic and component-wise limiting, and, for each

limiting method, we show results for various values of the TCI threshold.

In Figure 5.14, we show the density obtained using characteristic (top) and component-wise

(bottom) limiting for various values of the troubled-cell indicator threshold 𝐶TCI: 0.0 (full limiting,

red), 0.03 (green), 0.3 (magenta), and 3.0 (blue); i.e., the same values that were used in Endeve

et al. (2019) for the ideal EoS case. Larger values of 𝐶TCI imply less slope limiting. These results

are compared to a reference solution obtained using 2048 elements (black), with third-order spatial

and temporal discretization, and 𝐶TCI = 0.0. In both limiting schemes, full limiting washes out the

density variations behind the shock, while increasing the TCI threshold allows for these features to

be better captured. The results obtained with 𝐶TCI = 3.0 are very close to the reference solution.

However, for reasons discussed in Section 5.6.5, we do not recommend using such a high value for

𝐶TCI in general, since some amount of limiting — even in smooth regions — seems to be required.

For all values of the threshold (except perhaps the case with𝐶TCI = 3.0, which applies little limiting

away from the shock), the characteristic limiting scheme better captures the shape and amplitude

of the oscillations behind the shock (see insets in each panel, focusing on the higher frequency

oscillations just behind the shock).
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5.5.2.5 Two-Dimensional Riemann Problem

Here we consider a two-dimensional Riemann problem, adapted from Lax & Liu (1998), which

involves a fluid with a different initial state in each quadrant given by

PNW =
(
𝜌, 𝑣1, 𝑣2, 𝑝, Ye

)T
NW =

(
1012 g cm−3, 7.275 × 104 km s−1, 0, 1032 erg cm−3, 0.3

)T
,

PNE =
(
𝜌, 𝑣1, 𝑣2, 𝑝, Ye

)T
NE =

(
5.313 × 1011 g cm−3, 0, 0, 4.0 × 1031 erg cm−3, 0.3

)T
,

PSE =
(
𝜌, 𝑣1, 𝑣2, 𝑝, Ye

)T
SE =

(
1012 g cm−3, 0, 7.275 × 104 km s−1, 1032 erg cm−3, 0.3

)T
,

PSW =
(
𝜌, 𝑣1, 𝑣2, 𝑝, Ye

)T
SW =

(
8.0 × 1011 g cm−3, 0, 0, 1032 erg cm−3, 0.3

)T
,

on a domain 𝐷 = [0, 1.0] km × [0, 1.0] km. This test, which corresponds to “Configuration 12”

in Lax & Liu (1998), involves two shocks moving into the northeastern quadrant and contact

discontinuities (or slip lines) at the northern and eastern boundaries of the southwestern quadrant.

It is adapted from the original works to use physical units in a regime relevant to CCSNe with a

nuclear EoS. The initial configuration presented here is one of many possible configurations of 2D

Riemann problems presented in Lax & Liu (1998). The fluid is evolved until 𝑡 = 0.0025 ms using

4002 uniform elements, 𝛽Tvd = 1.75, and 𝐶TCI = 0 (i.e., limiting is applied everywhere). We use

third-order spatial discretization (𝑘 = 2) and third-order temporal integration (SSP-RK3). To run

this test, we used thornado’s interface to AMReX in order to take advantage of AMReX’s MPI

parallelization.

Figure 5.5.2.5 shows the density (top panels) and pressure (bottom panels) at 𝑡 = 0.0025 ms,

from a run with component-wise limiting (left panels) and a run with characteristic limiting (right

panels). Black lines on each plot show logarithmically spaced contours to highlight solution

features. Overall, the morphology of the solutions obtained with thornado — using a nuclear EoS

— agree well with the results displayed by Lax & Liu (1998). Moreover, the use of characteristic

limiting presents a tremendous improvement over component-wise limiting, particularly as the

higher dimensionality of the problem allows for more complex flow patterns and discontinuity

geometries. Notably, the density and pressure contours in the component-wise limiting case reveal

more oscillations and deformities. These oscillations are particularly prominent near the boundary
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of the curved shock surface. There appears to be no oscillations present in the run performed with

characteristic limiting. Similarly, the jet-like feature seen in the southwest quadrant of the density

plots appear less resolved and are somewhat asymmetric in the component-wise limiting case.

5.5.3 Poisson Solver Test

The accuracy of the CG method used by Poseidon to solve Equation (5.5) is determined by

the total number of degrees freedom used to solve the system. The number of degrees of freedom

can be changed by either the 𝑝-method or the ℎ-method. The 𝑝-method varies the degree 𝑘 of the

polynomials used in the approximation of the solution and requires 𝑘 + 1 nodes per element. The

ℎ-method increases the number of elements 𝑁𝑒 used to discretize the system. These two methods

are used together in the ℎ𝑝-method where both the refinement of the mesh and the degree of the

approximation polynomials can be varied. In the ℎ𝑝-method, the number of degrees of freedom is

given by 𝑛DOF = (𝑘 + 1) ×𝑁𝑒. The accuracy of the ℎ𝑝-method increases with increasing 𝑛DOF, and

the error should decrease with increasing 𝑛DOF as 1/𝑛𝑘+1
DOF.

We test the accuracy of Poseidon’s Poisson solver using the density profile of a centrally

condensed sphere of radius 𝑅. This test, from Stone & Norman (1992), was chosen because it has

a non-polynomial analytic solution, thus allowing us to better explore the convergence properties

of the solver. (Problems with polynomial solutions are solved exactly for sufficiently high 𝑘 .) The

density profile and analytic solution for the test are given by

𝜌(𝑟) =


𝜌c

1+
(
𝑟
𝑟c

)2 if 𝑟 ≤ 𝑅

0 if 𝑟 > 𝑅

(5.112)

and

Φ(𝑟) =


−4𝜋𝐺𝜌c𝑟

2
c

[
1 −

arctan
(
𝑟
𝑟c

)
𝑟
𝑟c

− 1
2

(
1+

(
𝑟
𝑟c

)2

1+
(
𝑅
𝑟c

)2

)]
if 𝑟 ≤ 𝑅

−4𝜋𝐺𝜌c
𝑟3

c
𝑟

[
𝑅
𝑟c
− arctan

(
𝑅
𝑟c

)]
if 𝑟 > 𝑅,

(5.113)

respectively, where 𝜌c and 𝑟c are the central density and core radius, respectively. For this test,

we choose 𝜌c = 150 g cm−3, 𝑟c = 0.2 𝑅⊙, and 𝑅 = 𝑅⊙, and perform the calculations over the 1D
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computational domain 𝐷 = [0, 2 𝑅⊙]. We compute the 𝐿1 and 𝐿∞ error norms as

𝐿1 ≡
𝑛DOF∑︁
𝑗=1

|Φ(𝑟 𝑗 ) −Φℎ (𝑟 𝑗 ) |, (5.114)

and

𝐿∞ ≡ max
𝑗

(
|Φ(𝑟 𝑗 ) −Φℎ (𝑟 𝑗 ) |

)
for 𝑗 ∈ {1, . . . , 𝑛DOF}. (5.115)

In Figure 5.16, we plot the 𝐿1 error norm (scaled by 𝑛DOF; left panel) and the 𝐿∞ error norm

(right panel) versus 𝑛DOF. The numerical solutions were obtained using 𝑘 = 1 (black symbols)

and 𝑘 = 2 (red symbols). For each value of the polynomial degree 𝑘 , seven values of 𝑁𝑒 (8, 16,

32, 64, 128, 256, and 512) were used to create uniform grids. From these plots we see that for a

specific value of 𝑁𝑒 the higher order method always provides a more accurate solution. The rate of

convergence observed for the third-order method is as expected (or better) in both error norms (cf.

red, dashed reference lines). The second-order method converges at a rate somewhat slower than

expected when the error is measured in the 𝐿1 error norm, but the 𝐿∞ error decreases roughly at

the expected second-order rate (cf. black, dashed reference lines).

5.6 Adiabatic Collapse, Core-Bounce, and Shock Propagation

In this section we employ the DG method implemented in thornado to evolve a non-rotating

progenitor through adiabatic collapse, core bounce, and post-bounce shock propagation. The initial

conditions are provided by a 15 M⊙ progenitor model from Woosley & Heger (2007). Overall,

this section will cover the chronological evolution of the stellar collapse model in three stages: (1)

adiabatic collapse of the core, (2) core rebound and the formation of the shock shortly after nuclear

saturation, and (3) the propagation of the shock through the outer core thereafter. In total, the

evolution covers about 800 ms of physical time, which is divided into about 300 ms for collapse,

and almost 500 ms of post-bounce evolution, until the bounce shock reaches the outer boundary.

The following subsections will first discuss the physical conditions of the adiabatic collapse

application that challenge any hydrodynamics method used for CCSN simulations. Then we focus

on various features of the DG method in thornado, such as (1) the performance of the bound-

enforcing limiter during bounce and shock formation, (2) the response of the numerical solution
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to adjusting the troubled-cell indicator threshold parameter 𝐶TCI, (3) resolution dependence in the

inner core, (4) the challenge of maintaining energy conservation when applying limiters, and (5)

difficulties associated with employing characteristic limiting in the vicinity of the phase transition.

Of course, being spherically symmetric and without neutrino transport, this adiabatic model does

not describe a realistic evolutionary trajectory for a CCSN progenitor. However, this test does

subject the numerical method to some of the physical conditions encountered, and we deem it a

necessary step towards more realistic models.

Using spherical-polar coordinates, the domain 𝐷 = [0, 8000] km is divided into 𝑁 = 512

elements. In the interest of capturing important physical characteristics while maintaining compu-

tational efficiency, this application implements a geometrically progressing grid that uses a finer

spatial resolution in the inner core, which becomes progressively coarser according to

Δ𝑟𝑖 = 𝑧 × Δ𝑟𝑖−1, 𝑖 = 2, . . . , 𝑁, (5.116)

where 𝑧 > 1 is the ‘zoom factor’. This emphasizes the inner core, where most of the mass is

concentrated after collapse, while deemphasizing the outer regions. To begin constructing the grid,

the innermost cell width Δ𝑟1 = Δ𝑟min, the length |𝐷 | of the spatial domain, and the number of

elements 𝑁 are defined. Then, the zoom factor is obtained by solving

𝜂 ×
(
𝑧𝑁 − 1

)
− (𝑧 − 1) = 0, (5.117)

where 𝜂 = Δ𝑟min/|𝐷 |. The fiducial run in this section uses an inner cell width of Δ𝑟min = 0.5 km.

Then, with |𝐷 | = 8000 km and 𝑁 = 512, this results in a zoom factor (in double precision) of

𝑧 = 1.009967685243838, and an outer cell width of Δ𝑟𝑁 = 79.45 km. Also, for the fiducial run,

we use second-order spatial (𝑘 = 1) and temporal (SSP-RK2) discretization, combined with the

component-wise limiting scheme discussed in Section 5.4.3, 𝛽Tvd = 1.75, and 𝐶TCI = 0.0. For

all the runs, we use reflecting boundary conditions at the inner boundary and Dirichlet conditions

(provided by the initial condition) at the outer boundary. The gravitational potential is obtained

with a second-order accurate CG method as discussed in section 5.4.5.
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5.6.1 Stage 1: Collapse

Figure 5.17 illustrates the collapse phase prior to core bounce. We scale such that bounce occurs

at 𝑡 − 𝑡b = 0 ms with 𝑡b = 302.9 ms for this model, which is defined as the time when the central

density, 𝜌c, reaches its maximum. We plot the mass density (upper left panel), velocity (upper

right panel), electron fraction (lower left panel), and entropy per baryon (lower right panel) versus

radius for select times during collapse. We have chosen to display the collapse profiles at the times

coinciding with each full decade in central density; i.e. 𝜌c = 1010,11,...,14 g cm−3. The collapse

dynamics is very similar to the self-similar solutions obtained by Yahil (1983), using a polytropic

EoS. The central density increases with time and approaches nuclear densities (1014 g cm−3) at

𝑡 − 𝑡b = −1 ms while the outer region rarefies as indicated by the steeper slope in density outside

the innermost core. Meanwhile, the infall velocity increases linearly with radius in the inner

core (consistent with homologous collapse), and approaches free-fall beyond the maximum infall

velocity, where it eventually falls off roughly as 𝑟−1/2. The maximum infall velocity reaches

11 − 12% of the speed of light just before bounce. The electron fraction, Ye, is a monotonically

increasing function of radius and its inner profile shifts inward — in an approximately self-similar

fashion — with the decreasing core radius during collapse. Because this test models adiabatic flows

(i.e., no neutrino physics is included), the electron fraction remains constant in the core. Before

core bounce and shock formation the entropy profile shifts inward due to the collapsing core. In

fact, both the electron fraction and entropy profiles remain constant in the core throughout collapse,

bounce, and shock propagation, which we quantify further in Section 5.6.6.

5.6.2 Stage 2: Core-Bounce

Figure 5.18 captures core-bounce and shock formation in the inner core (𝑟 ∈ [0, 500] km). We

plot the adiabatic index Γ ≡
( 𝜕 ln 𝑝
𝜕 ln 𝜌

)
(upper left), velocity (upper right), electron fraction (lower

left), and entropy per baryon (lower right) versus radius. In each panel, blue curves illustrate

the dynamics immediately before bounce (leading up to maximum 𝜌c), while red curves illustrate

the dynamics immediately after bounce (see color maps to the right of each panel). The bounce

dynamics is in response to the stiffening of the EoS, which is illustrated by the evolution of the

156



adiabatic index during the transition to nuclear matter in the inner core. In the upper left panel,

the adiabatic index is Γ ≈ 4/3 at 𝑡 − 𝑡b = −0.8 ms. Once the core reaches nuclear densities and

undergoes a phase transition to bulk nuclear matter, the EoS stiffens and the repulsive nuclear forces

between the tightly packed nucleons results in a jump in Γ to around 2.5 at the inner boundary. After

bounce, the inner core, 𝑟 ≲ 10 km is characterized by Γ ≈ 2.5, while Γ ≲ 4/3 at larger radii. Notice

the sharp transition occurring around 𝑟 = 10 km, which we refer to as the phase transition. The

velocity profiles provide a clear demonstration of the genesis and evolution of the shock resulting

immediately after bounce. When the EoS stiffens, collapse is halted, and a shockwave is formed

in the region 𝑟 ∈ [10, 20] km. Once formed, the shock must push through the supersonically

collapsing outer core. In this adiabatic simulation, without neutrinos, the shockwave propagates

relatively unencumbered through the outer core, and eventually reaches the outer boundary. The

constant value in electron fraction in the very inner core is preserved through bounce and shock

formation, meanwhile the profile in the outer region (around 10 km) shifts as the shock travels

through. There is no noticeable change in central entropy during bounce, but, as the shock forms,

there is a large increase in the entropy across the shock, as expected.

5.6.3 Stage 3: Shock Propagation

Figure 5.19 shows the shock’s trajectory through the outer core on its way towards the outer

boundary. In this figure, we plot the mass density (upper left), velocity (upper right), electron

fraction (lower left), and temperature (lower right) versus radius for select times after bounce. As

can be seen by inspecting all panels, the inner core (inside about 50 km) settles into an approximate

hydrostatic equilibrium once the bounce shock has cleared. Inside this region, the velocity is small

(compared with the sound speed), and the mass density, electron fraction, and temperature profiles

remain practically unchanged for hundreds of milliseconds. This suggests that the DG method is

quite capable of capturing the adiabatic nature of the flow (this is further supported by the results

shown in the left panel in Figure 5.23). In the velocity figure, the shock is seen to reduce in

amplitude as it propagates towards the outer boundary. Early on, one can also observe secondary

shocks, produced by the ring-down of the core as it settles into hydrostatic equilibrium, which later
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catch up with the main shock. Rarefaction of the gas occurs in the outer core (beyond 100 km)

as the shock pushes through the infalling matter, notably at 𝑡 − 𝑡b = 362 ms in the mass density

profile. The thermal energy behind the shock is partially used to dissociate heavy nuclei and alpha

particles in the supersonically infalling outer core, causing the shock to lose energy while leaving

behind free nucleons in its wake. As the shock travels outward, the electron fraction profile in the

outer core is advected with the flow; cf. the sharp gradient located around 100 km at 𝑡 − 𝑡b = 2,

which has moved to about 1000 km when 𝑡 − 𝑡b = 362 ms. The temperature inherently rises across

the shock, and a sharp rise in temperature that traces the path of the shock is seen in the lower right

panel.

5.6.4 Bound-Enforcing Limiter

The microphysical conditions encountered in this test are constrained by the nuclear EoS.

However, some extreme conditions encountered are difficult to resolve numerically, and thus may

push the solutions beyond the boundaries of the admissible state set. For example, when the core

bounces and launches the bounce shock, the discontinuity can generate oscillations in the numerical

solution. These oscillations are to a certain degree suppressed by the slope limiting procedure

described in Section 5.4.3, but the solution can still exceed the limits of the tabulated EoS. Thus,

the bound-enforcing limiting procedure from Section 5.4.4 is required to ensure that the numerical

solution remains physically valid, mostly at bounce and shock formation. When necessary, the

bound-enforcing limiter acts to constrain the mass density, electron fraction, and specific internal

energy. However, for the conditions encountered in the adiabatic collapse simulations discussed

in this section, only violations of the bounds on the specific internal energy trigger limiting (cf.

Step 3 in Section 5.4.4), namely during the early stages of shock formation. We note that, without

the bound-enforcing limiter, the specific internal energy falls below the minimum possible value

at certain locations, which then implies that a valid temperature — required, e.g., to compute the

pressure — cannot be found, and the algorithm fails. Therefore, the bound-enforcing limiter is a

critical component of the DG algorithm in thornado.

Figure 5.20 illustrates the action of the bound-enforcing limiter during bounce in the fiducial run
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discussed in the previous subsections. The left panel is a space-time plot of the limiter parameter

𝜗3 ∈ [0, 1] (cf. Equation (5.74)), and shows the activation sites of the bound-enforcing limiter

acting to constrain the specific internal energy 𝜖 . Values of 𝜗3 < 1 imply some amount of limiting.

The region displayed in the figure captures the brief moment around shock formation where 𝜖 drops

below the minimum value, but is corrected by shifting the DG solution toward the cell average by

an amount determined by 𝜗3. The darker regions indicate more aggressive limiting, and we find

that 𝜗3 can become as small as 0.4 in this case. In the right panel in Figure 5.20, the specific

internal energy is plotted versus radius for select times during the initial shock propagation (black

lines). We also plot the minimum specific internal energy 𝜖min(𝜌,Ye), using the corresponding

numerical solutions for 𝜌 and Ye (red lines). This figure captures 𝜖 being very close to, but above,

𝜖min — especially around the shock, which is located roughly 𝑟 = 20, 40, and 70 km for the times

displayed.

Figure 5.21 shows activation sites of the bound-enforcing limiter in the 𝜌Ye-plane (white

dots). The majority of the activation sites are seen at higher mass densities, and correspond to

the formation of the shock. These points appear to occupy a locally convex region of 𝜖min(𝜌,Ye).

However, some points also appear at a low density and higher electron fraction. These points

correspond to a moment toward the end of the simulation, specifically when the shock passes

through the outer boundary. This portion of the EoS table may also be locally convex, thus the

limiting scheme is expected to operate robustly in that region as well. Future work will involve an

investigation of the EoS surface at minimum temperature to further challenge the robustness of our

bound-enforcing limiter. This work, however, will need to be carried out in the context of neutrino

radiation-hydrodynamics simulations of CCSNe, which access different and/or larger regions of

the 𝜌Ye-plane.

5.6.5 Troubled-Cell Indicator Threshold Dependence

In this section, we investigate the effect of varying the troubled-cell indicator threshold 𝐶TCI

on the adiabatic collapse simulations. The numerical results discussed in the previous subsections

applied the slope limiter everywhere; i.e. the TCI threshold 𝐶TCI was set to zero such that all
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elements are flagged for (component-wise) limiting. As seen in Section 5.5.2.4, increasing the

value of 𝐶TCI prevents limiting at smooth extrema and preserves the accuracy of the solution.

However, in contrast to the shock tube problem, the solutions for the adiabatic collapse problem

exhibit nonzero slopes almost everywhere. This leads to more areas that may require limiting, and

it becomes more difficult to find an optimal value for 𝐶TCI. Moreover, various quantities vary by

many orders of magnitude across the computational domain, and it is not clear which variables are

optimal for detecting troubled cells. When using the mass density, the total fluid energy density,

and the electron fraction as the variables to sense troubled cells, we find that if 𝐶TCI is set too high,

some areas that may require limiting are not flagged, and oscillations can start to develop.

In general, we have found that thermodynamic quantities such as the temperature and entropy

per baryon demonstrate a higher sensitivity to𝐶TCI than the evolved quantities𝑼. Thus, this section

will focus on the solution for the temperature and its sensitivity to 𝐶TCI. Figure 5.22 shows the

evolution of the troubled-cell indicator 𝐼𝑲 (cf. Equation (5.59)) versus radius for adiabatic collapse

simulations with various values of 𝐶TCI: 0.01 (upper left panel), 0.03 (upper right panel), and 0.05

(lower left panel). The plotted quantities are derived from the maximum value across all fields in

each element; i.e.,

𝐼𝑲 = max
𝐺∈𝑮

𝐼𝑲 (𝐺), where 𝑮 = (𝜌, 𝐸,Ye)T. (5.118)

In each panel, the red curve represents the time-averaged value (from 𝑡b to 𝑡end − 𝑡b = 497.1 ms),

while the maximum and minimum values are given by the boundaries of the light gray-shaded

region, and the positive standard deviations (i.e., average plus one 𝜎) are given by the upper

boundary of the dark gray-shaded region. We also plot 𝐶TCI in each panel (dashed horizontal line).

Recall that an element is flagged for limiting whenever 𝐼𝑲 > 𝐶TCI. In the lower right panel of

Figure 5.22, we plot the temperature versus radius at the end of each simulation with a different

value of 𝐶TCI. For comparison, we also plot the temperature for the simulation from the previous

subsections, with 𝐶TCI = 0, which applies limiting everywhere.

As can be seen in the lower right panel in Figure 5.22, the temperature profiles from all four runs

display the same general trend, and fall on top of each other outside 𝑟 = 50 km. The simulations with
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𝐶TCI = 0 and 𝐶TCI = 0.01 (magenta and black lines, respectively) are practically indistinguishable

everywhere. However, inside 𝑟 = 50 km, the simulations with the larger values of 𝐶TCI (0.03 and

0.05) exhibit some oscillations about the temperature profile from the fiducial run with 𝐶TCI = 0,

and the amplitude appears to increase with increasing 𝐶TCI. The TCI maxima (upper boundary

of the light gray-shaded region) are generally above the threshold in all cases, which implies that

limiting has been applied at least once in most of the domain displayed. However, the average and

the one sigma values serve as better indicators for where limiting occurs. Although the 𝐼𝑲 values

tend to be above the threshold inside the first 100 km in the 𝐶TCI = 0.01 case, the solution is limited

most frequently inside 𝑟 = 50 km, which corresponds to the region where the temperature displays

oscillatory behavior in the runs with larger values of 𝐶TCI. As the threshold is increased, less of

this region receives limiting. And in particular, for the 0.03 and 0.05 threshold cases, oscillations

have developed in this region. Ideally, the limiting procedure should both preserve the original

order of accuracy and prevent the development of spurious oscillations. However, for the adiabatic

collapse simulations, inside 𝑟 = 50 km, there seems to be a trade-off between these two features

which leaves little flexibility for selecting a large value for 𝐶TCI.

5.6.6 Resolution Dependence

In this section we investigate the effect of varying the spatial resolution in the adiabatic collapse

simulation. To do this, we keep the number of elements fixed to 𝑁 = 512, and vary the innermost

cell width Δ𝑟1 from 0.125 km to 1.0 km. Table 5.2 lists the inner- and outer-most cell widths

along with the cell widths at 𝑟 = 10 km and 𝑟 = 100 km, and the corresponding zoom factors 𝑧,

in Equation (5.116). Since we keep the number of elements fixed, the zoom factor increases with

decreasing Δ𝑟1, which also results in coarser resolution in the outer regions of the computational

domain. We find that the general features of the solution — e.g., density and velocity profiles —

are rather insensitive to the numerical resolution. Instead, we focus on the long term evolution

(i.e., hundreds of milliseconds) of the central density, electron fraction, and entropy per baryon.

After bounce, when the inner core settles into hydrostatic equilibrium, the central density should

remain relatively constant with time. Similarly, since we do not include neutrinos and the evolution
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is adiabatic, the central electron fraction and entropy per baryon should also remain constant

throughout the simulation. Figure 5.23 shows results from varying the inner cell width. In the left

panel, we plot the central density 𝜌c versus time after bounce; i.e. the time when maximum central

density is achieved. (To better visualize with a logarithmic abscissa, we have applied an arbitrary

shift of 0.6 ms.) The right panel displays the evolution of the central entropy per baryon 𝑆c (top)

and electron fraction𝑌e,c. During collapse, these quantities are plotted versus central density, while

after bounce they are plotted versus time. There is some spread in the central density curves before

bounce, but they all reach about the same maximum, 𝜌c ≈ 4.2 × 1014 g cm−3, and, after the core

stabilizes after bounce, 𝜌c remains constant with time for all resolutions. For the coarsest resolution

run (Δ𝑟1 = 1 km), the central density settles down to about 3.425 × 1014 g cm−3, while in the finer

resolution models it settles down to about 3.475 × 1014 g cm−3. Because the collapse is adiabatic

and the profiles are constant with radius in the very inner core (cf. lower panels in Figure 5.17), 𝑆c

and 𝑌e,c should remain constant throughout the evolution. All the simulations exhibit this behavior

before 𝜌c ≈ 1013 g cm−3; i.e., before the phase transition into nuclear densities. (There is a slow

increase in 𝑆c, from 0.73 to 0.74, during collapse.) Just before core bounce, the profiles deviate

somewhat from their constant values, and the lower resolutions exhibit larger deviations. For both

central entropy and electron fraction, the profiles for the runs with Δ𝑟1 = 0.75 km and Δ𝑟1 = 1.0 km

undergo notably larger changes than the higher resolution profiles. 𝑌e,c remains nearly constant

through bounce for the 0.125 km, 0.25 km, and 0.5 km simulations. For both 𝑌e,c and 𝑆c, the two

lowest resolution profiles drop further down before maximum central density, and then exhibit a

slight drift with time after bounce. However, both of these quantities remain relatively constant with

time after bounce in the higher resolution cases. Thus, a threshold resolution seems to be required

to accurately capture the physical behavior in the inner core. Considering the balance between

computational cost and physical fidelity, an inner cell width of 0.5 km (as in the fiducial run)

appears to be close to the optimal choice among the tested resolutions. For example, the central

density for this run remains constant after bounce, as desired. It also maintains approximately

constant central entropy and electron fraction through bounce. The central entropy deviates by no
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more than 0.02 𝑘B, while the electron fraction changes by no more than about 10−6.

Table 5.2 Inner, 𝑟 = 10 km, 𝑟 = 100 km, outer cell widths, and zoom factors for geometrically
progressing grids with 𝑁 = 512 elements.

Δ𝑟1 [ km ] Δ𝑟10 km [ km ] Δ𝑟100 km [ km ] Δ𝑟𝑁 [ km ] Zoom Factor

0.125 0.258 1.430 1.048 × 102 1.013260722382225
0.25 0.366 1.401 9.225 × 101 1.011634298318296
0.5 0.598 1.489 7.945 × 101 1.009967685243838
0.75 0.835 1.630 7.185 × 101 1.008968091682754
1.0 1.077 1.821 6.641 × 101 1.008244905346311

5.6.7 Energy Conservation

In this section we investigate total energy conservation with the DG method in thornado in

the context of the adiabatic collapse simulations. Exact conservation of total energy is nontrivial

to achieve in simulations of self-gravitating flows because of the adopted formulation of the fluid

energy equation given by Equation (5.3), which is in non-conservative form due to the gravitational

source term on the right-hand side. For simplicity, we limit the discussion to the present context of

spherical-polar coordinates with spherical symmetry imposed. Then, by combining Equations (5.1),

(5.3), and (5.5), it is possible to formulate a conservation law for the total energy

𝜕𝑡E + 1
𝑟2 𝜕𝑟

(
𝑟2 F

)
= 0, (5.119)

where

E = 𝜌
(
𝜖 + 1

2
𝑣2 + 1

2
Φ

)
and F =

(
𝐸 + 𝑝 + 𝜌Φ

)
𝑣 + 1

8𝜋𝐺

(
Φ
𝜕 ¤Φ
𝜕𝑟

− ¤Φ 𝜕Φ

𝜕𝑟

)
(5.120)

are the total energy density and total energy flux density, respectively, 𝑣 is the radial component

of the fluid three-velocity, and ¤Φ = 𝜕𝑡Φ. Because the corresponding RKDG discretization of

Equations (5.1) and (5.3), and the CG discretization of Equation (5.5), do not combine exactly to

form a discrete equivalent to Equation (5.119), the conservation of total energy is not expected to be

exact in the adiabatic collapse simulations. Although we find that the combination of RKDG and

CG discretizations exhibits surprisingly good energy conservation properties, we find evidence that

163



the application of the slope and bound-enforcing limiters, mainly around core bounce, compromise

the conservation of total energy. As seen in Figure 5.13 for the Riemann problem invoking the

bound-enforcing limiter, in the absence of gravity, the total fluid energy (i.e., internal plus kinetic) is

by construction conserved to machine precision. The slope limiter is also conservative with respect

to the total fluid energy. Conservation of total energy is more difficult to achieve for self-gravitating

flows such as in the adiabatic collapse problem.

By integrating Equation (5.119) over the computational domain 𝐷 = [0, 𝑅], and from 𝑡0 to 𝑡,

the total energy in the system is given by

𝐸total(𝑡) = 𝐸total,0 − 4𝜋𝑅2
∫ 𝑡

𝑡0

F (𝑅, 𝜏) 𝑑𝜏, (5.121)

where

𝐸total =

∫
𝐷

𝜌 𝜖 𝑑𝑉 + 1
2

∫
𝐷

𝜌 𝑣2 𝑑𝑉 + 1
2

∫
𝐷

𝜌Φ 𝑑𝑉 ≡ 𝐸i + 𝐸k + 𝐸g, (5.122)

and 𝑑𝑉 = 4𝜋𝑟2𝑑𝑟. Figure 5.24 shows energy conservation results from adiabatic collapse simu-

lations. In the left panel, we plot the kinetic, gravitational, internal, and total energy versus time

for the fiducial run with Δ𝑟1 = 0.5 km. Approaching core-bounce, the internal energy 𝐸i and

the gravitational energy 𝐸g grow rapidly in concert (with opposite signs), before stabilizing after

bounce with 𝐸i ≈ 157 B and 𝐸g ≈ −158 B, where 1 B = 1051 erg. The kinetic energy, 𝐸k, peaks at

approximately 10 B at bounce before decreasing again, and is down to 1 B when 𝑡 − 𝑡b = 5.5 ms.

The kinetic energy continues to decrease, and reaches a minimum of about 0.55 B at 𝑡− 𝑡b ≈ 40 ms.

Then, for 𝑡 − 𝑡b ≳ 40 ms, the kinetic energy starts to increase again, and is back up to 1 B for

𝑡 − 𝑡b = 200 ms.

The change in the total energy versus time, 𝐸total − 𝐸total,0, is plotted in the middle panel of

Figure 5.24 for the various spatial resolutions investigated in Section 5.6.6. As can be seen, the total

energy remains relatively constant during collapse, makes an almost discontinuous jump around

bounce, before remaining relatively constant again after bounce. (At 𝑡 − 𝑡b ≈ 375 ms, the bounce

shock reaches the outer boundary, and the total energy starts to decrease due to the energy flux

through the boundary; cf. the second term on the right-hand side of Equation (5.121), which
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has not been accounted for in the figure.) The magnitude of the jump in total energy at bounce

decreases with increasing resolution in the core. Around 𝑡 = 𝑡b, the total energy in the fiducial run

(Δ𝑟1 = 0.5 km) increases by less than 0.5 B, as is seen from the middle curve (after bounce) in the

middle panel in Figure 5.24. The difference 𝐸total − 𝐸total,0 ought to remain zero throughout the

simulation, but the extreme conditions during core-bounce — due to short time and length scales,

and the necessity of applying limiters around the region of shock formation, which occurs at high

energy densities — result in energy conservation violations. The change in the total energy in the

fiducial run is less than 0.5% of the gravitational energy at bounce, and about 5% of the kinetic

energy at bounce. Without accounting for the energy flowing through the outer boundary, the total

energy changes by less than 1.5 × 10−3 B during collapse, until 𝑡 − 𝑡b = −0.6 ms, when the central

density is about 1.5 × 1014 g cm−3. Then, after bounce, from 𝑡 − 𝑡b ≈ 50 ms to 𝑡 − 𝑡b ≈ 350 ms, the

total energy changes by less than 2.5 × 10−3 B, which is small compared to any of the individual

components of the total energy.

We have found that the slope and bound-enforcing limiters contribute to the violation of total

energy conservation at bounce. To investigate the impact of limiters on total energy conservation,

we restarted the fiducial run, which employs slope and bound-enforcing limiters, at 𝑡 − 𝑡b = −1 ms,

and ran one model with the slope limiter turned off, and one model with both the slope and bound-

enforcing limiters turned off. The right panel in Figure 5.24 shows the total energy conservation

versus time for these models. The largest violation of total energy conservation is observed in the

fiducial run (red line). For the model where the slope limiter is turned off, but the bound-enforcing

limiter is still active, the change in the total energy is noticeably reduced (black line). For example,

the black line demonstrates no noticeable change in the total energy briefly before bounce, while the

red line shows a minor increase starting at 𝑡 − 𝑡b = −0.5 ms. Thus, the slope limiter begins adding

energy to the system shortly before bounce. Meanwhile, the bound-enforcing limiter remains

inactive until about 0.2 ms before bounce. Once activated, the bound-enforcing limiter breaks

total energy conservation, but to a lesser extent than when both limiters are active. The reason the

limiters contribute to total energy violation is the gravitational potential energy, the third integral
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on the right-hand side of Equation (5.122). While both limiters preserve the cell-averaged fluid

energy, and thus leave the first two integrals on the right-hand side of Equation (5.122) unchanged,

the cell-averaged gravitational potential energy density is defined as a higher moment of the mass

density (Φ depends on position), which is not preserved by any of the limiters. It is interesting to

note that the DG method manages to model core bounce and shock formation without the slope

limiter activated. When both limiters are turned off, the run fails at bounce because 𝜖 may fall

below the minimum value required by the EoS. Until then, the DG method maintains total energy

conservation well. For example, we find 𝐸total − 𝐸total(𝑡b − 1 ms) = 8.6 × 10−6 B at the time when

the run crashes, which occurs when 𝜌c = 3.65 × 1014 g cm−3. In the future, we will investigate

ways of improving the conservation of total energy while applying both limiters through bounce.

5.6.8 Characteristic Limiting

In contrast to the Riemann problems discussed in Section 5.5.2, the adiabatic collapse appli-

cation does not currently benefit from characteristic limiting. As discussed earlier, toward the

end of collapse, the core undergoes a phase transition from atomic nuclei and nucleons to bulk

nuclear matter. However, the tabulated nuclear matter EoS appears to not be sufficiently smooth

around this transition to enable robust construction of the characteristic fields, which depends on

thermodynamic derivatives from the EoS (see Appendix 9D). Moreover, the interpolation scheme

discussed in Section 5.4.6 is only 𝐶0 continuous, which implies that derivatives are discontinuous

across adjacent cubes in the table. As a result, the thermodynamic derivatives are not smooth

around the phase transition, which appears to give rise to unphysical perturbations. These per-

turbations manifest as acoustic noise, in the characteristic and, eventually, the conserved fields,

and this is clearly evident by considering the pressure. Figure 5.25 displays space-time plots of

the logarithmic pressure gradient, (ln 𝑝/ln 𝑟), shortly after bounce from two simulations — one

employing component-wise limiting (left panel), and one employing characteristic limiting (right

panel). In both panels, the dashed black line corresponds to the minimum in the adiabatic index

(cf. upper left panel in Figure 5.18), which we refer to as the phase transition. The formation

of the bounce shock and subsequent acoustic waves during the ring-down phase after bounce are
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clearly seen in the lower part of both panels, which qualitatively agree. However, about 5 ms

after bounce, acoustic waves are seen to continuously emanate from the core in the model with

characteristic limiting. These waves are absent in the model with component-wise limiting. The

accoustic waves in the model with characteristic limiting appear to emanate from the vicinity of the

phase transition; i.e. originate around the vertical dashed black line (see also Figure 5.26). Another

difference in the results obtained with the two limiters is the behavior of the maximum logarithmic

pressure gradient. In the component-wise case, the peak in the pressure gradient remains fixed at

approximately 30 km for the duration of the run after bounce. With characteristic limiting, this

peak has a slow trajectory, starting at about 𝑟 = 15 km and ending at 𝑟 = 30 km.

Figure 5.26 shows a zoomed-in portion of the logarithmic pressure gradient for the characteristic

limiting case displayed in the right panel in Figure 5.25. Spurious pressure waves appear to be

generated around the phase transition (or slightly ahead of the dashed black line), which then

propagate across the entire domain. Prominent examples of this are seen around 𝑡 − 𝑡b = 0.5 ms,

1.65 ms, and 2.45 ms, where pairs of left- and right-propagating waves emanate from the phase

transition. The left-going waves propagate toward the inner boundary and are then reflected back

out. These waves lead to the noisy pattern seen in the right panel in Figure 5.25.

As discussed in Section 5.4.3, characteristic limiting relies on transforming the set of conserved

variables to the set of characteristic variables by applying the matrix of left eigenvectors from the

eigendecomposition of the flux Jacobian. The construction of this matrix involves thermodynamic

derivatives of the pressure and other quantities which, in the case of the tabulated EoS, do not

have analytic expressions. Instead, these derivatives are obtained by differentiating the trilinear

interpolation formula used to obtain quantities from the EoS table, and are not necessarily smooth

— especially across the phase transition. The result is a discontinuity in every characteristic

variable around the location of the phase transition. Because of this, it appears to no longer be

beneficial to employ characteristic limiting, as it results in the waves seen in Figures 5.25 and 5.26,

and destroys the accuracy gained from characteristic limiting observed in Section 5.5.2. Moreover,

the expression for the sound speed given in Appendix 9C, obtained from the eigendecomposition
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of the flux Jacobian, may transiently become imaginary due to variations in the derivatives. In this

case we default to constructing the sound speed as provided by the EoS table. Future work will

include improving the fidelity of thornado’s interface with the EoS table, especially around the

phase transition, in order to circumvent these problems.

5.7 Summary, Conclusions, and Outlook

5.7.1 Summary

We have extended the Runge–Kutta discontinuous Galerkin (RKDG) method for the Euler equa-

tions to accommodate an equation of state for dense nuclear matter, to solve problems in Cartesian,

spherical-polar, and cylindrical coordinate systems in a three-covariant framework, and to simulate

adiabatic, spherically-symmetric stellar collapse with self-gravity. More specifically, we have im-

plemented a spectral-type nodal collocation DG approximation, which leads to simplifications in

the semi-discrete equations — especially for problems that make use of curvilinear coordinates. In

making these extensions to the RKDG method, we extended various limiters to maintain physically

sound solutions:

• We have supplemented the RKDG method with a standard total variation diminishing slope

limiter, combined with a troubled-cell indicator, to maintain time-integration stability and

to reduce spurious oscillations around discontinuities. For our purposes, this involved a

non-trivial adaptation of the limiter to nuclear equations of state, specifically when limiting

the characteristic fields, and we have provided the necessary characteristic decomposition to

achieve this in Appendix 9C.

• We have designed a bound-enforcing limiter to prevent the numerical solutions from becoming

physically inadmissible; i.e. exceeding bounds imposed by the tabulated EoS. The tabulated

EoS is supplied with strict boundaries in which the solution must be confined. However,

critical thermodynamic quantities provided by the EoS are not necessarily globally convex,

and this complicates the design of the bound-enforcing limiter, which currently operates

under the assumption of a convex EoS.
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We have developed thornado based on this extended RKDG method. thornado is written in

modern Fortran, which is a general purpose programming language for high-performance scientific

computing. Moreover, thornado is intended for multiphysics CCSN simulations with high-order

methods, and to this end the RKDG method for hydrodynamics has been chosen, in part, for

its ability to faithfully capture discontinuities and its ability to maintain high-order accuracy in

smooth flows with a compact computational stencil. Distributed parallel computing capabilities

with MPI are enabled through an interface with AMReX (Zhang et al., 2019). (The incorporation of

AMReX’s adaptive mesh refinement is deferred to future work.) We also mention that, in addition to

distributed parallelism with MPI, thornado has been partially ported to utilize graphics processing

units (GPUs) through the OpenACC7 and OpenMP8 standards, which will allow thornado to utilize

heterogeneous architectures. Details on this progress will be reported in a future publication.

We have tested thornado against a suite of diverse and challenging problems incorporating a

tabulated nuclear EoS in one and two spatial dimensions (see Endeve et al. (2019) for further tests

in the ideal EoS case):

• To test the formal order of accuracy of the RKDG method with a nuclear EoS we performed

an advection test with a smooth mass density profile using second- and third-order methods

and various degrees of freedom to determine the rate of convergence. It was found that the

third-order method is significantly more accurate than the second-order method, but the rate

of convergence for the third-order method deteriorates to second-order at higher resolution,

possibly due to the use of trilinear EoS interpolation. To further examine the efficacy of the

high-order RKDG method, a discontinuous multi-shaped mass density profile was advected

using characteristic limiting, and the initial condition was compared with the numerical

solution after one and ten periods. We compared results obtained with second- and third-

order methods using the same total number of degrees of freedom, by adjusting the number

of cells. The third-order method was found to be superior to the second-order method in this

7https://www.openacc.org
8https://www.openmp.org
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case as well.

• We conducted several well-known Riemann problem tests — adapted to the nuclear EoS

case — in Cartesian, spherical-polar, and cylindrical coordinates, and one and two spatial

dimensions, to examine thornado’s ability to resolve discontinuities with high-order RKDG

methods, without introducing spurious oscillations. It was demonstrated that results obtained

with characteristic limiting are far superior to corresponding results obtained with component-

wise limiting. Finally, a special version of the Sod shock tube test was constructed to examine

the efficacy of the bound-enforcing limiter. In this case, it was demonstrated that the bound-

enforcing limiter maintains physically admissible solutions, while at the same time preserving

the inherent conservation properties of the RKDG method.

We have applied thornado to the problem of adiabatic stellar core collapse of a realistic

non-rotating progenitor in spherical symmetry:

• We modeled the critical phases of collapse, through nuclear densities, the phase transition to

bulk nuclear matter, core bounce, shock formation, and the propagation of the shock through

the outer stellar layers.

• The complexity of this application necessitated additional investigations to probe the features

of the RKDG method for hydrodynamics in thornado, such as the role of limiting and how

it contributes to improved robustness of these simulations, the dependence of the solution on

the troubled-cell indicator threshold and spatial resolution, and the conservation of energy

through challenging stages in the simulation, such as stellar core bounce.

5.7.2 Conclusions and Outlook

• We successfully evolved a non-rotating, spherically symmetric, 15 M⊙ progenitor with

self-gravity through adiabatic collapse, bounce, and several hundred milliseconds of shock

propagation past bounce, while maintaining adiabaticity (e.g. the entropy and electron

fraction profiles remained constant in the core). The success of this application marks
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an important step toward applying DG methods to more realistic CCSN simulations, and

given the results obtained, we are in a position to develop thornado further towards more

physically complete CCSN simulations; e.g., by incorporating neutrino transport.

• In the adiabatic collapse application, the bound-enforcing limiter is critical in allowing the

solution to evolve through bounce. Without this limiter, the solution exceeds the limits

of the EoS and the algorithm fails. The bound-enforcing limiter is required to maintain a

physically valid solution for this application, but it, along with the slope limiter, interferes

with the inherently good energy conservation properties of the RKDG scheme. Before and

after bounce, the change in total energy is relatively low. However, when limiters are applied

through bounce, an artificial jump in the total energy compromises the energy conservation.

The change in total energy is less than 0.5 B for the fiducial run with inner cell width of

0.5 km, and decreases with increasing spatial resolution. While the change in total energy

during bounce is relatively small, when compared to any of the individual energy components,

future work focusing on reducing this unphysical change in total energy is warranted.

• For standard hydrodynamics tests with shocks, such as Riemann problems, we have shown that

characteristic limiting is superior to component-wise limiting for resolving discontinuities

while suppressing nonphysical, oscillatory features. However, characteristic limiting depends

on derivatives of thermodynamic quantities, which are estimated from the tabulated EoS,

and may not be sufficiently smooth. In particular, for the adiabatic collapse application,

we observed anomalous behavior in the form of acoustic noise, which appears to originate

around the phase transition. Thus, characteristic limiting currently does not provide the

desired improvements for the adiabatic collapse application, or any problem that may involve

a phase transition. The issue associated with these thermodynamic derivatives must be further

investigated and resolved before our numerical method can be extended more generally to

employ more sophisticated limiters, such as moment limiters (Krivodonova, 2007) or WENO-

type limiters for DG (Zhu et al., 2020), which also rely on limiting of characteristic fields. This
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may involve an improved EoS interpolation scheme that enforces thermodynamic consistency.

• As seen in the convergence tests, the RKDG method in thornado gained accuracy over

lower-order schemes by implementing high-order discretization (𝑁 = 3) for a fixed number

of degrees of freedom. However, third-order methods diminished to second-order accuracy

for higher degrees of freedom, and the interpolation of the tabulated EoS may have been an

agent in this loss of accuracy, but further investigation is required to confirm this. Moreover,

for all the tests in Section 5.5, our method reliably captured physical discontinuities and

oscillations with high-order instantiations of the RKDG scheme in thornado. However,

for the adiabatic collapse application, we consistently employed a second-order accurate

approach. The main reason: transient spurious oscillations (or perturbations) developed

when we employed third-order discretization. Again, the interpolation of the EoS may be

impacting the performance of the high-order scheme. We emphasize that the results for

the gravitational collapse application obtained with second-order methods and component-

wise limiting are satisfactory, and provides the basis for incorporating neutrino transport

algorithms also based on DG methods. However, while the present paper represents a step

towards our goal, further work is required to realize CCSN simulations with high-order DG

methods.

• All results presented here were obtained with the HLL Riemann solver (Harten et al., 1983a).

While we have also implemented the HLLC Riemann solver (Toro et al., 1994), which is

designed to account for contact discontinuities and has been shown to give superior results

(see, e.g., Cardall et al., 2014), we decided not to use this Riemann solver here. The known

“odd-even" instability (Quirk, 1994), which develops with the HLLC Riemann solver in

some multidimensional settings, is the main reason for our decision. Future work includes

development of a hybrid solver, with the capability of applying the HLLC solver in regions

of smooth flow while switching to the HLL solver in the vicinity of shocks by means of a

shock detector.

172



• Because CCSNe are general relativistic in nature, we are extending the hydrodynamics in

thornado to accommodate general relativity under the conformally-flat approximation (see,

e.g., Wilson et al., 1996), some details of which are given in Dunham et al. (2020).
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Figure 5.5 The minimum specific internal energy, 𝜖min = 𝜖 (𝜌, 𝑇min,Ye) for the SFHo EoS is
displayed in the top panel as a function of 𝜌 and Ye. (Since the specific internal energy can be
negative, we have added an offset of about 2.8 × 1017 erg g−1 to the actual value returned by the
EoS). The vertical lines (constant Ye) correspond to lines plotted in the lower left panel, while
horizontal lines (constant 𝜌) correspond to lines plotted in the lower right panel. To further
highlight the topology of the 𝜖min surface, we plot 𝜖min versus mass density for select values of Ye
in the lower left panel. Similarly, we plot 𝜖min versus electron fraction for select values of 𝜌 in the
lower right panel. These traces are selected to illustrate the non-convexity of G. The red dots
indicate non-convex regions, i.e. where the second derivative of the specific internal energy with
respect to either 𝜌 (left) or Ye (right) is less than zero. From visual inspection, the constant Ye
profiles (lower left) appear to be convex; i.e., (𝜕2𝜖min/𝜕𝜌2)Ye ≥ 0. However, the dashed line is
not, and the dotted and solid lines are non-convex around 𝜌 = 1014 g cm−3. Meanwhile the
constant 𝜌 profiles (lower right) are clearly not all convex since (𝜕2𝜖min/Y2

e)𝜌 can be negative (cf.
dashed and dash-dot curves).
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Figure 5.6 Illustration of the bisection problem used to find 𝜗3,𝒒 in Equation (5.75) to determine
the extent of limiting needed to ensure that the specific internal energy does not fall below the
table boundary 𝜖min (dashed black curve). In the example depicted here, 𝜖 (𝑼𝒒), the right endpoint
of the blue curve, is below the table boundary, and limiting is needed. We find 𝜗3,𝒒 as the
intersection point between the blue curve connecting 𝜖 (𝑼𝑲) and 𝜖 (𝑼𝒒), and the red curve
connecting 𝜖min,𝑲 and 𝜖min,𝒒. In this case, 𝜗3,𝒒 ≈ 0.87.

Figure 5.7 Illustration of the basis functions, 𝑣𝑖, used in the CG solution method of Poseidon for
the case 𝑘 = 2. Each function is associated with a specific element 𝐾 ( 𝑗) and a node 𝜉 𝑗 ,𝑚 within
that element, such that 𝑣𝑖

(
𝑟 (𝜉 𝑗 ,𝑚)

)
= 1. Outside of the associated element, 𝑣𝑖 = 0, and is therefore

not depicted.
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Figure 5.8 Nonzero structure of the matrix 𝑆 used in Poseidon for the case of 𝑘 = 2, and 𝑁𝑒 = 4.
The diagonal lines denote the band structure of the matrix. The squares denote the overlapping
block structure within the band. The single overlapping element shared by the consecutive blocks
comes from the shared interpolation node at element interfaces.

Figure 5.9 𝐿1 error between the initial and final states of an advected quartic sine wave, adopted
from Suresh & Huynh (1997). The results are scaled by the number of degrees of freedom to
obtain the average error per node. For the tabulated EoS results, the background density
𝜌0 = 1012 g cm−3 is also used to scale the error, but 𝜌0 = 1 for the ideal case, which is run in
dimensionless mode. The solid lines are proportional 𝑛𝑘+1

DOF, and serve as references for the
convergence rates of solutions represented by polynomials of degree 𝑘 = 1 and 𝑘 = 2.

176



Figure 5.10 Mass density profiles for the discontinuous multi-wave advection test adopted from
Suresh & Huynh (1997). In each panel we plot the initial condition (𝑡/𝑡grid = 0; light red), the
solution after one period (𝑡/𝑡grid = 1; medium red), and after ten periods (𝑡/𝑡grid = 10; dark red).
(𝑡grid is the physical time required for one grid crossing.) In the top panels we plot results obtained
with the second-order method (𝑘 = 1 and second-order SSP-RK time stepping) using 192 (left
panel) and 384 (right panel) elements. In the bottom panels we plot results obtained with the
third-order method (𝑘 = 2 and third-order SSP-RK time stepping) using 128 (left panel) and 256
(right panel) elements. Increasing the number of nodes and/or elements results in better resolution
around sharp peaks.
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Figure 5.11 Numerical solution of the Sod shock tube at 𝑡 = 0.021 ms using 100 elements and
third-order accurate methods with characteristic (blue) and component-wise limiting (red) for
density (upper left), pressure (upper right), velocity (lower left), and electron fraction (lower
right), compared to a reference solution (black) using 10000 elements, obtained with first-order
spatial discretization and third-order time integration.
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Figure 5.12 Two-dimensional density distribution (left panel), along with radial density, velocity,
and pressure profiles (right panel) for the spherically symmetric Sod shock tube problem evolved
to 𝑡 = 0.025 ms using both 1D spherical-polar and 2D cylindrical coordinates; solid lines and
scatter plots, respectively.

Figure 5.13 Numerical results for the shock tube provoking the bound-enforcing limiter. In the left
panel we plot the specific internal energy (solid black line) and the minimum specific internal
energy (dashed red line) versus position 𝑥. The middle panel shows the activation sites of the
bound-enforcing limiter as indicated by a space-time plot of 𝜗3(𝑥, 𝑡). The solution is closest to the
boundary just ahead of the shock, as indicated by the inset in the left panel. In the right panel we
plot the relative change in the conserved quantities; i.e., total fluid energy (black), mass (red), and
electron number (blue).
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Figure 5.14 Numerical solution of the Shu-Osher shock tube with nuclear EoS at 𝑡 = 0.062 ms,
using 256 elements and third-order accurate methods with characteristic (top) and
component-wise (bottom) limiting. In each panel, we plot the mass density versus position,
obtained with various values of the troubled cell indicator threshold 𝐶TCI: 0.0 (full limiting, red),
0.03 (green), 0.3 (magenta), and 3.0 (blue), compared to a reference solution (black) obtained
using 2048 elements, third-order spatial discretization, and third-order time integration.
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Figure 5.15 Numerical solution of a 2D Riemann problem (adopted from “Configuration 12” of
Lax & Liu (1998)) with a nuclear EoS at 𝑡 = 0.0025 ms using 4002 elements and third order
spatial and temporal discretization for density (top panels) and pressure (bottom panels). We
compare results obtained with component-wise (left panels) and characteristic (right panels)
limiting. Black lines on each plot show logarithmically spaced contours to highlight structures in
the solutions.
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Figure 5.16 𝐿1 (left panel) and 𝐿∞ (right panel) errors between the analytic and numerical
solution calculated by the Poseidon solver for the case of a centrally condensed sphere. The 𝐿1
error norms are scaled by the number of degrees of freedom to obtain an average error per node.
The dashed lines are proportional to 1/𝑛𝑘+1

DOF and serve as references for the convergence rates of
the numerical solutions.
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Figure 5.17 Numerical solutions for the adiabatic collapse of a 15 𝑀⊙ progenitor from Woosley &
Heger (2007), obtained with thornado using 512 elements and a second-order DG scheme with
component-wise limiting. Plotted versus radius are mass density (upper left), velocity (upper
right), electron fraction (lower left), and entropy per baryon (lower right) during collapse. The
time slices were chosen to depict the central mass density increasing by factors of 10.
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Figure 5.18 Numerical solutions of select quantities versus radius for adiabatic collapse evolved
through bounce: adiabatic index Γ ≡

( 𝜕 ln 𝑝
𝜕 ln 𝜌

)
(upper left), velocity (upper right), electron fraction

(lower left), and entropy per baryon (lower right). A finer time resolution is used here to exhibit
the characteristics of bounce and shock formation, and the color map on the right of each panel is
used to distinguish pre- and post-bounce profiles; blue and red, repsectively.
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Figure 5.19 Numerical solutions for mass density (upper left), velocity (upper right), electron
fraction (lower left), and temperature (lower right) versus radius at select times for the adiabatic
collapse simulation evolved for several hundred milliseconds post bounce. This time domain
partially captures the structure of the core as the shock propagates from its origin to the outer
boundary.
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Figure 5.20 Activation of the bound-enforcing limiter in the fiducial adiabatic collapse simulation.
The left panel shows the value of the limiter parameter 𝜗3 from Equation (5.74) in space and time.
In the right panel we plot the solution for 𝜖 (black) and the minimum 𝜖min (red), described in
Section 5.4.4. Each profile captures a moment in time briefly after bounce, when the
bound-enforcing limiter is required to maintain 𝜖 > 𝜖min.
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Figure 5.21 Activation sites (white dots) of the bound-enforcing limiter during the adiabatic
collapse simulations in the 𝜌Ye-plane, placed over a contour plot of the surface defined by
𝜖min = 𝜖 (𝜌, 𝑇min,Ye). The points in the mass density range log10 (𝜌) ∈ [10, 14] show the limiter
being activated during bounce and shock formation. The limiter is again briefly applied in the low
density region, log10 (𝜌) ∈ [5, 6]. This corresponds to when the shock momentarily forces the
solution below the lower EoS table boundary as the shock passes through the outer boundary of
the spatial domain.
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Figure 5.22 Troubled-cell indicator values for adiabatic collapse simulations with various
thresholds 𝐶TCI (upper panels and lower left panel). In each panel, the red curve represents the
time-averaged troubled-cell indicator value (averaged from 𝑡b to 𝑡end − 𝑡b = 497.1 ms of the
simulation). The lighter gray-shaded regions represent the extreme TCI values in each element
(taken over all post-bounce times). The darker shaded region represents the positive TCI standard
deviation. In the lower right panel, the temperature at the end of each simulation with different
𝐶TCI is plotted versus radius. A higher threshold results in less slope limiting, which allows for
some oscillations to develop in the temperature profile.
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Figure 5.23 Results from adiabatic collapse simulations where the innermost cell width has been
varied. The left panel shows the central density as a function of time for various Δ𝑟1. The right
panel shows the central entropy (top) and central electron fraction (bottom) versus central density
(up to its maximum value). Beyond the maximum central density, the entropy and electron
fraction are plotted versus time.

Figure 5.24 Energy conservation by the RKDG method in thornado for adiabatic collapse
simulations. The left panel shows gravitational (red), kinetic (black), internal (blue), and total
(magenta) energy versus time for the fiducial run with Δ𝑟1 = 0.5 km. Due to the relative
magnitude of 𝐸i and 𝐸g, the details in the kinetic and total energies are obscured. The middle
panel shows the change in total energy versus time for all the resolutions considered in
Section 5.6.6. The decrease in the total energies around 𝑡 − 𝑡b ≈ 375 ms is due to the bounce
shock reaching the outer boundary of the domain. The right panel shows the total energy versus
time for models with various combinations of limiters enabled for the fiducial run. The red line
represents the total energy when applying both the slope limiter and the bound-enforcing limiter.
The black line shows this quantity when only applying the bound enforcing limiter. The blue line
represents a model with both limiters off, which eventually crashed at bounce.
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Figure 5.25 Space-time plots of the absolute value of the logarithmic pressure gradient for
simulations employing component-wise (left) and characteristic (right) limiting. The time domain
extends over a brief period after bounce 𝑡 ∈ [𝑡b, 𝑡b + 20 ms]. The vertical dashed line around
10 km, which traces the minimum of the adiabatic index Γmin, represents the approximate position
of the phase transition. Near the bottom of each figure, the black line extending from
approximately 20 km to 100 km for a duration of 1 ms traces the bounce shock. The lines which
form after this are traces of secondary or tertiary “ripples” that propagate outward from the inner
core, and follow the shock shortly after bounce. With component-wise limiting, the pressure
gradient is relatively smooth at about 10 ms after bounce and thereafter. With characteristic
limiting, perturbations continue to develop in the solution after bounce, which is visible as noise
in the pressure gradient. A high time resolution was used in this case to better capture details of
the dynamics around the phase transition, such as the formation of acoustic waves and their
reflections off the inner boundary.
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Figure 5.26 Zoomed-in view of the logarithmic pressure gradient (to better capture details of the
dynamics around the phase transition) for the simulation employing characteristic limiting shown
in the right panel in Figure 5.25.
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CHAPTER 6

SINGULARITY-EOS : PERFORMANCE PORTABLE EQUATIONS OF STATE AND
MIXED CELL CLOSURES

Every day, once a day, give

yourself a present.

Dale Cooper, Twin Peaks

This chapter is based on work recently submitted to the Journal of Open Source Software.
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ABSTRACT

We present singularity-eos , a new performance-portable library for equations of state and related

capabilities. singularity-eos provides a large set of analytic equations of state, such as the

Gruneisen equation of state, and tabulated equation of state data under a unified interface. It also

provides support capabilities around these equations of state, such as Python wrappers, solvers

for finding pressure-temperature equilibrium between multiple equations of state, and a unique

modifier framework, allowing the user to transform a base equation of state, for example by shifting

or scaling the specific internal energy. All capabilities are performance portable, meaning they

compile and run on both CPU and GPU for a wide variety of architectures.

6.1 Introduction

When expressed mathematically for continuous materials, the laws of conservation of mass,

energy, and momentum form the Navier-Stokes equations of fluid dynamics. In the limit of zero

molecular viscosity, they become the Euler equations. These laws have been used to describe

phenomena as disparate as flow of air over an airplane wing, bacterial motion in fluids, and the

cataclysmic deaths of stars. However, the fluid equations are not complete, and the system must be

closed by a description of the material at a sub-continuum (e.g., molecular or atomic) scale. This

closure is commonly called the equation of state (EOS).

Equations of state vary from the simple ideal gas law, to sophisticated descriptions multi-phase

descriptions of the lattice structure of ice or wood, to models of quark-gluon plasma and nuclear

pasta at ultra high densities. A common form to write an equation of state is as a pair of relations:

𝑝 = 𝑝(𝜌, 𝑇, ®𝜆) and 𝜀 = 𝜀(𝜌, 𝑇, ®𝜆), (6.1)

which relate the pressure 𝑝 and specific internal energy 𝜀 to density 𝜌, temperature𝑇 , and potentially

some unknown set of additional quantities ®𝜆. However, other representations are possible, and in

common parlance an EOS is the collection of knowledge needed to reconstruct some intrinsic

thermodynamic quantities from others. For example, the speed of sound through a material or

the specific heat capacity, which are thermodynamic derivatives of the pressure and the specific



internal energy, are both determined by the EOS.

In multi-material fluid dynamics simulations, one often will end up with a so-called mixed cell,

where two materials exist within the same simulation zone. This can be an artifact of the numerical

representation; for example a steel bar and the surrounding air may end up sharing a finite volume

cell if the boundaries of the cell do not align exactly with the surface of the steel bar. Or it may

represent physical reality; for example, air is a mixture of nitrogen and oxygen gases, as well as

water vapor. Regardless of the nature of the mixed cell, one must somehow provide to the fluid

code what the material properties of the cell are as a whole. This is called a mixed cell closure.

One such closure is pressure-temperature equilibrium (PTE), where all materials in the cell are

assumed to be at the same pressure and temperature.

6.2 State of the Field

Typically fluid dynamics codes each develop an EOS package individually to meet a given

problem’s needs. Databases of tabulated equations of state, such as the Sesame (Lyon & Johnson,

1992) and Stellar Collapse (O’Connor & Ott, 2010a) databases often come with tabulated data

readers, for example, the EOSPAC library (Pimentel, 2021) and Stellar Collapse library (O’Connor

& Ott, 2010b). However, these libraries typically do not include analytic equations of state

or provide a unified API. They also don’t provide extra equation-of-state capabilities, such as

equilibrium solvers or production hardening. With a few exceptions, these libraries are also

typically not GPU-capable.

We present singularity-eos , which aims to be a “one stop shop” for EOS models for fluid and

continuum dynamics codes. It provides a unified interface for both analytic and tabulated equations

of state. It also provides useful surrounding capabilities, such as Python wrappers, modifiers,

which allow the user to transform a given EOS, and solvers which can find the state in which

multiple EOS’s are in PTE. To support usability, the library is extensively documented and tested

and supports builds through both cmake and Spack (Gamblin et al., 2015).

singularity-eos leverages the “Kokkos” (Edwards et al., 2014; Trott et al., 2021, 2022)library

for performance portability, meaning the code can run on both CPUs and GPUs, as well as other
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accelerators. This fills an important need, as modern super computing capabilities increasingly

rely on GPUs for performance. singularity-eos is now used in the ongoing open-source Phoe-

bus (Chapter 7) 1 project which has a separate code paper in-prep.

6.3 Design Principles and Feature Highlights

Here we enumerate several design principles underlying singularity-eos , and highlight a few

feature of the library.

6.3.1 Flexibility in loop patterns

singularity-eos provides both scalar and vector APIs, allowing the user to make EOS calls

on both single points in thermodynamic space, and on collections of points. The vector calls may

be more performant (as they may vectorize), however care is made to ensure both APIs operate at

acceptable performance, to accommodate different code structures downstream.

6.3.2 Flexibility in memory layout

The vector calls in singularity-eos use an accessor API and (with a few exceptions) accept

any C++ object that has a “operator[]” function defined. This allows users to lay out their memory

as they see fit and use singularity-eos even on strided or sparsely allocated memory.

6.3.3 Expose APIs to aid performance

Many equations of state are most naturally represented as functions of density and temperature.

However, fluid codes require pressure as a function of density and internal energy. Extracting this

often requires computing a root find to invert the relation

𝜀 = 𝜀(𝜌, 𝑇). (6.2)

In these cases, we expose an initial guess for temperature, which helps the solution rapidly

converge. Similarly, the performance of a sequence of EOS calls may depend on the ordering of

the calls. For example, if both temperature and pressure are required from an equation of state that

requires inversion, requesting pressure first will be less performant than requesting temperature

1https://github.com/lanl/phoebus

195

https://github.com/lanl/phoebus


first, as the former requires two root finds, and the latter requires only one. To enable this, we

expose a function FillEos, in which the user may request multiple quantities at once, and the code

uses ordering knowledge to compute them as performantly as possible.

6.3.4 Performance-portable polymorphism

Accelerators provide new challenges to standard object-oriented programming. In particular,

not all compiler stacks (such as Sycl (Reyes et al., 2020) or OpenMP Target Offload (Chandra

et al., 2001)) support relocatable device code, which is required for standard C++ polymorphism.

Even in programming models, such as CUDA (NVIDIA et al., 2020), which do support relocatable

device code, polymorphism can be slower than naively expected, and the user-level API can be

cumbersome, requiring operations such as placement new. To sidestep these issues, we use the

C++ language feature std::variant to implement a polymorphism mechanism that works on

device.

6.3.5 Modifiers

A given code may need to modify an EOS model to make it suitable for a given application.

For example, the zero-point of the energy may need to be shifted, a porosity model may need to be

added, or the unit system may need to be changed. We implement this with a system of modifiers,

which can be applied on top of an EOS in a generic way. Modifiers may also be chained.

6.3.6 Fast log-lookups

To span the required orders of magnitude, tabulated equations of state are often tabulated on log-

spaced grids. Logarithms and exponentials are, however, expensive operations and the performance

of lookups can suffer. We instead use the not-quite-transcendental lookups described in Miller et al.

(2022) to significantly enhance performance of log-like lookups.

6.3.7 Extensibility via modular parts and plugins

singularity-eos is designed to be extensible. The std::variant-based polymorphism, com-

bined with modifiers, as described above, already provides significant flexibility. However, down-

stream codes may wish to add functionality to the library. This may be implemented in several
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ways. First, as singularity-eos is open source, contributions from downstream developers are

welcome. Second, a C++ code that depends on singularity-eos may implement their own models

and include them in a local variant object. singularity-eos provides tooling to build variants up

iteratively. Finally, singularity-eos provides a flexible plugin infrastructure that allows down-

stream users to add capability to the core library locally by telling the build system to include

a locally downloaded plugin. This final capability allows downstream users to share code with

each other, even when committing that code to singularity-eos proper is not possible due to, e.g.,

licensing issues.
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CHAPTER 7

PHOEBUS: PERFORMANCE PORTABLE GRRMHD FOR RELATIVISTIC
ASTROPHYSICS

Burbidge, Burbidge, Fowler,

Hoyle

Took the stars and made them

toil:

Carbon, copper, gold, and lead

Formed in stars, is what they

said

Ken Croswell
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ABSTRACT

We introduce the open source code Phoebus (phifty one ergs blows up a star) for astrophysical

general-relativistic radiation magneto hydrodynamic simulations. Phoebus is designed for, but

not limited to, high-energy astrophysical environments such as core-collapse supernovae, neu-

tron star mergers, black-hole accretion disks, and similar phenomena. Phoebus is built on the

parthenon (Grete et al., 2022) performance portable adaptive mesh refinement framework, is GPU

capable, and capable of modeling a large dynamic range in space and time. We describe the

physical model employed in Phoebus, the numerical methods used, and demonstrate a suite of test

problems to demonstrate its abilities. We apply Phoebus to a problem of astrophysical interest – a

relativistic black hole MHD accretion disk problem using a nuclear equation of state and neutrino

transport.

7.1 Introduction

Compact objects such as neutron stars and black holes, through their formation channels or

interactions with their environments, power some of the most energetic phenomena in the universe.

Core-collapse supernovae (CCSNe), gamma-ray bursts, neutron star (NS) mergers, X-ray binaries,

and quasars, to name a few, compose some of the most energetic phenomena observed. These

events are linked to all of the post-Big Bang nucleosynthesis, the chemical and dynamical evolution

of galaxies, and comprise many of the compact object formation channels. Furthermore, these

phenomena probe matter at its most extreme, acting as grand laboratories for fundamental physics.

Our understanding of these phenomena relies on the union of theory and observation. For

the former, computational methods are an essential tool necessary for modeling the underlying

physics. However, these environments each have spatial and temporal scales that span many orders

of magnitude on their own. Combined, these problems span such a range in spatio-temporal scale

that was intractable in a single software, generally demanding instead specialized codes, each tuned

for a specific problem of interest.

We present Phoebus (phifty one ergs blows up a star) , a new general-relativistic radiation mag-

netohydrodynamics (GRRMHD) code developed for modeling systems in relativistic astrophysics.



Phoebus includes all of the physics necessary to model these systems, including accurate radiation

transport for both photon and neutrino fields, constrained-transport GRMHD, a wide variety of

equations of state including those of dense nuclear matter, and the ability to model a wide dy-

namic range in space and time through adaptive mesh refinement and a GPU-resident development

strategy.

An additional challenge, separate from numerically modeling the rich physics necessary, is the

need to do so efficiently, across a diverse range of computing architectures – so called performance

portability. Computing resources are becoming increasingly heterogeneous with compute nodes

being comprised of both CPUs and GPUs and each GPU vendor supporting their own programming

model and software stack. Hence, modern high performance simulation software must not only be

able to leverage these architectures, but do so efficiently. To enable this, Phoebus is built upon

parthenon 1, a performance portable, block-structured adaptive mesh refinement (AMR) library

(Grete et al., 2022). parthenon , in turn, uses kokkos (Edwards et al., 2014; Trott et al., 2021,

2022), a hardware agnostic performance portability abstraction library, for on-node parallelism.

This enables the user to, at compile time, select the target hardware, and kokkos specializes the

relevant code to the target hardware. kokkos also exposes fine grained tuning of loop patterns to

enable platform specific optimizations.

Phoebus adopts a fully free-and-open-source development model. Making scientific software

open source constitutes good scientific practice as it enables transparency, full reproducability, and

ultimately enables more science through serving the community. The code is publicly available2

and developed on GitHub. We welcome, and hope for, bug reporting, issue tracking, feature or

pull requests, and general feedback from the community. Continuous integration and unit testing

are enabled with the Catch23 unit testing framework and all pull requests are reviewed before

merging into the main codebase. Phoebus includes an expansive, and growing, suite of unit and

regression tests that stress simple compilations and functionalities to large multiphysics problems.

1https://github.com/parthenon-hpc-lab/parthenon
2https://github.com/lanl/phoebus
3https://github.com/catchorg/Catch2
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The software is licensed under the 3-clause Berkeley Software Distribution (BSD-3) clause which

has relaxed rules for distribution.

In Section 7.2 we lay out the full system of equations that Phoebus is currently designed to

solve. In Section 7.3 we describe the numerical methods used for each physics sector. In Section 7.4

we present a suite of tests designed to stress and verify the fidelity of Phoebus. Finally we offer

concluding thoughts in Section 7.5 and discuss the future direction of Phoebus as well as its

position as an open-source software.

7.2 Physical Model

In Phoebus we adopt the general relativistic Euler equations of magnetohydrodynamics, sup-

plemented by an appropriate, but flexible, equation of state and set of radiative opacities. The

relevant systems of equations and physical assumptions are given below. In all of the following,

Greek indices run from 0 to 3 and Latin indices run from 1 to 3. We adopt the Einstein summation

convention for repeated indices.

7.2.1 GRRMHD

For the fluid equations, we adopt the Valencia Formulation (Banyuls et al., 1997; Font et al.,

2000) as summarized in Giacomazzo & Rezzolla (2007). We solve the conservation law

(√𝛾U),𝑡 + (√−𝑔F𝑖),𝑖 =
√−𝑔S (7.1)

for conserved vector

U =

©«

𝐷

𝑆 𝑗

𝜏

𝐵𝑘

ª®®®®®®®®¬
=

©«

𝜌𝑊

(𝜌ℎ + 𝑏2)𝑊2𝑣 𝑗 − 𝛼𝑏0𝑏 𝑗

(𝜌ℎ + 𝑏2)𝑊2 − (𝑝 + 𝑏2/2) − 𝛼2(𝑏0)2 − 𝐷

𝐵𝑘

ª®®®®®®®®¬
, (7.2)

flux vector

F𝑖 =

©«

𝐷�̃�𝑖/𝛼

𝑆 𝑗 �̃�
𝑖/𝛼 + (𝑝 + 𝑏2/2)𝛿𝑖

𝑗
− 𝑏 𝑗𝐵𝑖/𝑊

𝜏�̃�𝑖/𝛼 + (𝑝 + 𝑏2/2)𝑣𝑖 − 𝛼𝑏0𝐵𝑖/𝑊

𝐵𝑘 �̃�𝑖/𝛼 − 𝐵𝑖 �̃�𝑘/𝛼

ª®®®®®®®®¬
, (7.3)
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and source vector

S =

©«

0

𝑇 𝜇𝜈 (𝑔𝜈 𝑗 ,𝜇 − Γ𝛿𝜈𝜇𝑔𝛿 𝑗 ) + 𝐺𝜈

𝛼(𝑇 𝜇0(ln𝛼),𝜇 − 𝑇 𝜇𝜈Γ0
𝜈𝜇) + 𝐺𝜈

0𝑘

ª®®®®®®®®¬
, (7.4)

where 𝑢𝜇 is the four-velocity of the fluid,

𝑣𝑖 =
𝑢𝑖

𝑊
+ 𝛽

𝑖

𝛼
(7.5)

is the 3-velocity, with densitized 3-velocity

�̃�𝑖 = 𝛼𝑣𝑖 − 𝛽𝑖, (7.6)

for Lorentz factor

𝑊 = 𝛼𝑢0, (7.7)

lapse 𝛼, shift 𝛽𝑖, magnetic field four-vector 𝑏𝜇 defined by

𝑏𝜇𝑢𝑛𝑢 − 𝑏𝜈𝑢𝑚𝑢 = ∗𝐹𝜇𝜈 (7.8)

for the Hodge star of the Maxwell stress tensor ∗𝐹𝜇𝜈, baryon number density 𝜌, specific enthalpy

ℎ, Christoffel symbols Γ𝜇𝜈𝜎, four-metric 𝑔𝜇𝜈, three-metric 𝛾𝜇𝜈, and stress-energy tensor

𝑇 𝜇𝜈 = (𝜌 + 𝑢 + 𝑃 + 𝑏2)𝑢𝜇𝑢𝜈 +
(
𝑃 + 1

2
𝑏2

)
𝑔𝜇𝜈 − 𝑏𝜇𝑏𝜈, (7.9)

for pressure 𝑃. 𝐺𝜈 is the radiation 4-force including radiation-matter interactions. The magnetic

field four-vector 𝑏𝜇 is related to the Eulerian observer magnetic field 3-vector 𝐵𝑖 by

𝑏0 =
𝑊

𝛼
𝐵𝑖𝑣𝑖 (7.10)

𝑏𝑖 =
𝐵𝑖 + 𝛼𝑏0𝑢𝑖

𝑊
(7.11)

𝑏2 = 𝑏𝜇𝑏𝜇 =
𝐵2 + 𝛼2(𝑏0)2

𝑊2 . (7.12)
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We also track a primitive vector

P =

©«

𝜌

𝑊𝑣𝑖

𝜌𝜖

𝐵𝑘

ª®®®®®®®®¬
, (7.13)

which is used for reconstructions and to compute fluxes.

In addition to the above equations, Phoebus supports the evolution of arbitrary passive scalars

(𝑋𝜌𝑢𝜇);𝜇 = 𝑆 (7.14)

where 𝑋 is some advected quantity that is neither intrinsic nor extrinsic, 𝑆, is some potentially

non-zero source term, and the notation 𝜙𝜇;𝜇 denotes the covariant derivative. In Phoebus, we use

this framework to model the lepton exchange between the matter and neutrino radiation fields,

taking 𝑋 to be the electron fraction 𝑌𝑒 and 𝑆 to be √𝑔𝐺𝑦𝑒, with 𝐺𝑦𝑒 capturing the rate of transfer.

7.2.2 Equation of State

The equation of state (EOS) provides the relationship between the independent and thermody-

namic variables and, in general, encapsulates much of the required microphysics. These dependent

variables, and on occasion their derivatives, are crucial for modeling astrophysical environments.

Phoebus supports a wide range of equations of state of astrophysical interest, including tabulated

dense matter and Helmholtz.

Software capable of modeling a range of astrophysical environments requires flexibility in its

EOS. To this end, the EOS functionality of Phoebus is provided by an external library, singularity-

eos 4 (Miller et al., in prep). singularity-eos provides downstream fluid codes with performance

portable EOS access with a unified API across all EOS’s. At present, singularity-eos implements

more than ten EOS’s including, of note, ideal gas, Helmholtz (Timmes & Swesty, 2000), and

tabulated dense matter. Implementing the EOS microphysics with this framework allows us to

switch, or add, EOS’s without modifying Phoebus. singularity-eos provides one-to-one Python
4https://github.com/lanl/singularity-eos
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bindings for testing and analysis. We support the ability to solve for adiabats of an arbitrary EOS

– a crucial capability as many initial condition setups require constant entropy.

In this work we use either an ideal equation of state or a tabulated nuclear matter EOS. For the

latter we use the “SFHo” EOS (Steiner et al., 2013a). SFHo is a relativistic mean field model built

upon Hempel et al. (2012) that, importantly, was constructed to reproduce observed neutron star

mass-radius relationships.

7.2.3 Gravity

Phoebus is a fully general relativistic code, and gravity is implemented via the curvature of a

metric tensor. We implement a generic metric infrastructure that supports a selection of tabulated,

analytically prescribed, and numerically computed metrics at compile time. The machinery is

highly flexible, allowing for simple compile-time switching of metric implementations. We provide

a method GetCoordinateSystem, which returns a CoordinateSystem object. This object has

reference semantics, but can be copied safely to device, similar to Kokkos::Views. Depending on

user selection at compile time, requesting, e.g., the spatial metric 𝛾𝑖 𝑗 from the CoordinateSystem

object may reference an evolved grid variable, an analytic formula, or tabulated data. Derivatives,

such as those needed for Christoffel symbols may be computed either analytically or numerically

via finite differences.

7.2.3.1 Monopole GR

For problems where gravitational waves aren’t important and where the gravitational potential

is approximately spherically symmetric, Phoebus provides a monopole solver, which assumes a

spherically symmetric 3-metric with maximal slicing5 and areal shift6

𝑑𝑠2 = (−𝛼2 + 𝑎2(𝛽𝑟)2)𝑑𝑡2 + 2𝑎2𝛽𝑟𝑑𝑡𝑑𝑟 + 𝑎2𝑑𝑟2 + 𝑟2𝑑Ω2. (7.15)

with unknown metric function 𝑎, lapse 𝛼, and radial shift 𝛽𝑟 .

It turns out that in spherical symmetry, under these gauge conditions, the Einstein constraint

equations are sufficient to specify the metric and extrinsic curvature components 𝑎 and 𝐾𝑟𝑟 . The
5That is, that the trace of the extrinsic curvature vanishes
6In other words, we choose a gauge in which spheres have surface area 4𝜋𝑟2.
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Hamiltonian constraint provides an equation for 𝑎 and the momentum constraint for 𝐾𝑟𝑟 :

𝜕𝑟𝑎 =
𝑎

8𝑟

{
4 + 𝑎2

[
−4 + 𝑟2

(
3(𝐾𝑟

𝑟 )2 + 32𝜋𝜌ADM

)]}
(7.16)

𝜕𝑟𝐾
𝑟
𝑟 = 8𝜋𝑎2 𝑗𝑟 − 3

𝑟
𝐾𝑟
𝑟 . (7.17)

Here

𝜌 = 𝜏 + 𝐷 (7.18)

is the ADM mass and

𝑗 𝑖 = 𝑆𝑖 (7.19)

is the ADM momentum. The ADM evolution equations can then be used to solve for the gauge

variables, 𝛼 and 𝛽𝑟 :

1
𝑎2 𝜕

2
𝑟 𝛼 = 𝛼

[
3
2
(𝐾𝑟𝑟 )2 + 4𝜋(𝜌 + 𝑆)

]
+ 𝑎′

𝑎3 𝜕𝑟𝛼 − 2
𝑎2𝑟

𝜕𝑟𝛼 (7.20)

𝛽𝑟 = −1
2
𝛼𝑟𝐾𝑟𝑟 , (7.21)

where the lapse 𝛼 satisfies a second-order boundary-value problem, and the shift 𝛽 is given

algebraically. Here

𝑆𝑖𝑗 = (𝜌0ℎ + 𝑏2)𝑊2 + 3(𝑃 + 𝑏2/2) − 𝑃𝑖𝜇𝑃𝜈𝑗 𝑏𝜇𝑏𝜈 (7.22)

is the ADM stress tensor and 𝑃 is the projection operator onto the hypersurface of constant

coordinate time.

The boundary conditions are given by symmetry at the origin,

𝑎(𝑟 = 0) = 1 (7.23)

𝐾𝑟𝑟 (𝑟 = 0) = 0 (7.24)

𝜕𝑟𝛼(𝑟 = 0) = 0, (7.25)

and the weak field limit at large radii:

lim
𝑟→∞

𝛼 = 1 − 𝑐

𝑟
(7.26)

⇒ lim
𝑟→∞

𝜕𝑟𝛼 =
𝑐

𝑟2 (7.27)

⇒ lim
𝑟→∞

𝛼 = 1 − 𝑟𝜕𝑟𝛼. (7.28)
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We solve equations (7.16) and (7.17) by integration outward from the origin using a second-order

Runge-Kutta method. If Equation (7.20) is discretized by second-order centered finite differences,

it forms a matrix equation, where the matrix operator is tridiagonal. This operator may then be

inverted via standard diagonal matrix inversion techniques.

To complete the monopole solver, time derivatives of the metric must be provided so that the

time-components of the Christoffel symbols may be provided by the infrastructure. These equations

are algebraically complex, and so are not included here. They are summarized in Appendix 9F.

7.2.4 Radiation

In problems of interest in relativistic astrophysics it is necessary to consider radiation fields

and their impact on the matter field. These radiation fields may exchange four-momentum and, in

the case of neutrino radiation, lepton number with the matter field. Here, we focus primarily on

neutrino radiation.

The species-dependent neutrino distribution function 𝑓𝜈 (𝑥𝛼, 𝑝𝛼), for 4-position and 4-momentum

𝑥𝛼 and 𝑝𝛼, evolves according to the 6+1 Boltzmann equation

𝑝𝛼
[
𝜕 𝑓𝜈

𝜕𝑥𝛼
− Γ

𝛽
𝛼𝛾𝑝

𝛾 𝜕 𝑓𝜈

𝜕𝑝𝛽

]
=

[
𝑑𝑓𝜈

𝑑𝜏

]
coll

(7.29)

where Γ
𝛽
𝛼𝛾𝑝

𝛾 are the Christoffel symbols and the right hand side is the collision term including

neutrino-matter interactions. Full solution of the 6+1 Boltzmann equation in dynamical environ-

ments remains computationally intractable and simplifications must be made, as we discuss in detail

in Section 7.3.3.

We include a suite of relevant neutrino-matter interactions. We list the absorption and emission

processes in table 7.1. Those absorption and emission interactions involving electron type neutrinos

and antineutrinos will exchange lepton number with the fluid, modifying the composition. We
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Type Processes Current Corrections/Approximations

Abs./Emis. on neutrons 𝜈𝑒 + 𝑛↔ 𝑒− + 𝑝
𝜈𝜇 + 𝑛↔ 𝜇− + 𝑝 Charged

Blocking/Stimulated Abs.
Weak Magnetism
Kinematic recoil

Abs./Emis. on protons �̄�𝑒 + 𝑝 ↔ 𝑒+ + 𝑛
�̄�𝜇 + 𝑝 ↔ 𝜇+ + 𝑛 Charged

Blocking/Stimulated Abs.
Weak Magnetism
Kinematic recoil

Abs./Emis. on ions 𝜈𝑒𝐴↔ 𝐴′𝑒− Charged Blocking/Stimulated Abs.
Kinematic recoil

Electron capture on ions 𝑒− + 𝐴↔ 𝐴′ + 𝜈𝑒 Charged Blocking/Stimulated Abs.
Kinematic recoil

𝑒+ − 𝑒− Annihilation 𝑒+𝑒− ↔ 𝜈𝑖 �̄�𝑖 Charged + Neutral single-𝜈 Blocking
Kinematic recoil

𝑛𝑖-𝑛𝑖 Brehmsstrahlung 𝑛1
𝑖
+ 𝑛2

𝑖
→ 𝑛3

𝑖
+ 𝑛4

𝑖
+ 𝜈𝑖 �̄�𝑖 Neutral single-𝜈 Blocking

Kinematic recoil

Table 7.1 Emission and absorption processes used in Phoebus.The symbols previously used are
defined as follows: 𝑛 is a neutron, 𝑝 a proton, 𝑒− an electron, 𝑒+ a proton, 𝜇− a muon, 𝐴 an ion, 𝜇+
an antimuon, and 𝑛𝑖 an arbitrary nucleon. 𝜈𝑖 is an arbitrary neutrino. 𝜈𝑒 is an electron neutrino,
and �̄�𝑒 is an electron antineutrino. We describe the corrections and approximations used below, as
tabulated in Skinner et al. (2018). Blocking and stimulated absorption are related to the
Fermi-Dirac nature of neutrinos. Weak magnetism is related to the extended quark structure of
nucleons. Single-𝜈 blocking is an approximation of blocking that becomes exact for single
neutrino processes. These interactions are summarized in Burrows et al. (2006).

include the elastic scattering processes listed below,

𝜈𝑖 + 𝑝 ↔ 𝜈𝑖 + 𝑝 (7.30)

𝜈𝑖 + 𝑛 ↔ 𝜈𝑖 + 𝑛 (7.31)

𝜈𝑖 + 𝐴 ↔ 𝜈𝑖 + 𝐴 (7.32)

𝜈𝑖 + 𝛼 ↔ 𝜈𝑖 + 𝛼 (7.33)

where 𝑛 represent neutrons, 𝑝 protons, 𝜈𝑖 neutrinos, 𝐴 heavy ions, and 𝛼 alpha particles. Emissiv-

ities and opacities are tabulated as presented in Burrows et al. (2006).

The above set of interactions, while sufficient for many applications, is not exhaustive. In par-

ticular, we neglect neutrino-electron inelastic scattering (Bruenn, 1985). Experience has repeatedly

demonstrated that even small corrections can have a large impact on neutrino-matter interactions

and the subsequent dynamics (e.g., Freedman, 1974; Arnett, 1977; Bethe & Wilson, 1985; Bruenn,
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1985; Horowitz, 1997; Burrows & Sawyer, 1998; Reddy et al., 1998; Müller et al., 2012; Buras et al.,

2003; Hix et al., 2003; Kotake et al., 2018; Bollig et al., 2017; Fischer et al., 2020; Betranhandy

& O’Connor, 2020; Miller et al., 2020; Kuroda, 2021) Future work for production simulations will

include more complete sets of neutrino-matter interactions.

Neutrinos exchange four-momentum and lepton number with the fluid. In a frame comoving

with the fluid, the four-momentum source term is given as

𝐺 (𝑎) =
1
ℎ

∫
(𝜒𝜖, 𝑓 𝐼𝜖, 𝑓 − 𝜂𝜖, 𝑓 )𝑛(𝑎)𝑑𝜖𝑑Ω, (7.34)

where 𝜒𝜖, 𝑓 = 𝛼𝜖, 𝑓 + 𝜎𝑎𝜖, 𝑓 is the flavor dependent extinction coefficient combining absorption 𝛼𝜖, 𝑓

and scattering 𝜎𝑎
𝜖, 𝑓

, 𝐼𝜖, 𝑓 is the radiation intensity, 𝜂𝜖, 𝑓 = 𝑗𝜖, 𝑓 + 𝜂𝑠𝜖, 𝑓 (𝐼𝜖, 𝑓 ) is the total emissivity

combining fluid 𝑗𝜖, 𝑓 and scattering 𝜂𝑠
𝜖, 𝑓

emission, and 𝑛(𝑎) = 𝑝 (𝑎)/𝜖 . This is then mapped into the

lab frame by a coordinate transformation

𝐺𝜇 = 𝑒
𝜇

(𝑎)𝐺
(𝑎) (7.35)

where 𝑒𝜇(𝑎) defines an orthonormal tetrad.

The lepton number exchange source term 𝐺𝑦𝑒 is given by

𝐺𝑦𝑒 =
𝑚𝑝

ℎ
sign( 𝑓 )

∫
𝜒𝜖, 𝑓 𝐼𝜖, 𝑓 − 𝜂𝜖, 𝑓

𝜖
𝑑𝜖𝑑Ω (7.36)

where 𝑚𝑝 is the proton mass and

sign( 𝑓 ) =



1 for 𝑓 = 𝜈𝑒

−1 for 𝑓 = �̄�𝑒

0 for 𝑓 = 𝜈𝑥

(7.37)

determines the sign of the lepton exchange.

7.3 Numerical Methods

Here we lay out the numerical methods used to solve the equations introduced above.
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7.3.1 MHD

Magnetic field evolution is included in Phoebus using a constrained transport scheme described

in Tóth (2000). This formulation of constrained transport uses cell centered magnetic fields. For

further details on the formulations used in Phoebus, see Miller et al. (2019); Gammie et al. (2003).

The details of magnetic field treatment will be the subject of future updates to Phoebus.

Phoebus currently supports the local Lax-Friedrichs (LLF) and Harten-Lax-van Leer (HLL)

Riemann solvers (Harten et al., 1983b; Toro, 2009b). Additional Riemann solvers are planned

to be supported in the future. Reconstruction methods currently supported in Phoebus include

piecewise constant (denoted constant); piecewise linear (denoted linear) with a variety of

limiter options, though the default is minmod (Van Leer, 1977; Roe, 1986; Kuzmin, 2006); the

fifth-order monotonicity preserving scheme of Suresh & Huynh (1997) (denoted mp5); and a novel

fifth-order weighted essentially non-oscillatory (Shu, 2009, WENO) implementation using the Z-

type smoothness indicators from Borges et al. (2008) (denoted weno5z). We call this WENO

scheme WENO5-Z-AOAH, and describe it in detail in Appendix 9E.

The recovery of the primitive variables from the conserved state vector is non-trivial, and must

be computed numerically, as no analytic solution is available. We use the procedure described in

Kastaun et al. (2021), which is guaranteed to always converge.

7.3.2 Atmosphere Treatment

Numerical modeling of accretion disk systems requires including vacuum originally outside of

the disk – a feat infeasible for Eulerian hydrodynamics. Instead, artificial atmospheres must be

imposed to ensure both physical validity and stability of the numerical scheme. The problem is

further complicated by the use of a tabulated equation of state which has strict bounds on the range

of grid variables. In general, an EOS with a set of 𝑛 state variables Q has bounds

Q𝑖 ∈ {𝑞min, 𝑞max} for 𝑖 = 1, . . . , 𝑛 (7.38)

For the Helmholtz EOS, take Q = {𝜌, 𝑇}. Including electron fraction𝑌𝑒 allows for tabulated nuclear

matter EOS’s commonly used for CCSN and merger simulations such as SFHo. These bounds must
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be accounted for. We demand that density remain above some floor value, i.e., 𝜌 > 𝜌flr. There are

several implemented forms for the floor density, including

𝜌flr =



𝜌0

𝜌0𝑒
−𝛼𝑥1

𝜌0(𝑥1)−𝛼

𝜌0𝑟
−𝛼

where 𝜌0 is some small, problem dependent constant and 𝛼 is a positive exponent. 𝑥1 is the radial

coordinate which, depending on the coordinate system, may be transformed (e.g., 𝑥1 = ln(𝑟)). We

generally take 𝛼 = 2.0, but that is not required. In all cases, the density floor near the black hole is

approximately 𝜌0 and, besides the first constant case, decays with radius. This radial decay ensures

that the floors do not interfere with winds from the disk. To ensure consistency with the tabulated

EOS, we require that the floor does not extend below the minimum density in the table. The specific

internal energy is set similarly to the above. For electron fraction we simply require that it stay

within the bounds of the table. In general in Phoebus we use the second case, where relevant,

unless otherwise noted.

7.3.3 Radiation

In contexts such as BNS mergers and CCSNe, neutrinos are responsible for exchanging four-

momentum and lepton number with the fluid. Neutrino-matter interactions drive the chemical and

dynamical evolution of these systems, with electron neutrino absorption (emission) driving the

matter to be more proton (neutron) rich, and inversely for electron anti-neutrinos. An accurate

treatment of the neutrino radiation field is necessary for following nucleosynthesis in problems of

interest.

We implement in Phoebus several methods for evolving the radiation fields. First, we include a

gray, two moment approach. Additionally, following closely to the methods outlined in bhlight and

nubhlight (Dolence et al., 2009; Ryan et al., 2015; Miller et al., 2019), we implement neutrino

transport through Monte Carlo methods. There is also, for testing purposes, a simple “lightbulb”
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approach where the neutrino luminosity is fixed at a constant value and a analytic form for the

source terms is taken. We do not discuss that approach here.

For all of the above we consider three neutrino flavors: electron neutrinos, electron antineutrinos,

and a characteristic heavy neutrino. With appropriate micophysics, the methods may be trivially

extended to include, for example, muon neutrino evolution. Below we summarize the methods

included in Phoebus and refer the reader to the aforementioned works for further details.

7.3.3.1 Monte Carlo

The probability distribution of emitted Monte Carlo packets is

1
√
𝑔

𝑑𝑁𝑝

𝑑3𝑥𝑑𝑡𝑑𝜈𝑑Ω
=

1
𝜔
√
𝑔

𝑑𝑁

𝑑3𝑥𝑑𝑡𝑑𝜈𝑑Ω
=

1
𝑤

𝑗𝜈, 𝑓

ℎ𝜈
(7.39)

where 𝑁𝑝 is the number of Monte Carlo packets with 𝜔 physical neutrinos per packet, 𝑁 is the

number of physical particles, 𝑗𝜈, 𝑓 is the fluid frame emissivity of neutrinos with frequency 𝜈, and

flavor 𝑓 ∈ {𝜈𝑒, �̄�𝑒, 𝜈𝑥}7, and ℎ is Planck’s constant. The number of emitted packets in timestep Δ𝑡

is

𝑁𝑝,𝑡𝑜𝑡 = Δ𝑡
∑︁
𝑓

∫ √
𝑔𝑑3𝑥𝑑𝜈𝑑Ω

1
𝑤

𝑗𝜈, 𝑓

ℎ𝜈
(7.40)

and the number of packets of flavor 𝑓 created in a computational cell 𝑖 of volume Δ3𝑥 is

𝑁𝑝, 𝑓 ,𝑖 = Δ𝑡Δ3𝑥

∫ √
𝑔𝑑𝜈𝑑Ω

1
𝑤

𝑗𝜈, 𝑓

ℎ𝜈
. (7.41)

We control the total number of Monte Carlo packets created per timestep by setting the weights

𝑤 as

𝑤 =
𝐶

𝜈
(7.42)

where C is a constant. This ensures that packets of frequency 𝜈 and weight 𝑤(𝜈) have energy

𝐸𝑝 = 𝑤ℎ𝜈 = ℎ𝐶, (7.43)

such that packet energy is independent of frequency. The constant 𝐶 is set by fixing the total

number of Monte Carlo packets created to be 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 and setting 𝐶 such that equation 7.40 is

7In practice the methods presented here may be straightforwardly extended to more neutrino species.
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satisfied. 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is set such that the total number of Monte Carlo packets is roughly constant in

time. Thus, we have

𝐶 =
Δ𝑡

ℎ𝑁𝑡𝑎𝑟𝑔𝑒𝑡

∑︁
𝑓

∫ √
𝑔𝑑3𝑥𝑑𝜈𝑑Ω 𝑗𝜈, 𝑓 . (7.44)

Absorption of radiation is treated probabilistically in Monte Carlo fashion. A neutrino of flavor

𝑓 that travels a distance Δ𝜆 traverses an optical depth

Δ𝜏𝑎, 𝑓 (𝜈) = 𝜈𝛼𝜈, 𝑓Δ𝜆 (7.45)

where 𝛼𝜈, 𝑓 is the absorption extinction coefficient for radiation of frequency 𝜈 and flavor 𝑓 .

Absorption occurs if

Δ𝜏𝑎, 𝑓 (𝜈) > ln(ra) (7.46)

where 𝑟𝑎 is a random variable sampled uniformly from the interval [0, 1).

The implementation of Monte Carlo radiation leverages parthenon ’s swarms particle infras-

tructure. Monte Carlo scattering is not yet implemented in Phoebus. In the future, Monte Carlo

scattering will be implemented following the methods in Miller et al. (2019).

7.3.3.2 Moments

We implement gray M1 moments scheme in Phoebus (Thorne, 1981; Shibata et al., 2011;

Cardall et al., 2013; Foucart et al., 2015). We evolve three independent neutrino species: 𝜈𝑒, 𝜈𝑒,

and 𝜈𝑥 , where the latter is the combination of (𝜈𝜇, 𝜈𝜇, 𝜈𝜏, 𝜈𝜏). In gray approximation we consider

energy-integrated moments and evolve first two moments. The energy density, flux, and radiation

pressure in the inertial frame are defined as follows

𝐸 =

∫
𝜖 𝑓𝜈 (𝑝𝜇, 𝑥𝜇)𝛿(ℎ𝜈 − 𝜖)𝑑3𝑝 , (7.47)

𝐹𝑖 =

∫
𝑝𝑖 𝑓𝜈 (𝑝𝜇, 𝑥𝜇)𝛿(ℎ𝜈 − 𝜖)𝑑3𝑝 , (7.48)

𝑃𝑖 𝑗 =

∫
𝑝𝑖𝑝 𝑗

𝜖
𝑓𝜈 (𝑝𝜇, 𝑥𝜇)𝛿(ℎ𝜈 − 𝜖)𝑑3𝑝 , (7.49)

where 𝜖 is neutrino energy in the rest frame of medium. To obtain evolution equations, we

decompose the stress-energy tensor for the radiation field as follows

𝑇
𝜇𝜈

rad = 𝑛𝜇𝑛𝜈𝐸 + 𝑛𝜇𝐹𝜈 + 𝑛𝜈𝐹𝜇 + 𝑃𝜇𝜈 , (7.50)
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Then the conservation equations in Valencia formalism are

𝜕𝑡 (
√
𝛾𝐸) + 𝜕𝑖 [

√
𝛾(𝛼𝐹𝑖 − 𝛽𝑖𝐸)] = 𝛼√𝛾(𝛼𝐺0 − 𝐹𝑖𝜕𝑖𝛼 + 𝑃𝑖 𝑗𝐾𝑖 𝑗 ) ,

𝜕𝑡 (
√
𝛾𝐹𝑖) + 𝜕𝑗 [

√
𝛾(𝛼𝑃 𝑗

𝑖
− 𝛽 𝑗𝐹𝑖)] =

√
𝛾(𝛼𝛾𝑖𝜈𝐺𝜈 + 𝐹 𝑗𝜕𝑖𝛽 𝑗 + 𝑃 𝑗 𝑘

𝛼

2
𝜕𝑖𝛾 𝑗 𝑘 − 𝐸𝜕𝑖𝛼) ,

where 𝛼 is the lapse, 𝛽 is the shift, 𝛾 is a three-metric, and 𝐾 is the extrinsic curvature. The first

terms on the right side of Equations (7.51) & (7.51) are the collisional source terms. We consider

absorption, emission, and iso-energetic scattering from the background fluid. The source terms are

very similar to those in Shibata et al. (2011) and Foucart et al. (2015):

𝐺 = 𝜅𝐽 (𝐽eq − 𝐽) , (7.51)

𝐺𝜈 = 𝜅𝐽𝑢𝜈 (𝐽eq − 𝐽) − 𝜅𝐻𝐻𝜈 , (7.52)

where 𝐽 and 𝐻𝜈 are the energy and flux in the fluid rest frame. 𝜅𝐽 is energy-averaged absorption

and 𝜅𝐻 is the sum of energy-averaged absorption and scattering opacities. 𝐽eq is evaluated from

the equilibrium distribution function

𝐽eq =

∫ ∞

0
𝑑𝜈𝜈3

∫
𝑑Ω

1
1 + 𝑒𝑥𝑝[(𝜈 − 𝜇𝜈)/𝑇𝜈]

, (7.53)

where 𝜇𝜈 and 𝑇𝜈 are the chemical potential and temperature of neutrinos that are in thermal

equilibrium with matter, and 𝜈 is neutrino energy in the fluid frame.

To close the system of equations, we need to specify the closure relation, 𝑃𝑖 𝑗 (𝐸, 𝐹𝑖). We use

M1 closure which evaluates 𝑃𝑖 𝑗 by interpolating between optically thin and optically thick regimes

(Shibata et al., 2011)

𝑃𝑖 𝑗 =
3𝜒( 𝑓 ) − 1

2
𝑃
𝑖 𝑗

thin +
3(1 − 𝜒( 𝑓 ))

2
𝑃
𝑖 𝑗

thick , (7.54)

where 𝑓 =
√︁
𝐹𝛼𝐹𝛼)/𝐸 is the flux factor and ranges from 0 to 1 and 𝜒 is an interpolant. We use

maximum entropy closure for fermionic radiation (MEFD) which derives the closure relation by
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maximizing the entropy for Fermi-Dirac distribution (Cernohorsky & Bludman, 1994). In the limit

of maximum packing, the MEFD closure is (Smit et al., 2000)

𝜒 =
1
3
(1 − 2 𝑓 + 4 𝑓 2) . (7.55)

Since 𝑃𝑖 𝑗 is a function of 𝑓 and 𝑓 is a function of 𝐸 and 𝐹𝛼, we use Newton-Raphson iteration

algorithm to find the roots.

We solve Equations (7.51) & (7.51) by performing a backward Euler discretization. We fix 𝐽BB,

𝜅𝐽 , 𝜅𝐻 and obtain a linear system of equations for (𝐸, 𝐹𝑖) at time (𝑛 + 1)

√
𝛾
𝐸𝑛+1 − 𝐸∗

Δ𝑡
= −𝛼√𝛾𝑛𝜈𝐺𝜈 (7.56)

√
𝛾
𝐹𝑛+1
𝑖

− 𝐹∗
𝑖

Δ𝑡
= −𝛼√𝛾𝛾𝜈𝑖 𝐺𝜈 (7.57)

7.3.4 Gravity

7.3.4.1 Monopole GR

To solve the method in practice, matter quantities such as density are accumulated in a conser-

vative way from a three-dimensional, potentially Cartesian AMR grid onto a single-dimensional

radial grid, which is used by the monopole solver. The procedure in spherical coordinates is the

following:

1. For each cell in a given meshblock, compute it’s “integrand + measure”. i.e., M(𝑄) =

𝑄𝑟2 sin 𝜃Δ𝜃Δ𝜙. (Fortunately, in the monopole approximation, this is the relevant part of the

line element.)

2. Sum up 𝑀 (𝑄) in the 𝜃 and 𝜙 directions on the block, e.g., 𝑆𝑀 (𝑄) =
∑
𝑗 ,𝑖 𝑀𝑖, 𝑗 (𝑄). This

creates a 1D radial grid aligned with the meshblock grid.

3. For each point on the radial grid that intersects the meshblock, interpolate 𝑆𝑀 (𝑄) on to that

point additively. In other words, add this meshblock’s contribution to the total.

4. At the end, divide each point by 4𝜋
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In Cartesian coordinates, the procedure is similar, but more complex:

1. For each cell in a given meshblock, compute:

• The radius 𝑟 and angle 𝜃 of the cell

• The width of the cell in the 𝜃 and 𝜙 directions by taking the vector {Δ𝑥,Δ𝑦,Δ𝑧} and

applying the Jacobian of the coordinate transformation to spherical coordinates to it

• The measure, M(𝑄) = 𝑄𝑟2 sin 𝜃Δ𝜃Δ𝜙

2. Reinterpret the cells in the meshblock as a 1D unstructured grid in radius. For each cell

on the monopole GR grid, use this 1D unstructured grid to interpolate the measure on to it

additively.

3. The reduction over all meshblocks onto this 1D grid is the integral over spherical shells of

𝑄. Divide by 4𝜋 to get the average.

This solve is performed in a first-order operator-split way. To maximally expose concurrency on

GPUs, the monopole solve is performed on CPU, concurrently with the fluid update. This implies

a slight lag in the metric solution by one RK subcycle. We have found that this time lag has not

significantly impacted the accuracy or stability of realistic simulations.

7.3.5 Tracer Particles

We include tracer particles in Phoebus. Tracer particles are a numerical representation of

a Lagrangian fluid packet which is advected along with the fluid. Tracer particles allow for the

post-processing of simulation data for, e.g., nucleosynthesis calculations. In the (3 + 1) split of

general relativity, the equation of motion is

𝑑𝑥𝑖

𝑑𝑡
=
𝑢𝑖

𝑢0 = 𝛼𝑣𝑖 − 𝛽𝑖, (7.58)

where 𝑥𝑖 are the tracer’s spatial coordinates, 𝛼 is the lapse, 𝛽𝑖 is the shift vector, 𝑣𝑖 is the fluid

three-velocity, and 𝑢𝜇 is the fluid four-velocity. The implementation of tracer particles leverages
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parthenon ’s swarms particle infrastructure. The fluid three-velocity, lapse, and shift are interpo-

lated to the particle position before advecting. At present, tracer advection is coupled to the fluid

via first order operator splitting and integrated in time with a second order Runge Kutta scheme.

Initial sampling of tracer particles is, in general, problem dependent.

7.4 Numerical Tests

In this section we present results obtained with Phoebus with a comprehensive suite of test

problems designed to stress its core functionalities. These tests serve the goal of verification and

validation of Phoebus and allow for ease of reproducability.

7.4.1 Hydro

Here we present a suite of tests stressing the MHD solvers. Unless otherwise noted, all tests

use an ideal gas EOS with an adiabatic index of 5/3.

7.4.1.1 Linear Waves

In this section we follow the propagation of various families of linear waves. Following the

evolution stresses the ability of the code to converge in linear regimes (indeed, these linear waves

are treatable analytically). While the ability of a astrophysical code to handle linear waves is not

sufficient for scientific viability – as shocks are a fact of life – it is a necessary one. Indeed, while the

presence of shocks will reduce the convergence of all schemes, accurate and high order solutions

should be attainable in smooth regions. These tests stress the ability of Phoebus to converge to the

correct solution in the linear regime. For all tests in this section, unless otherwise noted, we use a

flat metric with coordinate boosts 𝑣𝑥 = 𝑣𝑦 = 0.617213 applied to the 𝑥 and 𝑦 directions. All tests

are treated with two spatial dimensions. The tests presented here are adapted from Athena (Stone

et al., 2008) and Athena++ (Stone et al., 2020).

To measure the convergence of the tests presented here we use the 𝐿1 norm scaled by the wave

amplitude

𝐿1(𝑞) =
1
𝑘𝑁2

∑︁
𝑖

∑︁
𝑗

(𝑞𝑖 𝑗 − 𝑞𝑖 𝑗 ) (7.59)

for quantity 𝑞, number of grid points along a dimension 𝑁 , wave amplitude 𝑘 , and solution 𝑞. The
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Figure 7.1 𝐿1 convergence for the pure sound wave test. Shown is convergence for density (teal),
internal energy (red), 𝑣𝑥 (light blue), and 𝑣𝑦 (yellow).

Figure 7.2 𝐿1 convergence for the pure Alfvén wave test. Shown is convergence for 𝑣𝑧 (teal) and
𝐵𝑧 (red).

tests are ran for one period such that the solution 𝑞 is simply the initial condition. In Figures 7.1 –

7.4 we show 𝐿1 convergence for relevant quantities for sound, Alfvén, fast, and slow magnetosonic

waves, respectively. We consider resolutions 𝑁2 = 322, 642, 1282, 5122, and 10242. For all cases,

we observe roughly at least the expected second order convergence.

7.4.1.2 Riemann Problems

Here we present a modification of the classic shock tube Riemann problem of Sod (1978). The

test involves an initially stationary fluid with two states separated by a discontinuity. The initial

state develops a shock propagating into the low density region, followed by a contact discontinuity,

and a rarefaction wave propagating into the high density region. This test stresses a code’s ability
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Figure 7.3 𝐿1 convergence for the pure fast magnetosonic wave test. Shown is convergence for
density (teal), internal energy (red), 𝑣𝑥 (light blue), 𝑣𝑦 (yellow), 𝐵𝑥 (gold x), and 𝐵𝑦 (dark blue
triangles).

Figure 7.4 𝐿1 convergence for the pure slow magnetosonic wave test. Shown is convergence for
density (teal), internal energy (red), 𝑥-velocity (light blue), and 𝑦-velocity (yellow) 𝐵𝑥 (gold x),
and 𝐵𝑦 (dark blue triangles).

to capture various hydrodynamic waves without introducing unphysical oscillations or viscosity.

We modify the traditional shock tube problem by the use of a realistic nuclear EOS (SFHo).

This allows us to stress the code in regimes of astrophysical interest while simultaneously stressing

the implementation of the nuclear EOS. For this test, our computational domain is 𝐷 = [0, 300]

km with an initial discontinuity located at 𝑥 = 150 km. The initial conditions S = (𝜌, 𝑝,𝑌𝑒) are
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Figure 7.5 Numerical solution of the nuclear EOS shock tube at 𝑡 ≈ 7.5ms with Phoebus (teal)
using 512 cells and piecewise linear reconstruction compared to a reference solution computed
with thornado (black) using 10000 piecewise constant elements with 3rd order strong stability
preserving Runge Kutta time integration.

given by

S =


(1011, 2.231 × 1031, 0.3) left

(0.25 × 1011, 2.232 × 1030, 0.5) right
(7.60)

for primitive density 𝜌 (in g cm−3), pressure 𝑝 (in erg cm−3) and electron fraction 𝑌𝑒. The system

is evolved until about 𝑡 = 7.5ms using 512 computational cells, piecewise linear reconstruction,

and an HLL approximate Riemann solver. As an analytic solution does not exist with the use of a

non-trivial EOS, we compare to a reference solution computed using thornado, a discontinuous

Galerkin based GRRMHD code, computed using 10000 piecewise constant (P0) elements, 3rd

order strong stability preserving explicit Runge Kutta time integration, an HLLC approximate

Riemann solver (Toro et al., 1994). The thornado reference solution was computed using the

same SFHo EOS. Figure 7.5 shows the density profile obtained with Phoebus (teal) compared to

the thornado reference solution (black). We see satisfactory agreement between the two codes.

7.4.1.3 Sedov–Taylor Blast Wave

Here we present the classic Sedov-Taylor blast wave (Sedov, 1946; Taylor, 1950). In this setup

a large amount of energy is concentrated into a small volume, mocking an explosion and driving a

spherical (or cylindrical in 2D) blast wave. This test stresses the scheme’s ability to handle shocks
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Figure 7.6 Left: 2D profile of density at 𝑡 = 0.5 with AMR levels overlaid. Right: Density along
the 𝑥 coordinate at 𝑦 = 0 for Phoebus (teal crosses) compared to the self similar solution (black
dashed). The vertical dashed line denotes the analytic shock position.

and spherical geometries.

We perform the test in 2D Cartesian coordinates, implying a cylindrical blast wave. An amount

of energy 𝐸 = 0.1 is deposited into all cells with 𝑟 < 𝑟init in an otherwise homogeneous medium.

The medium has ambient density and pressure 𝜌ambient = 1.0 and 𝑝ambient = 10−5. We take 𝑟init = 0.1

to set the volume of deposition. The computational domain is 𝐷 = [−1.0, 1.0] × [−1.0, 1.0].

We perform the test with 𝑁𝑥 × 𝑁𝑦 = 128× 128 computational cells. As an additional test of the

AMR capabilities of Phoebus, we allow for up to five levels of mesh refinement. We evolve the

system until 𝑡 = 0.5 Figure 7.6 shows the pressure profile from the blast wave (top). Overlaid on

the profile are grid representative of the AMR refinement regions. We also show a 1D profile of

pressure along the 𝑥 = 𝑦 (bottom).

7.4.1.4 Blandford-McKee Blast Wave

Here we present the Blandford-McKee blast wave (Blandford & McKee, 1976) – a relativistic

complement to the non-relativistic Sedov-Taylor blast wave of the previous section. This test

involves an ultra-relativistic shock wave characterized by Lorentz factor 𝑊 propagating into an

ambient medium and stresses a scheme’s treatment of relativity and ability to capture relativistic

shocks. For this test we take 𝑊 = 8.5 for the Lorentz factor of the shock and an ambient medium
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Figure 7.7 Normalized pressure profile as a function of the self similar radial variable 𝜒 for
Phoebus (teal) and analytic (black, dashed) solutions. The shock front is located at 𝜒 = 1.0 and
𝜒 > 1.0 is the post-shock region.

with 𝜌0 = 10−2 and 𝑝0 = 10−4. Figure 7.7 shows the normalized post-shock pressure profile as

a function of the similarity variable 𝜒, where 𝜒 = 1.0 is the shock position and 𝜒 > 1 is the

post-shock region.

7.4.2 Tracer Particles

Here we test the tracer particles infrastructure as described in Section 7.3.5. To stress the

coupling to both the fluid and the spacetime, we model a 3D accretion disk in near hydrostatic

equilibrium around a black hole. We adopt the torus configuration of Fishbone & Moncrief (1976).

We initialize a torus of constant entropy and specific angular momentum with no initial magnetic

field around a Kerr black hole. We assume an ideal gas equation of state for this test. The test is

run in three spatial dimensions with 𝑁𝑟 × 𝑁𝜃 × 𝑁𝜙 = 128× 128× 128 cells and 104 tracer particles.

The system is evolved until 𝑡 = 2000𝐺𝑀𝐵𝐻/𝑐3. Tracer particles are sampled uniformly in volume

on the initial condition.

With no initial magnetic field we will not develop the magnetorotational instability (MRI)

responsible for driving accretion on to the central compact object. Instead, the disk – and by

extension, tracer particles – will orbit the black hole, until other hydrodynamic instabilities arise at

later times. Figure 7.8 shows the trajectories of three select tracer particles throughout the evolution

projected into the 𝑥𝑦−plane. The innermost tracer covers several orbits through the evolution while
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Figure 7.8 Paths of three select tracer particles evolved in the equilibrium disk.

the outermost covers slightly more than one. The tracer particles show the expected behavior,

orbiting the central black hole (located here at 𝑥 = 𝑦 = 0). However, as the tracer particle

integration is not symplectic, we do not expect, or observe, perfectly closed orbits. Future work

includes the implementation of a symplectic integrator for tracer particle advection.

7.4.3 Transport

In this section we present a suite of tests stressing the radiation transport schemes. Unless

otherwise noted, all tests use Monte Carlo transport.

7.4.3.1 Artificial Neutrino Cooling

We test the coupling of neutrinos to matter in a simplified context. We construct a homogeneous,

isotropic gas cooled by only either electron neutrinos or antineutrinos using a simplified “tophat”

emissivity

𝑗𝜈, 𝑓 = 𝐶𝑦 𝑓 (𝑌𝑒) 𝜒 (𝜈min, 𝜈max) , (7.61)

where 𝐶 is a constant ensuring correct units,

𝜒(𝜈min, 𝜈max) =


1 for 𝜈min ≤ 𝜈 ≤ 𝜈max

0 otherwise
(7.62)
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Figure 7.9 Electron fraction for a homogeneous isotropic gas cooling by electron neutrinos. The
solid line is the analytic solution and the dashed line is the Phoebus solution.

and

𝑦 𝑓 (𝑌𝑒) =



2𝑌𝑒 for 𝜈𝑒emission

1 − 2𝑌𝑒 for �̄�𝑒emission

0 otherwise.

(7.63)

The gas is at a uniform density of 106 g cm−1 with an internal energy density of 1020 erg cm−3 and

electron fraction

𝑌𝑒 (𝑡 = 0) =


1
2 for 𝜈𝑒

0 for �̄�𝑒 .
(7.64)

In this simplified setting, the electron fraction evolution has an analytic solution (Miller et al.,

2019)

𝑌𝑒 (𝑡) =


−1

2𝑒
−2𝐴𝐶 𝑡 for 𝜈𝑒

1
2
(
1 − 𝑒−2𝐴𝐶 𝑡

)
for �̄�𝑒

(7.65)

where 𝐴𝐶 =
𝑚𝑝

ℎ𝜌
𝐶ln( 𝜈max

𝜈min
) for proton mass 𝑚𝑝, Planck’s constant ℎ, and density 𝜌.

This setup was run until 𝑡 = 0.1 (in arbitrary code units) using 100 frequency bins and only 16

Monte Carlo packets. Figure 7.9 (7.10) shows the electron fraction as a function of time for a gas

cooled by electron neutrinos (antineutrinos). Agreement with the analytic solution is very good,

with very small deviations at late times due to Monte Carlo noise.
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Figure 7.10 Electron fraction for a homogeneous isotropic gas cooling by electron antineutrinos.
The solid line is the analytic solution and the dashed line is the Phoebus solution.

7.4.3.2 Neutrino-Driven Wind Setup

The tests of the previous section use artificial neutrino emissivities. While useful for com-

parison with a known analytic solution, they do not represent physically realistic or interesting

settings. In this section we consider a setting of astrophysical interest and compare to the supernova

code fornax (Skinner et al., 2018). fornax uses notably different methods from Phoebus, with

Phoebus being fully general relativistic and fornax having an approximate treatment for gravity.

fornax treats radiation using a multi-group moment based approach with the M1 closure (Shibata

et al., 2011; Cardall et al., 2013) whereas Phoebus uses a Monte Carlo approach in addition to the

other methods outlined in Section 7.3.

To facilitate comparison between codes and to test Phoebus in astrophysically motivated

settings, we consider a homogeneous and isotropic gas at rest on a periodic domain in Minkowski

space. Phoebus and fornax both use the same commonly adopted SFHo nuclear matter equation

of state (Steiner et al., 2013b) and opacities. We consider the following initial state, motivated by

conditions realized in neutrino-driven outflow
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𝜌0 = 109 g cm−3

𝑇 = 2.5 MeV

𝑌𝑒 = 0.1.

(7.66)

The problem is evolved for 0.5 seconds assuming no initial radiation. Both codes are run with

200 frequency groups ranging from 1 to 300 MeV. Phoebus is run with a target number of 105

Monte Carlo packets. Both codes include three neutrino flavors: 𝜈𝑒, �̄�𝑒, and 𝜈𝑥 , where 𝜈𝑥 is a

representative “heavy” neutrino combining the 𝜇 – 𝜏 neutrinos and antineutrinos.

We consider first the case of pure cooling by neutrinos, disabling absorption opacities. Electron

fraction and temperature evolution for both Phoebus (blue dashed line) and fornax (red solid line)

are shown in Figure 7.11. Phoebus displays the expected rapid cooling behavior and agrees very

well with the fornax solution.

Next we consider the case of emission and absorption of neutrinos, allowing the radiation and

gas to come to thermal equilibrium. We show electron fraction and temperature evolution for

both Phoebus (blue dashed line) and fornax (red solid line) in Figure 7.12. As with the previous

test, the electron fraction rapidly, but cooling is slowed due to absorption of neutrinos. Again we

see good agreement between the codes with small Monte Carlo noise in the equilibrium electron

fraction.

7.4.3.3 Two Dimensional Lepton Transport

Neutrinos, unlike photon radiation, can exchange energy, momentum, as well as lepton number

with the matter field. This motivates an accurate treatment of neutrino transport, as the matter

composition can influence the resulting nucleosynthesis, among other things. We test the ability for

Phoebus to capture this lepton number exchange by considering a two-dimensional test problem.

We let our domain be a periodic box with (𝑥, 𝑦) ∈ [−1, 1]2. The initial state is a gas with constant
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Figure 7.11 Electron fraction (top) and temperature (bottom) for the optically thin cooling
comparison between Phoebus (dashed line) and fornax (solid line).

Figure 7.12 Electron fraction (top) and temperature (bottom) for the thermal equilibrium
comparison between Phoebus (dashed line) and fornax (solid line).
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Figure 7.13 Left: Initial condition for the lepton equilibration problem. Right: The system after
about 10 ms. The neutrino radiation field brings the electron fraction field into equilibrium.

density and temperature

𝜌0 = 1010 g cm−3

𝑇 = 2.5 MeV
(7.67)

and electron fraction defined by

𝑌𝑒 =



0.100 for (𝑥, 𝑦) ∈ [−0.75,−0.25]2

0.350 for (𝑥, 𝑦) ∈ [0.25, 0.75]2

0.225 otherwise.

(7.68)

This describes a region of stellar material with an electron fraction “hot spot” and “cold spot”.

We do not allow the gas to evolve due to pressure gradients, allowing instead only interaction with

the radiation field in order to highlight the impact of lepton number transport. We use 2.5×105

Monte Carlo packets with 200 frequency bins distributed from roughly 100 keV to 300 MeV. We

include three flavors of neutrinos.

Figure 7.13 shows the initial condition (left) and state at 𝑡 ≈ 10ms (right). We observe

the expected behavior where the neutrinos equilibrate with the matter, with the final state being

perturbed from the initial state.
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7.4.4 Gravity

7.4.4.1 Homologous Collapse

Here we test the general relativistic gravity solver in Phoebus with the homologous collapse

problem (Goldreich & Weber, 1980). For this test we use the spherically symmetric monopole

gravity solver of Section 7.2.3.1. This problem serves to test the coupling between gravity and

hydrodyamics in a setting relevant to CCSNe. It involves a homologously collapsing core (u ∝ r)

with mass 𝑀 and size 𝑅. The system is described by the continuity equation, Euler’s equation, and

Poisson’s equation:
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝒖) = 0, (7.69)

𝜕𝒖

𝜕𝑡
+ ∇

(
|𝒖 |2
2

)
+ (∇ × 𝒖) × 𝒖 + ∇ℎ + ∇Φ = 0, (7.70)

∇2Φ − 4𝜋𝐺𝜌 = 0, (7.71)

where 𝒖 is the fluid velocity, Φ is the gravitational potential, ℎ is the heat function ℎ =
∫

𝑑𝑝

𝜌
=

4𝜅𝜌1/3. If one assumes vorticity-free flow and an analytic, 𝑛 = 3, 𝛾 = 4/3 polytropic equation of

state, one can find a semi-analytic solutions to the system of equations (Equations (7.69) - (7.71)).

In this approximation, the fluid velocity, density, and the gravitational potential are given by:

𝒖 = ¤𝑎𝒓 , (7.72)

𝜌 =

(
𝜅

𝜋𝐺

)3/2
𝑎−3 𝑓 3 , (7.73)

Φ =
Ψ

𝑐−2
𝑠

=

(
𝛾𝑃𝑐

𝜌𝑐

)
Ψ =

4
3

(
𝜅3

𝜋𝐺

)1/2
Ψ

𝑎
, (7.74)

where 𝑎 is Jean’s length and is found to be

𝑎(𝑡) = (6𝜆)1/3
(
𝜅3

𝜋𝐺

)1/6
[𝑡 + 𝑡0]2/3 , (7.75)

where 𝜆 a constant determined by initial conditions. 𝑓 is a normalization function for the density

and is determined by the following differential equation:

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2 𝜕 𝑓

𝜕𝑟

)
+ 𝑓 3 = 𝜆 (7.76)

228



Figure 7.14 Density profile of the homologous collapsing star with mass 𝑀 = 1.4𝑀⊙ and size
𝑅 = 3000km at 𝑡 = 0.12s after the start of the collapse.

Finally, Ψ can be found using

Ψ =
𝜆

2
𝑟2 − 3 𝑓 (7.77)

We incorporate the homologous collapse test problem in Phoebus and compare results with

the semi-analytic solutions of Equations (7.75) - (7.77). Figure 7.14 shows the comparison of

the density profiles between the simulation and analytic solution. We simulate one-dimensional

homologous collapse of a star with mass 𝑀 = 1.4𝑀⊙ and size 𝑅 = 3000km. The number of

zones in 𝑥 direction is 10000. The analytic solution of Goldreich & Weber (1980) uses Newtonian

approximation for gravity, while the simulation in Phoebus is solved in the monopole approximation

for GR. This difference causes a different behavior in the time evolution between the simulation

and analytic solution; for example, central density changes faster in the simulation. To compare the

simulation and analytic results, we choose some time moment on the simulation, 𝑡 = 0.12s and find

corresponding Jeans length from the simulation. Then solve the analytic equations given this value

of Jeans length. As a result, the density profile on the simulation matches well with the density

profile obtained from analytic solutions; the variation is 𝛿𝜌/𝜌analytic ≤ 1% .

7.5 Discussion and Conclusions

In this paper, we have introduced Phoebus, a new code for general relativistic radiation mag-

netohydrodynamic simulations of astrophysical phenomena, Phoebus.

Phoebus models general relativistic neutrino radiation magnetohydrodynamics. General rela-
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tivistic hydrodynamics are incorporated with the Valencia formulation. MHD is incorporated using

a cell centered constrained transport treatment and discretized with a finite volumes approach. Neu-

trino transport is incorporated using a Monte Carlo approach as well as a gray two moment scheme.

Gravity is incorporated through analytic spacetimes and a novel monopole solver for core-collapse

supernovae. The physics capabilities of Phoebus has been demonstrated through a suite of tests

stressing individual physics implementations as well as the couplings between them.

Phoebus is developed on top of, and supported by, a large, open source ecosystem. Phoe-

bus supports block based adaptive mesh refinement via the parthenon framework and achieves

performance portability with the kokkos hardware agnostic library. Flexible, portable equations

of state are supported through singularity-eos . Spiner8 enables performance portable storage

and interpolation of tabular data, such as for equations of state and opacities (Miller et al., 2022).

This open source ecosystem providing performance portability allows Phoebus developers to focus

primarily on physics and numerics and ensures the longevity of the project.

There are a number of improvements planned for the near future that will greatly bolster the

capabilities of Phoebus. Of note: we will adopt a proper face-centered-fields approach to MHD

constrained transport. Moment based neutrino transport will be upgraded to allow for frequency

dependent evolution. The finite volume discretization for hydrodynamics will be upgraded to be

formally 4th order.

In the interest of open science, to provide a tool for the community, and allow for full reprod-

ucability, Phoebus and all parts of its ecosystem are open source. Phoebus is publicly available

on GitHub. We welcome, and look forward to, contributions and engagement from the greater

community.

8https://github.com/lanl/spiner
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CHAPTER 8

SUMMARY
Whatever happens next, I do

not think it is to be feared.

The Prisoner, Outer Wilds
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CHAPTER 9

APPENDICES

232



APPENDIX 9A

LIGHT CURVE COMPOSITIONAL DEPENDENCE

For our light curves, we modified the compositional profile in the FLASH part of the domain to be

pure 4He, as full composition is not currently tracked in the output. In this appendix, we provide

comparisons of select light curves using thermal bombs with FLASH explosion energies for both

the modified compositional profile and the original compositional profile. Figure 9A.1 shows light

curves with the unaltered (orange) and modified (blue) compositional profiles for 9, 15.2, 25, and

30M⊙ progenitors. For the cases considered here, the difference in luminosity on the plateau is

bounded above by 0.1 dex, which has no meaningful affect on the iron core mass estimates and

distributions of Section 2.3.3.
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Figure 9A.1 Light curves using a thermal bomb driven explosion with STIR explosion energies
using the modified compositional profile (blue) and unaltered profile (orange). We show light
curves for 9, 15.2, 25, and 30M⊙ progenitors.
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APPENDIX 9B

𝜒2 LIGHT CURVE FITTING

Here we show the effect of using the 𝜒2 metric to fit light curves, as opposed to the relative error

metric discussed in Section 2.2.5. We define the chi-square (𝜒2) metric for an observable quantity

𝑓 (𝑡) as follows

𝜒2( 𝑓 ) =
𝑡𝑁∑︁
𝑡∗=𝑡1

(
𝑓𝑡∗ − 𝑓 ∗

𝑡∗
)2

𝜎2
𝑓

(9B.1)

where 𝑡∗ are times coinciding with observations, 𝑓 are synthetic observables, 𝑓 ∗ are measured

observational data, and 𝜎 𝑓 is the uncertainty on the measurement 𝑓 ∗ at a time 𝑡∗. Here we

consider simultaneous fitting of luminosity and velocity data, i.e., minimizing the combined metric

𝜒2(𝑣Fe) + 𝜒2(𝐿bol). Figure 9B.1 shows the best fit model light curve for SN2017eaw using the

chi-squared method (purple) and the relative error metric (blue). The light curve obtained with

the chi-square method visibly fits the observations worse than the light curve obtained with the

relative error approach, owing to the inverse square error weighting in the chi-square method. This

weighting gives preference to the tail of the light curve where observational errors are reduced.
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Figure 9B.1 Best fitting light curve for SN1017eaw obtained using a 𝜒2 metric (purple) and
relative error metric (blue).

It is important to note that while chi-square minimization gave less satisfactory results for this

study, this is likely sensitive to the details of the data being fit.
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APPENDIX 9C

CHARACTERISTIC DECOMPOSITION

In this appendix, we provide the characteristic decomposition of the flux Jacobians, which are

needed for slope limiting in characteristic fields. Recall that for the characteristic slope limiting

described in 5.4.3, we require the eigendecomposition of the flux Jacobian

𝜕F𝑖 (U)
𝜕U

= R𝑖 Λ𝑖 (R𝑖)−1 (𝑖 = 1, . . . , 𝑑). (9C.1)

In the following, we will express the pressure from the EoS as 𝑝 = 𝑝(𝜏, 𝜖, 𝐷e); i.e., with
independent variables 𝜏 = 𝜌−1, 𝜖 = 𝑒/𝜌, and 𝐷e = 𝜌Ye, instead of the usual function of 𝜌,
𝑇 , and Ye. This choice is arbitrary, but follows the approach outlined in Colella & Glaz (1985)
for a general EoS without the addition of the conservation equation for electron number (cf.
Equation (5.4)). The necessary transformations of thermodynamic derivatives between these two
sets of independent variables are given in Appendix 9D. From the state and flux vectors given in
Equation (5.7), we can calculate the following flux Jacobian matrices in each direction:

𝜕F1 (U)
𝜕U

=



0 𝛾11 0 0 0 0

−𝑣1𝑣1 − 𝑝𝜏 𝜏
2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

)
𝑣1 (2 − 𝑝𝜖 𝜏 ) −𝑝𝜖 𝑣

2𝜏 −𝑝𝜖 𝑣
3𝜏 𝑝𝜖 𝜏 𝑝𝐷e

−𝑣1𝑣2 𝛾11𝑣2 𝑣1 0 0 0

−𝑣1𝑣3 𝛾11𝑣3 0 𝑣1 0 0

𝑣1
(
−𝐻 − 𝑝𝜏 𝜏

2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

))
𝛾11𝐻 − 𝑝𝜖 (𝑣1 )2𝜏 −𝑝𝜖 𝑣

1𝑣2𝜏 −𝑝𝜖 𝑣
1𝑣3𝜏 𝑣1 (1 + 𝑝𝜖 𝜏 ) 𝑣1𝑝𝐷e

−𝑣1Ye 𝛾11Ye 0 0 0 𝑣1


, (9C.2)

𝜕F2 (U)
𝜕U

=



0 0 𝛾22 0 0 0

−𝑣2𝑣1 𝑣2 𝛾22𝑣1 0 0 0

−𝑣2𝑣2 − 𝑝𝜏 𝜏
2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

)
−𝑝𝜖 𝑣

1𝜏 𝑣2 (2 − 𝑝𝜖 𝜏 ) −𝑝𝜖 𝑣
3𝜏 𝑝𝜖 𝜏 𝑝𝐷e

−𝑣2𝑣3 0 𝛾22𝑣3 𝑣2 0 0

𝑣2
(
−𝐻 − 𝑝𝜏 𝜏

2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

))
−𝑝𝜖 𝑣

2𝑣1𝜏 𝛾22𝐻 − 𝑝𝜖 (𝑣2 )2𝜏 −𝑝𝜖 𝑣
2𝑣3𝜏 𝑣2 (1 + 𝑝𝜖 𝜏 ) 𝑣2𝑝𝐷e

−𝑣2Ye 0 𝛾22Ye 0 0 𝑣2


, (9C.3)

and

𝜕F3 (U)
𝜕U

=



0 0 0 𝛾33 0 0

−𝑣3𝑣1 𝑣3 0 𝛾33𝑣1 0 0

−𝑣3𝑣2 0 𝑣3 𝛾33𝑣2 0 0

−𝑣3𝑣3 − 𝑝𝜏 𝜏
2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

)
−𝑝𝜖 𝑣

1𝜏 −𝑝𝜖 𝑣
2𝜏 𝑣3 (2 − 𝑝𝜖 𝜏 ) 𝑝𝜖 𝜏 𝑝𝐷e

𝑣3
(
−𝐻 − 𝑝𝜏 𝜏

2 − 𝑝𝜖 𝜏

(
𝜖 − 𝑣𝑖𝑣𝑖

2

))
−𝑝𝜖 𝑣

3𝑣1𝜏 −𝑝𝜖 𝑣
3𝑣2𝜏 𝛾33𝐻 − 𝑝𝜖 (𝑣3 )2𝜏 𝑣3 (1 + 𝑝𝜖 𝜏 ) 𝑣3𝑝𝐷e

−𝑣3Ye 0 0 𝛾33Ye 0 𝑣3


, (9C.4)
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where we have defined the specific enthalpy of stagnation 𝐻 = 𝜏(𝐸 + 𝑝) and introduced the

compact notation

𝑝𝜖 =

(
𝜕𝑝

𝜕𝜖

)
𝜏,𝐷e

, 𝑝𝐷𝑒
=

(
𝜕𝑝

𝜕𝐷e

)
𝜏,𝜖

, 𝑝𝜏 =

(
𝜕𝑝

𝜕𝜏

)
𝜖,𝐷e

(9C.5)

to express the necessary partial derivatives. The eigenvalues of the flux Jacobian are given by the

diagonal matrix

Λ𝑖 =



𝑣𝑖 − 𝑐s
√︁
𝛾𝑖𝑖 0 0 0 0 0

0 𝑣𝑖 0 0 0 0

0 0 𝑣𝑖 0 0 0

0 0 0 𝑣𝑖 0 0

0 0 0 0 𝑣𝑖 0

0 0 0 0 0 𝑣𝑖 + 𝑐s
√︁
𝛾𝑖𝑖



, (9C.6)

where 𝑐s =
√
Γ𝑝𝜏, with

Γ =

(
𝜏(𝑝𝑝𝜖 − 𝑝𝜏) + 𝑝𝐷𝑒

Ye𝜏
−1

)
𝑝−1, (9C.7)

is the local sound speed. In the less general case where we ignore the electron contribution (i.e.

𝑝𝐷𝑒
= 0), this reduces to the expression given by Colella & Glaz (1985). The right eigenvectors

are then given by the column vectors of the following matrices

R1 =



1 0 1 1 0 1

𝑣1 − 𝑐s
√
𝛾11 0 𝑣1 𝑣1 0 𝑣1 + 𝑐s

√
𝛾11

𝑣2 1 0 0 0 𝑣2

𝑣3 0 0 0 1 𝑣3

𝐻 − 𝑐s
√
𝛾11𝑣

1 𝑣2 𝛽1 0 𝑣3 𝐻 + 𝑐s
√
𝛾11𝑣

1

Ye 0 0 𝜏𝜒1
2𝑝𝐷e

0 Ye



, (9C.8)
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R2 =



1 0 1 1 0 1

𝑣1 1 0 0 0 𝑣1

𝑣2 − 𝑐s
√
𝛾22 0 𝑣2 𝑣2 0 𝑣2 + 𝑐s

√
𝛾22

𝑣3 0 0 0 1 𝑣3

𝐻 − 𝑐s
√
𝛾22𝑣

2 𝑣1 𝛽2 0 𝑣3 𝐻 + 𝑐s
√
𝛾22𝑣

2

Ye 0 0 𝜏𝜒2
2𝑝𝐷e

0 Ye



, (9C.9)

and

R3 =



1 0 1 1 0 1

𝑣1 1 0 0 0 𝑣1

𝑣2 0 0 0 1 𝑣2

𝑣3 − 𝑐s
√
𝛾33 0 𝑣3 𝑣3 0 𝑣3 + 𝑐s

√
𝛾33

𝐻 − 𝑐s
√
𝛾33𝑣

3 𝑣1 𝛽3 0 𝑣2 𝐻 + 𝑐s
√
𝛾33𝑣

3

Ye 0 0 𝜏𝜒3
2𝑝𝐷e

0 Ye



, (9C.10)

where the following definitions have been used:

Δ1 = 2𝑣1𝑣1 − 𝑣𝑖𝑣𝑖,

Δ2 = 2𝑣2𝑣2 − 𝑣𝑖𝑣𝑖,

Δ3 = 2𝑣3𝑣3 − 𝑣𝑖𝑣𝑖,

𝜒𝑖 = 𝑝𝜖 (Δ𝑖 + 2𝜖) + 2𝑝𝜏𝜏,

𝛽𝑖 =
1
2

(
Δ𝑖 + 2𝜖 + 2𝑝𝜏𝜏

𝑝𝜖

)
.

The left eigenvectors are given by the row vectors of the inverse matrix L𝑖 = (R𝑖)−1
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(R1 )−1 =
1
𝑐2

s



1
4 (𝜔 + 2𝑐s

√
𝛾11𝑣

1 ) − 1
2 (𝑐s

√︁
𝛾11 + 𝜙1 ) − 1

2 𝜙
2 − 1

2 𝜙
3 𝑝𝜖 𝜏

2
𝑝𝐷e

2

− 𝑣2𝜔
2 𝜙1𝑣2 𝑐2

s + 𝜙2𝑣2 𝜙3𝑣2 −𝜙2 −𝑝𝐷e𝑣2

2𝜒1𝑐
2
s +𝛼1𝜔𝜏−1

2𝜒1
− 𝜙1𝛼1

𝜒1𝜏
− 𝜙2𝛼1

𝜒1𝜏
− 𝜙3𝛼1

𝜒1𝜏
𝑝𝜖 𝛼1
𝜒1

𝑝𝐷e

(
𝛼1−2𝑐2

s
)

𝜏𝜒1

− Ye 𝑝𝐷e 𝜔
𝜒1𝜏

2Ye 𝑝𝐷e 𝜙
1

𝜒1𝜏
2Ye 𝑝𝐷e 𝜙

2

𝜒1𝜏
2Ye 𝑝𝐷e 𝜙

3

𝜒1𝜏
− 2Ye 𝑝𝐷e 𝑝𝜖

𝜒1

2𝑝𝐷e

(
𝑐2

s −Ye 𝑝𝐷e

)
𝜏𝜒1

− 𝑣3𝜔
2 𝜙1𝑣3 𝜙2𝑣3 𝑐2

s + 𝜙3𝑣3 −𝜙3 −𝑝𝐷e𝑣3

1
4 (𝜔 − 2𝑐s

√
𝛾11𝑣

1 ) 1
2 (𝑐s

√︁
𝛾11 − 𝜙1 ) − 1

2 𝜙
2 − 1

2 𝜙
3 𝑝𝜖 𝜏

2
𝑝𝐷e

2



, (9C.11)

(R2 )−1 =
1
𝑐2

s



1
4 (𝜔 + 2𝑐s

√
𝛾22𝑣

2 ) − 1
2 𝜙

1 − 1
2 (𝑐s

√︁
𝛾22 + 𝜙2 ) − 1

2 𝜙
3 𝑝𝜖 𝜏

2
𝑝𝐷e

2

− 𝑣1𝜔
2 𝑐2

s + 𝜙1𝑣1 𝜙2𝑣1 𝜙3𝑣1 −𝜙1 −𝑝𝐷e𝑣1

2𝜒2𝑐
2
s +𝛼2𝜔𝜏−1

2𝜒2
− 𝜙1𝛼2

𝜒2𝜏
− 𝜙2𝛼2

𝜒2𝜏
− 𝜙3𝛼2

𝜒2𝜏
𝑝𝜖 𝛼2
𝜒2

𝑝𝐷e

(
𝛼2−2𝑐2

s
)

𝜏𝜒2

− Ye 𝑝𝐷e 𝜔
𝜒2𝜏

2Ye 𝑝𝐷e 𝜙
1

𝜒2𝜏
2Ye 𝑝𝐷e 𝜙

2

𝜒2𝜏
2Ye 𝑝𝐷e 𝜙

3

𝜒2𝜏
− 2Ye 𝑝𝐷e 𝑝𝜖

𝜒2

2𝑝𝐷e

(
𝑐2

s −Ye 𝑝𝐷e

)
𝜏𝜒2

− 𝑣3𝜔
2 𝜙1𝑣3 𝜙2𝑣3 𝑐2

s + 𝜙3𝑣3 −𝜙3 −𝑝𝐷e𝑣3

1
4 (𝜔 − 2𝑐s

√
𝛾22𝑣

2 ) − 1
2 𝜙

1 1
2 (𝑐s

√︁
𝛾22 − 𝜙2 ) − 1

2 𝜙
3 𝑝𝜖 𝜏

2
𝑝𝐷e

2



, (9C.12)

and

(R3 )−1 =
1
𝑐2

s



1
4 (𝜔 + 2𝑐s

√
𝛾33𝑣

3 ) − 1
2 𝜙

1 − 1
2 𝜙

2 − 1
2 (𝑐s

√︁
𝛾33 + 𝜙3 ) 𝑝𝜖 𝜏

2
𝑝𝐷e

2

− 𝑣1𝜔
2 𝑐2

s + 𝜙1𝑣1 𝜙2𝑣1 𝜙3𝑣1 −𝜙1 −𝑝𝐷e𝑣1

2𝜒3𝑐
2
s +𝛼3𝜔𝜏−1

2𝜒3
− 𝜙1𝛼3

𝜒3𝜏
− 𝜙2𝛼3

𝜒3𝜏
− 𝜙3𝛼3

𝜒3𝜏
𝑝𝜖 𝛼3
𝜒3

𝑝𝐷e

(
𝛼3−2𝑐2

s
)

𝜏𝜒3

− Ye 𝑝𝐷e 𝜔
𝜒3𝜏

2Ye 𝑝𝐷e 𝜙
1

𝜒3𝜏
2Ye 𝑝𝐷e 𝜙

2

𝜒3𝜏
2Ye 𝑝𝐷e 𝜙

3

𝜒3𝜏
− 2Ye 𝑝𝐷e 𝑝𝜖

𝜒3

2𝑝𝐷e

(
𝑐2

s −Ye 𝑝𝐷e

)
𝜏𝜒3

− 𝑣2𝜔
2 𝜙1𝑣2 𝑐2

s + 𝜙2𝑣2 𝜙3𝑣2 −𝜙2 −𝑝𝐷e𝑣2

1
4 (𝜔 − 2𝑐s

√
𝛾33𝑣

3 ) − 1
2 𝜙

1 − 1
2 𝜙

2 1
2 (𝑐s

√︁
𝛾33 − 𝜙3 ) 𝑝𝜖 𝜏

2
𝑝𝐷e

2



, (9C.13)

where 𝜙𝑖 = 𝑝𝜖 𝜏 𝑣𝑖, 𝜙𝑖 = 𝑝𝜖 𝜏 𝑣𝑖, 𝜔 = 𝜏 (𝑝𝜖 (𝑣𝑖𝑣𝑖 − 2𝜖) − 2 𝑝𝜏 𝜏), and 𝛼𝑖 = 2Ye𝑝𝐷e − 𝜏𝜒𝑖.
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APPENDIX 9D

THERMODYNAMIC DERIVATIVES

In Appendix 9C, to compute the flux Jacobian matrices, we expressed the pressure 𝑝 = 𝑝(𝜏, 𝜖, 𝐷e)

in terms of the independent variables 𝜏 = 𝜌−1, 𝜖 = 𝑒/𝜌, and 𝐷e = 𝜌Ye. On the other hand, the

tabulated EoS constructs thermodynamic variables in terms of 𝜌, 𝑇 , and Ye. Thus, we need to

express the thermodynamic derivatives of pressure necessary for the characteristic decomposition

in terms of the independent variables from the EoS table. We start with the differential of pressure

𝑑𝑝 = (𝜕𝜏𝑝)𝜖,𝐷e𝑑𝜏 + (𝜕𝜖 𝑝)𝜏,𝐷e𝑑𝜖 + (𝜕𝐷e 𝑝)𝜖,𝜏𝑑𝐷e. (9D.1)

Similarly, we may express the differentials of 𝜏, 𝜖 , and 𝐷e in terms of differentials of the table

variables

𝑑𝜏 = −𝜌−2𝑑𝜌,

𝑑𝜖 = (𝜕𝜌𝜖)𝑇,Ye𝑑𝜌 + (𝜕𝑇𝜖)𝜌,Ye𝑑𝑇 + (𝜕Ye𝜖)𝑇,𝜌𝑑Ye,

𝑑𝐷e = (𝜕𝜌𝐷e)𝑇,Ye𝑑𝜌 + (𝜕𝑇𝐷e)𝜖,Ye𝑑𝑇 + (𝜕Ye𝐷e)𝑇,𝜖𝑑Ye

= Ye𝑑𝜌 + 𝜌𝑑Ye.

(9D.2)

Inserting these differentials into Equation (9D.1), we find another expression for the pressure

differential

𝑑𝑝 =
[
−𝜌2(𝜕𝜏𝑝)𝜖,𝐷e + (𝜕𝜌𝜖)𝑇,Ye (𝜕𝜖 𝑝)𝜏,𝐷e + Ye(𝜕𝐷e 𝑝)𝜖,𝜏

]
𝑑𝜌

+ (𝜕𝑇𝜖)𝜌,Ye (𝜕𝜖 𝑝)𝜏,𝐷e𝑑𝑇

+
[
(𝜕Ye𝜖)𝑇,𝜌 (𝜕𝜖 𝑝)𝜏,𝐷e + 𝜌(𝜕𝐷e 𝑝)𝜖,𝜏

]
𝑑Ye.

(9D.3)

On the other hand, we have the differential of pressure in terms of the table variables

𝑑𝑝 = (𝜕𝜌𝑝)𝑇,Ye𝑑𝜌 + (𝜕𝑇 𝑝)𝜌,Ye𝑑𝑇 + (𝜕Ye 𝑝)𝑇,𝜌𝑑Ye. (9D.4)

Comparing Equation (9D.3) and Equation (9D.4), we have the system of equations
−𝜌2 (𝜕𝜌𝜖)𝑇,Ye Ye

0 (𝜕𝑇𝜖)𝜌,Ye 0

0 (𝜕Ye𝜖)𝑇,𝜌 𝜌



(𝜕𝜏𝑝)𝜖,𝐷e

(𝜕𝜖 𝑝)𝜏,𝐷e

(𝜕𝐷e 𝑝)𝜖,𝜏


=


(𝜕𝜌𝑝)𝑇,Ye

(𝜕𝑇 𝑝)𝜌,Ye

(𝜕Ye 𝑝)𝑇,𝜌


. (9D.5)
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Solving, with some simplifications, we find the derivatives of the pressure with respect to 𝜏, 𝜖 , and

𝐷e in terms of the table variables 𝜌, 𝑇 , Ye(
𝜕𝑝

𝜕𝜖

)
𝜏,𝐷e

=

(
𝜕𝜖

𝜕𝑇

)−1

𝜌,Ye

(
𝜕𝑝

𝜕𝑇

)
𝜌,Ye

, (9D.6)(
𝜕𝑝

𝜕𝐷e

)
𝜏,𝜖

= 𝜏

[(
𝜕𝑝

𝜕Ye

)
𝜌,𝑇

−
(
𝜕𝜖

𝜕Ye

)
𝜌,𝑇

(
𝜕𝑝

𝜕𝜖

)
𝜏,𝐷e

]
, (9D.7)(

𝜕𝑝

𝜕𝜏

)
𝜖,𝐷e

= 𝜏−2

[
Ye

(
𝜕𝑝

𝜕𝐷e

)
𝜏,𝜖

+
(
𝜕𝜖

𝜕𝜌

)
Ye,𝑇

(
𝜕𝑝

𝜕𝜖

)
𝜏,𝐷e

−
(
𝜕𝑝

𝜕𝜌

)
𝑇,Ye

]
. (9D.8)

We use these relations to relate derivatives needed for the characteristic decomposition in Ap-

pendix 9C to derivatives obtained from table interpolations.
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APPENDIX 9E

OUR NOVEL WENO5-Z-AOAH SCHEME

Consider a grid of cells of equal width Δ𝑥 with centers at positions 𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑁 for some

𝑁 ≥ 5. A function 𝑓 (𝑥) is known at cell centers, with values 𝑓𝑖 = 𝑓 (𝑥𝑖). For some index 𝑗 we wish

to reconstruct the value of 𝑓 at the cell face between centers 𝑥 𝑗 and 𝑥 𝑗+1, i.e., at 𝑥 𝑗+1/2. Ideally, if 𝑓 is

a smooth function, this reconstruction should be high-order, such that the truncation error is small.

However, if 𝑓 is not smooth, then the reconstruction should be robust and minimize the Gibbs

oscillations that emerge from high-order representations of non-smooth functions (Wilbraham,

1848; Gibbs, 1898).

The WENO family of methods, first described by Shu (2009) seek to solve the above-described

problem. For smooth problems, WENO constructs a high-order interpolant from the linear com-

bination of several lower-order interpolants. For example, a fifth-order interpolant, 𝑃(5) (𝑥 𝑗+1/2)

evaluated at 𝑥 𝑗+1/2 may be constructed from the linear combination of three third-order interpolants

𝑃
(3)
𝑘

, 𝑘 = 0, 1, 2:

𝑃(5) (𝑥 𝑗+1/2) =
2∑︁
𝑘=0

𝛾𝑘𝑃
(3)
𝑘

(𝑥 𝑗+1/2), (9E.1)

where 𝑃(3)
𝑘

are third-order Lagrange polynomials computed using stencils that are upwind of,

downwind of, and centered around 𝑥 𝑗 respectively. In other words,

𝑃
(3)
𝑘

=

2∑︁
𝑙=0

𝛼𝑘𝑙 𝑓 𝑗−2+𝑘+𝑙 (9E.2)

for some coefficients 𝛼𝑘𝑙 . The lower-order stencils are combined via the linear weights 𝛾.

The construction (9E.1) is ideal for smooth problems, but suffers the Gibbs phenomenon in

when 𝑓 (𝑥) is non-smooth. To resolve this issue, the linear weights 𝛾 are rescaled to become the

nonlinear weights 𝑤𝑖. In the WENO-Z construction of Borges et al. (2008), the nonlinear weights

are given by

𝑤𝑘 = 𝛾𝑘

[
1 +

(
𝜏𝑍

𝛽𝑘 + 𝜀

) 𝑝]
(9E.3)
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for some small number 𝜀 and some power 𝑝, both free parameters, with normalization 𝑤 such that∑
𝑘 𝑤𝑘 = 1. Here

𝜏𝑧 = 𝛽2 − 𝛽0

is a global smoothness indicator and the 𝛽𝑘s are local smoothness indicators defined by1

𝛽𝑘 =

3∑︁
𝑙=1

Δ𝑥2𝑙−1
∫ 𝑥 𝑗+1/2

𝑥 𝑗−1/2

(
𝑑𝑙

𝑑𝑥𝑙
𝑃
(3)
𝑘

(𝑥)
)2

𝑑𝑥. (9E.4)

Conceptually, the smoothness indicator 𝛽𝑘 checks whether an interpolant 𝑃(3)
𝑘

suffers the Gibbs

phenomenon, and if it does, the nonlinear weight 𝑤𝑘 de-emphasizes that interpolant in favor of the

others, suppressing the Gibbs phenomenon.

In a finite volumes context each face has two possible values, one reconstructed using the 𝑗 𝑡ℎ

cell and one using the 𝑗 + 1 cell. Both are required to pose a Riemann problem to pass into the

Riemann solver. This implies that for each cell 𝑗 , we must reconstruct values at both the 𝑗 + 1/2

face and the 𝑗 − 1/2 face. The value for the 𝑗 − 1/2 face can be constructed by performing a

mapping 𝑥 → −𝑥 and then repeating the procedure described above.

In our experiments, we found that this approach still suffered Gibbs oscillations for strong

shocks, more severely than a limited piecewise linear reconstruction. Therefore, inspired by the

adaptive order WENO approaches introduced in Balsara et al. (2016), we introduce order ad-hoc

order adaptivity to the WENO5-Z reconstruction described above. We do so by mixing in a

linearized term into the reconstruction:

𝑓 (𝑥 𝑗+1/2 = 𝜎𝑃(5) (𝑥 𝑗+1/2) + (1 − 𝜎)𝑃plm(𝑥 𝑗+1/2) (9E.5)

where 𝜎 is a weight, defined below and 𝑃plm is an appropriately limited piecewise linear recon-

struction of the face-centered value. We use a monotonized central limiter for the linear term.

The mixing term 𝜎 is constructed by leveraging the fact that, for a smooth problem, the

reconstruction of the 𝑗 + 1/2 face and the 𝑗 − 1/2 face should be evaluations of the exact same

polynomial. However, when the problem is non-smooth, and the smoothness indicators trigger, the
1Note we specify polynomial degree 3 explicitly here. Broadly the degree should be the order of the lower-order

polynomials.
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combination of the 𝑥 → −𝑥 mapping and the nonlinearity in the weights means the polynomials

are not the same.

To measure these differences, a measure of “nonlinearity” in the weights is constructed as a

harmonic mean of the linear and nonlinear weights for either the 𝑗 + 1/2 or 𝑗 − 1/2 face.

𝜎𝑗±1/2 = 3
𝑤
𝑗±1/2
0 𝑤

𝑗±1/2
1 𝑤

𝑗±1/2
2

𝛾
𝑗±1/2
2 𝑤

𝑗±1/2
0 𝑤

𝑗±1/2
1 + 𝛾 𝑗±1/2

1 𝑤
𝑗±1/2
0 𝑤

𝑗±1/2
2 + 𝛾 𝑗±1/2

2 𝑤
𝑗±1/2
0 𝑤

𝑗±1/2
1

(9E.6)

where here we temporarily introduce the 𝑗 ± 1/2 superscript to indicate these weights are for either

the 𝑗 + 1/2 face or the 𝑗 − 1/2 face respectively. 𝜎 is then constructed as the harmonic mean of

𝜎𝑗±1/2:

𝜎 = 2
𝜎𝑗+1/2𝜎𝑗−1/2

𝜎𝑗+1/2 + 𝜎𝑗−1/2
. (9E.7)

Thus, 0 < 𝜎 < 1 and when 𝜎𝑗+1/2 = 𝜎𝑗−1/2, our scheme reduces to the standard WENO5-Z

method, when 𝜎𝑗+1/2 and 𝜎𝑗−1/2 differ significantly, 𝜎 will become small and our scheme reduces

to a limited piecewise linear reconstruction.

We note that the recently developed adaptive order WENO approaches such as described in

Balsara et al. (2016) formalize and generalize this idea. However, the approach described here has

the advantage of being particularly simple compared to the more general treatment, and we have

found it to be very effective. We call this method WENO5-Z-AOAH, for WENO5-Z-AO At Home.
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APPENDIX 9F

TIME-DERIVATIVES OF THE MONOPOLE METRIC

To compute the Christoffel symbols, one needs derivatives of the metric in both space and time.

The spatial derivatives are straightforward: with 𝑎, 𝐾 , 𝛼, and 𝛽𝑟 known, simply differentiate with

respect to 𝑟. The time derivatives are more subtle. We use the Einstein evolution equations to

derive them.

First we note that ADM evolution equation for the metric reduces to the following in spherical

symmetry:

𝜕𝑡𝑔𝜇𝜈 = 𝛽𝜎𝜕𝜎𝑔𝜇𝜈 + 𝑔𝜎𝜇𝜕𝜈𝛽𝜎 + 𝑔𝜎𝜈𝜕𝜇𝛽𝜎 − 2𝛼𝐾𝜇𝜈

= 𝛽𝑟𝜕𝑟𝑔𝜇𝜈 + 𝑔𝑟𝜇𝜕𝜈𝛽𝑟 + 𝑔𝑟𝜈𝜕𝜇𝛽𝑟 − 2𝛼𝐾𝜇𝜈 . (9F.1)

The 𝑟𝑟-component of equation (9F.1) yields an equation for the derivative of 𝑎:

𝜕𝑡𝑔𝑟𝑟 = 𝛽𝑟𝜕𝑟 (𝑎2) + 2𝑔𝑟𝑟𝜕𝑟𝛽𝑟 − 2𝛼𝐾𝑟𝑟

= 2𝑎𝑎′𝛽𝑟 + 2𝑎2𝜕𝑟𝛽
𝑟 − 2𝛼𝑎2𝐾𝑟𝑟

= 2𝑎(𝑎′𝛽𝑟 + 𝑎(𝛽𝑟)′ − 𝛼𝑎𝐾𝑟𝑟 ).

= −2𝛼𝜕𝑡𝛼 + 2𝑎(𝛽𝑟)2𝜕𝑡𝑎 − 𝑟𝑎2𝛽𝑟 (𝛼𝜕𝑡𝐾𝑟𝑟 + 𝐾𝑟𝑟 𝜕𝑡𝛼) (9F.2)

But note that

𝜕𝑡𝑔𝑟𝑟 = 𝜕𝑡𝑎
2 = 2𝑎𝜕𝑡𝑎,

so

𝜕𝑡𝑎 = 𝑎′𝛽𝑟 + 𝑎(𝛽𝑟)′ − 𝛼𝑎𝐾𝑟𝑟 . (9F.3)

The lapse proceeds similarly. We start with the fact that

𝑔𝑡𝑡 = −𝛼2 + 𝛽2

= −𝛼2 + 𝑎2(𝛽𝑟)2

⇒ 𝜕𝑡𝑔𝑡𝑡 − −2𝛼𝜕𝑡𝛼 + 2𝑎(𝛽𝑟)2𝜕𝑡𝑎 + 2𝑎2𝛽𝑟𝜕𝑡𝛽
𝑟

= −2𝛼𝜕𝑡𝛼 + 2𝑎(𝛽𝑟)2𝜕𝑡𝑎 + 2𝑎2𝛽𝑟
[
−1

2
𝑟 (𝛼𝜕𝑡𝐾𝑟𝑟 + 𝐾𝑟𝑟 𝜕𝑡𝛼)

]
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We then proceed to apply the metric evolution equation (9F.1) on 𝑔𝑡𝑡 :

𝜕𝑡𝑔𝑡𝑡 = −𝛽𝑟𝜕𝑟𝑔𝑡𝑡 + 2𝑔𝑟𝑡𝜕𝑡𝛽𝑟 − 2𝛼𝐾𝑡𝑡

= 𝛽𝑟𝜕𝑟𝑔𝑡𝑡 + 2𝑔𝑟𝑡
[
−1

2
𝑟 (𝛼𝜕𝑡𝐾𝑟𝑟 + 𝐾𝑟𝑟 𝜕𝑡𝛼)

]
− 2𝛼𝐾𝑡𝑡

= 𝛽𝑟𝜕𝑡𝑔𝑡𝑡 − 𝑟𝑎2𝛽𝑟 (𝛼𝜕𝑡𝐾𝑟𝑟 + 𝐾𝑟𝑟 𝜕𝑡𝛼) − 2𝛼𝑎2𝐾𝑟𝑟 (𝛽𝑟)2 (9F.4)

We now combine equations (9F.4) and (9F.4). The

𝑟𝑎2𝛽𝑟 (𝛼𝜕𝑡𝐾𝑟𝑟 + 𝐾𝑟𝑟 𝜕𝑡𝛼)

term cancels and we find that

−2𝛼𝜕𝑡𝛼 + 2𝑎(𝛽𝑟)2𝜕𝑡𝑎 = 𝛽𝑟𝜕𝑟𝑔𝑡𝑡 − 2𝑎2𝛼𝐾𝑟𝑟 (𝛽𝑟)2

⇒ 𝜕𝑡𝛼 =
𝑎

𝛼
(𝛽𝑟)2 ¤𝑎 + 𝑎2𝐾𝑟𝑟 (𝛽𝑟)2 − 𝛽𝑟

𝛼
𝜕𝑟𝑔𝑡𝑡

=
𝑎

𝛼
(𝛽𝑟)2 ¤𝑎 + 𝑎2𝐾𝑟𝑟 (𝛽𝑟)2 − 𝛽𝑟

𝛼

[
−2𝛼𝜕𝑟𝛼 + 2𝛼(𝛽𝑟)2𝜕𝑟𝑎 + 2𝑎2𝛽𝑟𝜕𝑟𝛽

𝑟
]

=
𝑎

𝛼
(𝛽𝑟)2 ¤𝑎 + 𝑎2𝐾𝑟𝑟 (𝛽𝑟)2 + 2𝛽𝑟𝛼′ − 2(𝛽𝑟)3𝑎′ − 2𝑎2 (𝛽𝑟)2

𝛼
𝜕𝑟𝛽

𝑟

= 𝛽𝑟
[
𝑎𝛽𝑟 ¤𝑎
𝛼

+ 𝑎2𝐾𝑟𝑟 𝛽
𝑟 + 2𝑎′(1 − (𝛽𝑟)2) − 2

𝑎2𝛽𝑟

𝛼
𝜕𝑟𝛽

𝑟

]
(9F.5)

Finally, we reach the time derivative of 𝛽. To calculate it, we require the time derivative of

𝐾𝑟𝑟 , which comes from the ADM evolution equation for the extrinsic curvature. We begin with the

following relation:

𝐾 𝑖𝑗 = 𝛾𝑖𝑘𝐾𝑘 𝑗

⇒ (𝜕𝑡 − L𝛽)𝐾 𝑖𝑗 = 𝛾𝑖𝑘 (𝜕𝑡 − L𝛽)𝐾𝑘 𝑗 + 𝐾𝑘 𝑗 (𝜕𝑡 − L𝛽)𝛾𝑖𝑘

= 𝛾𝑖𝑘 (𝜕𝑡 − L𝛽)𝐾𝑘 𝑗 − 2𝛼𝐾 𝑖𝑘𝐾
𝑘
𝑗 , (9F.6)

We thus have

(𝜕𝑡 − L𝛽)𝐾 𝑖𝑗 = −𝐷𝑖𝐷 𝑗𝛼 + 𝛼
[
(3)𝑅𝑖𝑗 + 𝐾𝐾 𝑖𝑗 − 2𝐾 𝑖𝑘𝐾

𝑘
𝑗

]
+ 4𝜋𝛼

[
𝛿𝑖𝑗 (𝑆 − 𝜌) − 2𝑆𝑖𝑗

]
− 2𝛼𝐾 𝑖𝑘𝐾

𝑘
𝑗

= −𝐷𝑖𝐷 𝑗𝛼 + 𝛼
[
(3)𝑅𝑖𝑗 − 4𝐾 𝑖𝑘𝐾

𝑘
𝑗

]
+ 4𝜋𝛼

[
𝛿𝑖𝑗 (𝑆 − 𝜌) − 2𝑆𝑖𝑗

]
⇒ 𝜕𝑡𝐾

𝑖
𝑗 = 𝛽𝑘𝜕𝑘𝐾

𝑖
𝑗 − 𝐾 𝑘𝑗 𝜕𝑘 𝛽𝑖 + 𝐾 𝑖𝑘𝜕𝑗 𝛽

𝑘 − 𝐷𝑖𝐷 𝑗𝛼 + 𝛼
[
(3)𝑅𝑖𝑗 − 4𝐾 𝑖𝑘𝐾

𝑘
𝑗

]
+ 4𝜋𝛼

[
𝛿𝑖𝑗 (𝑆 − 𝜌) − 2𝑆𝑖𝑗

]
.
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When we specialize to 𝑖 = 𝑗 = 𝑟, this becomes

𝜕𝑡𝐾
𝑟
𝑟 = 𝛽𝑟𝜕𝑟𝐾

𝑟
𝑟 − 𝐾𝑟𝑟 𝜕𝑟𝛽𝑟 + 𝐾𝑟𝑟 𝜕𝑟𝛽2 − 𝐷𝑟𝐷𝑟𝛼 + 𝛼

[(3)𝑅𝑟𝑟 − 4(𝐾𝑟𝑟 )2] + 4𝜋𝛼
[
𝑆 − 𝜌 − 2𝑆𝑟𝑟

]
= 𝛽𝑟𝜕𝑟𝐾

𝑟
𝑟 − 𝐷𝑟𝐷𝑟𝛼 + 𝛼[(3)𝑅𝑟𝑟 − 4(𝐾𝑟𝑟 )2] − 4𝜋𝛼(𝑆 − 𝜌 − 2𝑆𝑟𝑟 ). (9F.7)

Given metric ansatz (7.15), we have

(3)𝑅𝑟𝑟 =
2
𝑎𝑏𝑟

{𝑎′[(𝑏 + 𝑟𝑏′) − 𝑎𝑟𝑏′′] − 2𝑎𝑏′}

=
2
𝑎𝑟
𝑎′

⇒(3) 𝑅𝑟𝑟 =
2
𝑎3𝑟

𝑎′ (9F.8)

and since 𝛼 is a scalar,

𝐷𝑖𝐷 𝑗𝛼 = 𝐷𝑖𝜕𝑗𝛼

= 𝛾𝑖𝑘𝐷𝑘𝜕𝑗𝛼

= 𝛾𝑖𝑘 (𝜕𝑘𝜕𝑗𝛼 −(3) Γ𝑙𝑘 𝑗𝜕𝑙𝛼)

= 𝛾𝑖𝑘 (𝜕𝑘𝜕𝑗𝛼 −(3) Γ𝑟𝑘 𝑗𝜕𝑟𝛼) because only non-trivial derivatives are in 𝑟

⇒ 𝐷𝑟𝐷𝑟𝛼 = 𝛾𝑟𝑘 (𝜕𝑘𝜕𝑟𝛼 −(3) Γ𝑟𝑘𝑟𝜕𝑟𝛼)

= 𝛾𝑟𝑟 (𝜕2
𝑟 𝛼 −(3) Γ𝑟𝑟𝑟𝛼) because 𝛾 is diagonal

=
1
𝑎2

(
𝜕2
𝑟 𝛼 − 𝑎′

𝑎
𝜕𝑟𝛼

)
=

1
𝑎2 𝜕

2
𝑟 𝛼 − 𝑎′

𝑎3 𝜕𝑟𝛼 (9F.9)

Which implies

𝜕𝑡𝐾
𝑟
𝑟 = 𝛽

𝑟𝜕𝑟𝐾
𝑟
𝑟 −

1
𝑎2 𝜕

2
𝑟 𝛼 + 𝑎′

𝑎3 𝜕𝑟𝛼 + 𝛼
[

2
𝑎3𝑟

𝑎′ − 4(𝐾𝑟𝑟 )2
]
+ 4𝜋𝛼

[
𝑆 − 𝜌 − 2𝑆𝑟𝑟

]
(9F.10)

which provides, along with equation (7.21) and the chain rule, a solution for the time-derivative of

the shift.

We note that 𝑆𝑟𝑟 can be computed simply in spherical symmetry from 𝑆 via the following

reasoning. In spherical symmetry, the spatial stress tensor must be diagonal. Moreover, the
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diagonal components must be

𝑆𝜃𝜃 = 𝑆
𝜙

𝜙
= 𝑃 + 1

2
𝑏2.

Therefore,

𝑆𝑟𝑟 = 𝑆 − 𝑆𝜃𝜃 − 𝑆
𝜙

𝜙

= 𝑆 − 2(𝑃 + 1
2
𝑏2)

= 𝜏 + 𝐷 + 𝑃 − (𝜌 + 𝑢) − 𝑃𝑖𝜇𝑃𝜈𝑖 𝑏𝜇𝑏𝜈 (9F.11)

We use this relation.
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