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Abstract

Cosmic-rays with energies in the range of 1 - 100 TeV are nearly isotropic in

their arrival directions due to interactions with randomlyscattered inhomogeneities

in the Galactic magnetic field. Observation of the large scale anisotropy in the

arrival direction of these cosmic-rays is therefore a useful tool in constraining the-

oretical models of cosmic-ray propagation, probing the magnetic field structure in

our interstellar neighborhood, as well as providing information about the distribu-

tion of sources. In this work results are presented of a harmonic analysis of the

large scale cosmic-ray anisotropy as observed by the Milagro observatory. A two-

dimensional display of the anisotropy projections in rightascension is generated by

the fitting of three harmonics to 18 separate declination bands.

Milagro is a water Cherenkov detector located at an elevation of 2630m in

the Jemez mountains outside of Los Alamos, NM. With a live time > 90% and

a large field-of-view (∼ 2 sr), Milagro is an excellent instrument for measuring this

anisotropy with high sensitivity at TeV energies.

The analysis is conducted using a seven year data sample consisting of more

than 95 billion events. A sidereal anisotropy is observed with a magnitude around

0.1% for cosmic-rays with a median energy of 6 TeV. The dominant feature in this

data set is a deficit region of depth (−2.85±0.06 stat.±0.08 syst.)×10−3 in the

direction of the Galactic North Pole with a range in declination of -10 to 45 degrees

and 150 to 225 degrees in right ascension. The anisotropy also shows evidence of

a time dependence, with a steady increase in the magnitude ofthe signal in this

region over the course of seven years. An analysis of the energy dependence of the
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anisotropy in this region is also presented showing possible deviation of the spectral

index of the anisotropy signal from that of the nominal cosmic-ray background. The

anisotropy of cosmic-rays in universal time is analyzed showing a dipole structure

at the level of 3×10−4, consistent with the Compton-Getting effect expected due

to the Earth’s motion around the Sun through the cosmic-ray ether.
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Chapter 1

Introduction

When Victor Hess first discovered mysterious particles coming from outer space

back in 1912 it opened a new window on the universe for astronomers. These parti-

cles came to be known as cosmic-rays and sparked the fields of particle physics and

astrophysics. A great deal is known about cosmic-rays with the main topics being

energy spectrum, composition and asymmetries in arrival direction (or anisotropy).

However, there are still unanswered questions. The specificorigins of these cosmic-

rays are still a mystery and there are also questions about cosmic-ray propagation.

In addition, since cosmic-rays are charged particles, theycan be used as a probe

of magnetic field structures not normally observable by other means. Answering

these questions requires utilizing detailed measurementsof the different aspects of

cosmic-rays mentioned above. In an attempt to add to this knowledge, presented in

this work is an analysis of the large scale cosmic-ray anisotropy.

1



1.1 Galactic Cosmic-Rays

1.1.1 Brief Overview

Cosmic-rays are observed over a wide range of energies from acouple MeV to more

than 1020 eV. The energy spectrum of cosmic-rays has been extensivelystudied.

Figure 1.1 shows the nominal cosmic-ray spectrum as observed on Earth.

Figure 1.1: Differential nominal cosmic-ray spectrum. Theslope is flattened by
multiplying the flux byE2.5. Figure taken from [1]

The lowest energy cosmic-rays can be produced by the Sun or originate from

outside the solar system. The highest energy cosmic-rays are of unknown origins as

of yet. Given that the rate of particles with energies> 1019 eV reaching the Earth is

about one per square kilometer per century, it is difficult tocollect enough of them

to tell where they came from with any statistical power, although currently it is
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suspected that these cosmic-rays are from extragalactic sources. Cosmic-rays with

energies up to about 1017 eV are believed to be almost entirely of galactic origin.

Galactic cosmic-rays (henceforth abbreviated as CRs) havean average energy

density of∼ 1eVcm−3, similar to the energy density of interstellar radiation and

magnetic fields [6]. For this reason, these CRs play an important part in the dy-

namics of the interstellar medium. The focus of this work is on cosmic-rays of

energies between about 0.5 TeV to a couple hundred TeV and is the energy range

to be assumed if not explicitly mentioned.

Another important aspect of CRs, which has been studied in detail, is the com-

position of cosmic-rays. About 98% of CRs are fully ionized nucleons (mainly

protons) with the other 2% being electrons and positrons. Studies of the nuclear

component involve determining both the elemental composition and the isotopic

abundances of different particle species (as well as their energy spectra). The in-

formation gathered from these studies are indispensable for understanding the ori-

gin, acceleration, and propagation of CRs. One example, relevant to the isotropy

observed in cosmic-rays, is the average time a CR spends in the galaxy before es-

caping. This can be determined from isotopic abundances of radioactive nuclei and

is found to be on the order of 10 million years. For a detailed review of this subject

see [7].

Sources of CRs at these energies are not entirely known. There a number of

probable candidates for accelerators of CRs that have been studied including: su-

pernovae, supernova remnants, and pulsars (see [8] for a detailed discussion). The

main obstacle to determining the acceleration sites is the fact that the path of CRs,

being charged particles, bend in the Galactic magnetic field. Therefore, the arrival
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direction of a CR does not directly point back to its source. Information about

the location of possible CR accelerators can be obtained through a combination

(an exceedingly difficult one at that) of the CR energy spectrum and composition

information, understanding of CR propagation, and cosmic-ray anisotropy.

1.1.2 Propagation and Isotropy

The propagation of CRs for a particular particle species canbe written as [9]:

∂ψ(~r, p, t)
∂t

= q(~r, p, t)+~∇ · (Dxx
~∇ψ−~Vψ)+

∂
∂p

p2Dpp
∂

∂p
1
p2ψ−

∂
∂p

[ṗψ−
p
3
(~∇ ·~V)ψ]−

1
τ f

ψ−
1
τr

ψ (1.1)

whereψ(~r, p, t) is the CR density per unit of total particle momentump at po-

sition~r, q(~r, p) is the source term containing contributions of the particle’s sources,

other particle species decays, and spallation,Dxx is the spatial diffusion coefficient,

~V is the convection velocity,Dpp is the diffusion in momentum space (as can occur

in CR reacceleration due to interactions with plasma waves during propagation), ˙p

is the rate of momentum gain (or loss),τ f is the characteristic time scale for loss by

fragmentation, andτr is time scale for radioactive decay.

Some of the factors in this equation are known, such as the spallation cross-

sections, decay times, and gas densities (which can be obtained from atomic and

molecular gas surveys). Others are model dependent. The source distribution and

particle species abundances, for example, require an iterative technique to compare

calculations using a given model with observational data.
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The diffusion tensor plays an important role in CR propagation and partly en-

codes details of the magnetic field structures. The diffusion of CRs arises from the

scattering of particles on random magnetohydrodynamic discontinuities and waves

distributed throughout the Galaxy. Locally, the spatial diffusion follows along mag-

netic field lines and can therefore be very anisotropic. On large scales of∼ 100 pc,

fluctuations in the random magnetic field can be much larger than the average field

strength (∼ 1µg). Since CRs spend on the order of 107 years propagating in the

Galaxy, these random fluctuations lead to a large degree of isotropy on these dis-

tance scales. The typical values of the diffusion coefficient (assuming an isotropic

tensorial structure) for relativistic particles is∼ 1029cm2/sas determined from anal-

ysis of CR composition data [10]. The diffusion coefficient can also be energy

dependent, varying depending on the theoretical model.

1.2 Cosmic-Ray Anisotropy

1.2.1 Diffusion and Source Distribution

In the diffusion approximation, the amplitude of the anisotropy is dependent on the

spacial gradient of the number density of cosmic-rays and can be calculated as [11]:

A =
3D
v

∇N
N

(1.2)

whereD is the diffusion tensor,N is the number density of cosmic-rays, and

v is the velocity of the cosmic-rays (which at these energies is essentiallyc). The

diffusion tensor is generally assumed to be isotropic in practical calculations; there
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is no reason for this to be true but, lacking detailed knowledge of the structure of

the local Galactic magnetic field, it cannot be calculated explicitly. The isotropic

approximation is reasonable on scales larger than∼ 100 parsecs due to randomness

in the large-scale Galactic magnetic fields.

Anisotropy caused by a gradient in CR density can arise from diffusion of

cosmic-rays into the Galactic halo, the distribution of cosmic-ray sources and inter-

actions with local magnetic field configurations.

The diffusion of CRs into the Galactic halo can be examined using the three-

dimensional diffusion equation. This can take into accountthe spatial distribution

of atomic and molecular gas clouds, CR sources, and convection [12]. A simplified

model of the galaxy is as a thin disk with a uniform distribution of interstellar gas

and CR sources. Surrounding the disk is a halo with a much smaller density of mat-

ter and sources and in general will have a higher diffusion coefficient. Cosmic-rays

produced in the Galactic disk will tend to diffuse out into the Galactic halo creating

an anisotropy in the direction perpendicular to the disk. This can be approximated

by [11]:

Ahalo =
3zng

xl
(1.3)

with zequal to the perpendicular distance from the Galactic disk,ng the density

of gas in the disk (∼ 1cm−1), andxl the average thickness of interstellar matter

passed through by the CRs (∼ 3×1024cm−2). Usingz≈ 10 pc gives an anisotropy

on the order of 10−5 but it is noted that this approximation does not take into account

the particular magnetic field configurations, source distributions, or asymmetries in
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the size of the Galactic halo between the Northern and Southern hemispheres, all of

which complicate this calculation.

The density of CR sources is expected to be higher in the planeof the Galaxy.

The exact calculation of the anisotropy due to these sourcesis not possible with-

out knowing the specific distribution, intensity, and age ofthe sources but, some

simple approximations have been examined. Using the isotropic diffusion model,

a number of studies have been conducted predicting the anisotropy arising from a

distribution of possible cosmic-ray sources such as supernova remnants and pul-

sars near the Earth (for details see [13], [14], and [15]). Inthese studies a more

sophisticated simulation of the diffusion process is conducted including escape of

CRs from the Galaxy through the halo, reacceleration of CRs,and discrete known

source candidates. In general these simulations tend to over estimate the anisotropy

but are within an order of magnitude of observations (∼ 10−3). In addition the pos-

sible sources found to be the most important for producing ananisotropy similar to

observations lie within about 1-2 kiloparsecs from Earth.

1.2.2 Heliospheric Magnetic Fields

Since CRs at energies of 1-100 TeV tend to propagate along thelocal magnetic

field, there is expected to be an enhancement coming from the direction of the

heliotail. The heliotail is the part of the heliosphere opposite to the Sun’s direction

of motion formed from the interactions between the solar wind, interstellar plasma,

and interstellar and interplanetary magnetic fields. Figure 1.2 shows the shape of the

magnetic field lines in the heliosphere. As is seen, the magnetic field lines become

more parallel in the direction of the heliotail. This could allow more cosmic-rays

7



to propagate from this direction rather than from directions where the CRs would

have to propagate perpendicular to the magnetic field.

Figure 1.2: Schematic view of the magnetic field structures of the heliosphere.
Figure taken from [2].

The magnetic fields in the heliosphere are not large enough tosignificantly mod-

ulate CRs at TeV energies. The gyroradius for a TeV particle in the local magnetic

field is around 0.1 pc (or 100 AU), approximately the size of the heliosphere. How-

ever, according to a recent derivation of the diffusion tensor [16], it appears that

perpendicular diffusion can become significant. This couldhave implications for

the modulation of TeV cosmic-rays in the outer heliosphere due to the changes in

the heliosphere coming from varying solar output (e.g. the 11 year solar cycle).

At this point in time, understanding how this could arise requires more theoretical
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work and simulations of the heliosphere.

1.2.3 Compton-Getting Effect

In addition to the spatial gradient leading to anisotropy, there is also the momentum

gradient. In 1935 Arthur Compton and Ivan Getting proposed atheory of cosmic-

ray anisotropy based on the motion of the Earth through space[17]. Assuming an

isotropic and homogeneous cosmic-ray sea in the vicinity ofthe solar system, this

anisotropy would manifest as a dipole with a maximum in the direction of motion.

Figure 1.3 shows a schematic view in the case of the Earth’s motion around the Sun.

The anisotropy, defined as the fractional difference from the mean cosmic-ray

rate, is calculated to be [18] (assuming the observer’s speed is small compared to

the speed of the light):

A(θ) = (2+α)
v
c
cos(θ) (1.4)

whereθ is the angle between the direction of the Earth’s motion and the CR

arrival direction,α is the spectral index of the CRs,v is the speed of the Earth

relative to the isotropic CR background, andc is the speed of light. It is noted that

although this effect is dependent on the spectral index of the CRs, it is not dependent

on their specific energies.

In the case of the Earth’s motion around the Sun,v = 29 km/s, an using a value

of α = 2.7, the anisotropy is expected to be of the order of 10−4. Also necessary

to consider is the variation in magnitude and direction of the anisotropy due to the

Earth’s tilt on its axis and orbital eccentricity.
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Figure 1.3: Schematic picture of the Compton-Getting effect due to the Earth’s mo-
tion around the Sun. The size of the arrows indicates the magnitude of the cosmic-
ray flux.

This calculation may also be done for the motion due to the solar system around

the Galactic center. In this case there is the possibility that the CR sea co-rotates

with the local Galactic magnetic fields. This complicates the prediction of this

effect. But, one can make an estimate of the maximal effect byassuming a static

rest frame for the CRs relative to the Sun’s velocity which isabout 225 km/s in the

direction of Vega. This gives an expected anisotropy on the order of 10−3.
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1.2.4 Previous Observations

There have been many observations of the large scale cosmic-ray anisotropy in the

TeV energy range. Many of these observations come from underground cosmic-

ray muon experiments. In general these observations assumethe CRs arrive from

directly overhead the experiment and so do not have information in the declination

direction. The data is analyzed by fitting harmonics to the distribution in the right

ascension direction. A summary of the fundamental harmonicamplitude and phase

information from a variety of experiments is given in Chapter 6. These observations

show an anisotropy with a magnitude on the order of 10−3 with the maximum being

roughly in the direction of the heliotail. This excess is sometimes referred to as the

“tail-in” region. The anisotropy is also observed, by the KASCADE experiment

[19], to decrease with increasing energy up to∼ 1015 eV.

In addition there have been two-dimensional displays of theCR anisotropy pub-

lished recently. The Tibet Air Shower Array, with a modal energy of 3 TeV [20],

and Super-Kamiokande-I, with a median energy of 10 TeV [21],have identified two

coincident regions of interest in their sidereal observations. They observe the excess

or “tail-in” region, as well as a deficit at∼ 200◦ right ascension sometimes called

the “loss-cone”. This is a historical term coming from a theory that this deficit is

caused by a conical magnetic field structure [22].

The Tibet array also looked at the time and energy dependenceof the anisotropy.

They found no time dependence by comparing data split into two five-year periods,

1997-2001 and 2001-2005. It is noted that if the anisotropy has a time dependence

based on the solar cycle it might not be seen this way given thesolar maximum
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overlaps both of these sets. They also see the anisotropy remain constant up to

about 12 TeV at which point it decreases in magnitude.

The Earth-motion Compton-Getting effect has been observedas well and corre-

sponds well with theory. However, a Galactic Compton-Getting effect has not been

seen.
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Chapter 2

The Milagro Detector

The Milagro gamma-ray observatory is an extensive air shower (EAS) detector lo-

cated in the Jemez Mountains outside of Los Alamos, NM at a latitude of 35.88◦N

and a longitude of 106.68◦W. The altitude of the detector is 2630 m above sea

level giving an atmospheric overburden of 750g/cm2. The detection of EASs is

achieved using a water Cherenkov technique. Using this technique makes it eas-

ier (and cheaper) to build a detector having a large area withthe ability to collect

a large number of incident EASs. The Milagro detector has a field of view of

∼ 2 sr and detects∼ 1700 EAS events per second, the majority of which are due

to hadronic initiated showers. In addition the detector hasa live-time of> 90%.

These characteristics make Milagro an excellent instrument for the measurement of

both localized sources and larger scale phenomena.
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2.1 Physical Principles

2.1.1 Extensive Air Showers

The direct detection of gamma-ray and cosmic-ray (hadronic) particles is impossi-

ble for ground based detectors since the large atmospheric overburden is opaque to

these particles. However, this overburden can be used as an integral part of a de-

tection device for very high energy particles. When a primary cosmic-ray particle

enters the atmosphere it initiates a secondary particle cascade called an extensive air

shower (EAS). Properties of the EAS can then be used to determine the direction,

energy, and type of incident particle. The development of EAS is a complicated

process but has been thoroughly studied (e.g. in [23]). A simplified model is given

here.

The initiation of an EAS is dependent upon the type of incident particle. In the

simpler case of a gamma-ray primary, the interaction of the photon with a molecule

in the atmosphere creates an electron-positron pair. This electron-positron pair then

produces high energy photons through bremsstrahlung whichinteract with the at-

mosphere creating more electron-positron pairs etc. This secondary particle cascade

grows geometrically until the mean energy of the particles fall below a critical en-

ergy (about 85 MeV). At this point ionization losses predominates and the rate of

fermionic pair production decreases dramatically. After reaching this point (called

the “shower maximum”), the number of secondary particles decrease on the way

down to the ground.

Since the secondary particles are ultrarelativistic, the shower develops as a front,

perpendicular to the incident particle’s direction, with athickness of about 1m. It
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is this perpendicular development of the EAS that allows forthe detection of the

primary particle’s direction through the measurement of PMT timing information.

The largest concentration of particles is in the center of the front and is termed the

“shower core”. This shower front is slightly curved given that particles at the edges

tend have less energy and are therefore more susceptible to Coulomb scattering.

This scattering also leads to the lateral extent of the shower being quite large (∼

100m).

For showers initiated by cosmic-rays, the evolution has some similar features as

above. In this case however, there are more possible reactions including a hadronic

cascade, caused by the scattering and spallation of primaries interacting with at-

mospheric nuclei and molecules, and the production ofπ± andπ0 particles. The

π0 particles can decay into photons which then proceed as in theabove case. The

π± decay process produces muons and neutrinos. A muon can then decay into an

electron or positron, depending on the muon type, and a neutrino. Figure 2.1 shows

a schematic view of a cosmic-ray initiated EAS. For both gamma-ray and cosmic-

ray initiated showers, the dominant particles reaching ground level are electrons,

positrons, and photons.

2.1.2 Cherenkov Radiation

A common method of detecting the high energy charged particles present in EASs

is through the observation of Cherenkov radiation. When a charged particle with

velocity~v moves through a dielectric medium with a speed larger than the propaga-

tion speed of light in that medium, Cherenkov radiation is produced. This radiation

is emitted as the atoms and molecules of the medium return to equilibrium after
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Figure 2.1: Schematic view of a cosmic-ray initiated extensive air shower. Figure
taken from [3].

being polarized by the moving charged particle. The photonsemitted will construc-

tively interfere as long as the polarizing particle is moving faster than the speed of

light in the medium. This emission propagates as a cone of light with an opening

angle relative to the direction of~v equal to:

θ = cos−1(
c
vn

) (2.1)

wherec = speed of light,v = speed of the charged particle, andn = index of
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refraction of the medium. In watern = 1.35, giving an opening angle of about 42◦

for ultrarelativistic particles (v≈ c).

For this phenomena to occur at all, a moving particle with rest massm, must

satisfy the following relation:

Eparticle >
mc2

√

1− 1
n2

(2.2)

Using this relation it is easy to show that in water the threshold energy for

Cherenkov radiation production of an electron is 0.76 MeV, for a muon it is 0.16

GeV, and for a proton it is 1.4 GeV. This is, by extension, the threshold energy

required for detection of these particles by the photomultiplier tubes in the Milagro

detector.

2.2 Physical Layout of the Milagro Detector

2.2.1 Pond

Figure 2.2 is an overhead view of the Milagro detector showing the covered pond

and the “outrigger tanks” in red. The pond is located in the center and has dimen-

sions of 80m×60m at the surface. The depth is 8m and the sides slope to a dimen-

sion of 50m×30mat the bottom (see Figure 2.3 for a schematic diagram). The pond

is protected by a light-tight cover allowing for operation regardless of weather con-

ditions or time of day. This cover can be inflated for repairs.A lightning protection

system was also constructed around the detector consistingof a network of wires

suspended above the pond. The pond is filled with about 24 million liters of purified
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Figure 2.2: Aerial view of the Milagro detector. The rectangular area in the center
is the pond. The red disks show the location of the outrigger tanks.

water which is recirculated at a rate of∼ 750l/min. The recirculated water flows

through a filtration system to remove particulate matter andalso through a UV filter

to prevent biological growth. This system is implemented tomaintain clarity of

the water which is important for the accurate reconstruction of EASs. The quality

of the pond water can be gauged by measuring the attenuation length of the water.

The most recent measurement shows an attenuation length of 13m at a wavelength

of 325nm, the wavelength of Cherenkov radiation with peak detectionsensitivity in

Milagro.

The pond is instrumented with 723 photomultiplier tubes (PMTs) manufactured

by Hamamatsu (model #R5912SEL) and arranged in two layers: the top, or “air-

shower” (AS) layer, consisting of 450 PMTs at a depth of 1.5 meters; and the bot-
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tom layer, or “muon” (MU) layer, consisting of 273 PMTs at a depth of 6 meters

(see schematic in Figure 2.3). The AS layer is used for event triggering and re-

construction. The MU layer can be used for background rejection (when looking

for gamma-ray sources). The PMTs in both layers are buoyant and arranged in

a 2.8m×2.8m grid with the MU layer grid offset from the AS layer grid by half

the grid distance. This grid distance was chosen as it is close to the distance of the

Cherenkov cone size at the level of the PMTs. The depth of the AS is approximately

five radiation lengths giving Milagro the ability to detect gamma-rays (which out-

number electrons-and positrons by about five to one in an EAS at ground level) that

will have converted into electron-positron pairs by the time they reach the AS layer.

Figure 2.4 shows the PMT grid under the cover. Each buoyant PMT is tethered

in such a way so the photo-cathode faces upwards. Each PMT is also surrounded

by a conical “baffle”. The baffle is in place to both block horizontal and upward

traveling photons (mainly from large zenith angle muons), and increase the collec-

tion area of the PMTs. Originally these baffles were constructed from aluminum,

but tended to corrode over time leading to reduced photon collection capability and

the degradation of water quality. These were therefore replaced by polypropylene

baffles. These replacements were done in two sessions in 9/2003 and 9/2005.

Figure 2.3: Schematic view of the Milagro pond.
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Figure 2.4: View of the pond showing the PMT grid from under the inflated cover.

2.2.2 Outrigger Array

The number of PMT hits in the pond cannot be used as a good measure of particle

energy if nothing is known about the core location. A low energy air-shower with

its core on the pond can have the same number of PMTs hit as a high energy shower

hitting far away from it. In order to better determine the core location the an out-

rigger array was installed. The Milagro pond is surrounded by this outrigger array,

consisting of 173 outrigger tanks, which expands the collection area of the detector

to 40,000m2 (although with sparser sampling). This array was installedincremen-

tally starting in 1999 and was completed in 2003. Each outrigger tank is cylindrical

with a height of 1m and a diameter of 2.4m. These tanks are filled with water and

instrumented with a single, downward facing PMT. To increase the light collection

capability of the PMT, the inside of the tank is lined with Tyvek (a white, reflective

material). This large outrigger array allows for the more accurate determination of
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EAS cores leading to an improvement in the angular reconstruction of an event. In

addition, the outrigger array is used in the estimation of primary particle energy.

2.3 Electronics

The electronic system is responsible for taking the raw PMT data and converting it

to useful information regarding individual primary particles. To do this there needs

to be a mechanism for interpreting the large amount of data received from the PMTs

as well as quickly selecting candidate signals to be analyzed. This section describes

the main electronic subsystems of the Milagro detector usedto accomplish this task.

Figure 2.5: Schematic of the Milagro electronics system. Figure taken from [4]
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2.3.1 PMT Pulse Processing

The PMTs are grouped into sets of 16, each with its own high voltage (HV) power

supply and front end board (FEB) used to process the PMT signals. The signal

received by the FEB from a given PMT consists of a pulse. The information one

wishes to extract from a given pulse is the time it was detected and the intensity

of the collected light. This information is collected usingthe time-over-threshold

(ToT) method. The ToT method is used rather than analog-to-digital converters

which would have seriously increased the expense.

The method works by taking the PMT pulse and sending it through both a low

gain (∼ 1×) and high gain (∼ 7×) amplifier. The output of each of these signals

runs to a discriminator. The output of the discriminator is digitized and is equal

to zero until the pulse height crosses a threshold where the signal changes state

creating an “edge”. When the pulse falls back below the threshold (decaying in the

manner of an RC circuit) the signal reverts to zero creating another edge. There are

two thresholds used: one at about 0.25 photoelectrons (PEs)(using the output from

the high gain amplifier) and the other about 5 PEs (using the output from the low

gain amplifier). The output takes two forms (see Figure 2.6) depending on pulse

height. Also from this figure it is easy to see that a larger pulse height results in

a longer time between edges (this is where the term ToT comes from). Since the

pulse height is proportional to the intensity of the incident light on the PMT, the

ToT can be used as a measure of this intensity. The ToT is recorded using a LeCroy

FASTBUS time-to-digital converter (TDC) and is sent along with the edge train to

the triggering mechanism. The time of the event is taken to bethe time at the first
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low threshold crossing. Since each PMT can differ in their operating characteristics

(PE to ToT relationship, time of pulse propagation through the cable), a pulsed laser

system is periodically used to calibrate the output of the PMTs in the pond.

Figure 2.6: Visualization of the translation between a PMT pulse and time-over-
threshold (ToT) for two pulse sizes.

2.3.2 Triggering

To accommodate the large number of events coming from different directions an

event trigger was needed. Milagro has used two different triggering mechanisms

over its lifetime. From about 1/1999 through 3/2002, Milagro utilized a simple

multiplicity trigger. The multiplicity trigger counts thenumber of PMTs hit in the

AS layer (NAS) over some time window. This window was set to∼ 300nswhich is

approximately the propagation time of a horizontally moving shower through the
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pond. In order for a shower to trigger an event ,which resultsin data from the TDC

modules being sent to the data acquisition system (DAQ), it must have hit at least

60 PMTs in the AS layer within the time window. This thresholdwas chosen in

order to lower the energy threshold of the detector while restricting the number of

single, large zenith-angle muons triggering the detector.This threshold also keeps

the event rate below the maximum that the DAQ can handle (∼ 2000Hz).

The rejection of the single muon triggers can be done during the angular recon-

struction. Since the Cherenkov light from an event triggered by an EAS will follow

a planar path through the detector, this can be discriminated from an event triggered

by a single muon for which the Cherenkov light will not be planar but rather con-

ical. However, it is desirable to be able reject these muons with the trigger rather

than the more computationally intensive angular fit. To thisend a custom VME

card was installed in 3/2002 which could differentiate between the different time

profiles created by EASs and large zenith-angle muons.

The different time profiles are parameterized by a quantity called “risetime”.

The risetime is defined as the time elapsed during the collection of 10%−90% of

total hits for a given event. A uniform plane of Cherenkov light, such as that from

an EAS, passing through the detector will have a lower risetime than that of a muon.

Given this difference in risetimes, the VME card was programmed to include this

in the event trigger and was initially set up with the following parameters:

• NAS> 20 & risetime< 50ns

• NAS> 53 & risetime< 87.5ns

• NAS> 74
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The VME card also operated with a smaller time window of∼ 180ns. Around

4/2006 the VME trigger card failed. Since that time a new triggering system which

operates on the same principle but with an even smaller time window of ∼ 80ns

has been in use. Over the entire Milagro lifespan the triggers have been adjusted to

maintain a event rate that was around 1700Hz.

2.3.3 Data Acquisition System

When the conditions for a triggered event are met, the raw TDCdata along with a

time stamp of the event, recorded from a GPS clock, are sent toa VME memory

module. These data are then read out and processed by the DAQ system. This

system consists of a series of “workers”, which is responsible for reconstructing

the raw event data, and the main DAQ computer, which serves the raw data to the

workers and collects the reconstructed event data for storage. This reconstructed

event data includes, but is not limited to, information suchas: the arrival direction

of the primary particle, the arrival time in MJD, the location of the shower core,

and the number of PMTs hit in each of the three layers. This reconstructed data is

stored in a RAID array on-site and is also saved at the University of Maryland. The

amount of reconstructed event data comes to about 5 GB per day.

Monitoring of the DAQ system (and Milagro in general) is performed to ensure

continuity of data collection (within reason) and data quality. Irregularities in the

data taking are recorded daily as are individual problems when they arise in an

online logbook by a member of the collaboration who is on shift.
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2.4 Event Reconstruction

As described is Section 2.1.1, a primary particle produces an EAS which has a

larger concentration of secondary particles along the shower axis, called the shower

core, and a curved shower front surrounding it. The relativeadvancement of the

shower front particles through the pond (i.e. the PMT hit times) is used to determine

the original direction of the primary particle (see Figure 2.7). However there is an

uncertainty inherent in this determination due to the core location, thickness of the

shower front (about 1m), and due to its curvature.

Figure 2.7: Visualization of the advancement of a shower front through the Milagro
pond. The relative hit times of the PMTs can be used to reconstruct the direction of
the primary particle initiating the air shower.
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2.4.1 Timing Corrections

The shower thickness has the effect of skewing the relative timing of the AS PMT

hits. The reason for this is that the time of a PMT hit is recorded when the first

photoelectron (PE) is detected. Since detection of a PE is a probabilistic event, a

volume of the shower front with higher density of particles will, on average, record

an earlier detection time than that with lower density. Thistime difference can be

corrected using the number of PEs measured in each individual PMT hit determined

from a method developed using monte carlo simulation comparisons with data.

The shower curvature also skews the relative timing of the PMT hits. A direct

fit of a curve to the shower front is far too slow to be effectivegiven the high

event rate and complexity of the fit function. For this reasonthe relative timing is

corrected with a linear function (cylindrically symmetricaround the shower axis)

of fixed slope determined by monte carlo simulation. The value of this correction

is determined to be about 0.7ns/m, where the distance is measured from the core

location to the PMT for which this time correction will be added. Having these

PMT timing corrections, the angular reconstruction can be performed. The first

step required is determining the core location.

2.4.2 Core Location

The determination of the core location has been accomplished using a number of

different methods since Milagro first started running. At the heart of all of the

earlier methods was a simple “center of mass” calculation defined as follows:
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xcore =
∑N

i=1xi
√

PEi

∑N
i=1

√
PEi

(2.3)

ycore =
∑N

i=1yi
√

PEi

∑N
i=1

√
PEi

(2.4)

wherei runs over all PMTs hit for the event (1...N), xi andyi giving the coor-

dinates of theith PMT, andPEi the number of PEs recorded in theith PMT. The

weighting of
√

PEi was chosen to keep PMTs with a large number of PEs hit from

completely dominating the fit. Before the addition of the outrigger (OR) array, only

the AS PMTs are used. This clearly has a disadvantage given itis more likely that

the core would have landed outside of the pond given the smallsize and indifference

of cosmic-ray showers to its location. Methods were developed to estimate whether

or not the core landed on or off the pond. If the core was determined to be off the

pond, the distance was set to be 50m from the center of the pond in the direction

given by the center of mass. Otherwise, the above equation was used.

After the addition of the OR array, the ratio of the number of OR PMTs hit to

the number of AS PMTs hit was a good estimator of whether or notthe core was

on the pond or not. If the core was on the pond, the above equation again would

be used, if not, the above equation would be used with the OR PMTs used in the

calculation instead of the AS PMTs.

The latest method of determining core location uses a 2-D Gaussianχ2 mini-

mization. The center of this Gaussian gives the location of the shower core. In this

minimization, both the AS PMTs and the OR PMTs are used.
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2.4.3 Angular Reconstruction

Using the core location the relative PMT hit times are corrected. The corrected

PMT timing information is then fit to a plane using a weightedχ2 fit. Each PMT is

weighted according to the number of detected photons. The fitis iterated five times.

In the first fit, PMTs with a small number of PEs are not included. In subsequent

iterations, PMTs with poor residuals are discarded and the number of PEs required

for a PMT to be included in the fit is reduced. After the fifth iteration, if the arrival

direction is unphysical or the fit fails, the event is thrown out. For a successfully

reconstructed event, the number of PMTs participating in the fit is also recorded

(Nf it ). This parameter turns out to be useful in event selection and will be used to

improve the quality of cosmic-ray data. This will be discussed in a later section.

The angular resolution of Milagro using this procedure is better than 1◦ with ∼ 90%

of triggered events being successfully fit.

2.5 Monte Carlo Simulation of the Detector

Lacking any controllable TeV sources located outside the Earth’s atmosphere, the

only way to estimate the response of the detector is through the use of monte carlo

(MC) simulations. These MC simulations can be used to estimate various param-

eters useful to the operation of Milagro such as: EAS impact parameters, angular

resolution, energy determination, and effective area.

The MC has two main components: simulation of an EAS in the atmosphere,

and simulation of the shower front through the Milagro detector. The simulation

of the air shower is accomplished using the CORSIKA (Cosmic Ray Simulations
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for Kascade) package[24]. This part of the MC first simulatesthe interaction with

the atmosphere of a primary particle with some energy, direction, and type. The

secondary particles produced in this interaction are then propagated through an at-

mosphere of nitrogen, oxygen, and argon (78.1%,21.0%, and 0.9% volume pro-

portions respectively) down to the detector level. The energies of the simulated

particles can extend to 1020eV. The types of particles simulated are gamma-ray

photons and nuclei as heavy as iron. These particles are thrown with a power-law

spectrum of the formdN/dE = E−2.0. The events can be re-weighted during later

analysis to conform to the proper spectral indices for the particle type.

After the simulation of the shower is complete, the motion and types of sec-

ondary particles in the shower front are input to the GEANT4 (GEometry ANd

Tracking) package[25]. The GEANT software takes this information and simulates

the propagation of these particles through a virtual Milagro detector. The shower

fronts are distributed over an area 1000 m around the detector. The output of the

software mimics that of the actual detector with the addition of the true direction,

energy, and particle type of the primary particle. This output can then be used to

test detector response as well as various analysis methods.

2.5.1 Gamma-Hadron Separation

Since Milagro was designed specifically with the observation of gamma-rays in

mind, the ability to separate gamma and hadronic initiated EASs is important. MC

simulation is an indispensable tool in creating techniquescapable of doing this.

However, given the focus of this work is on the hadronic component of cosmic-

rays, this separation will not be discussed here. For an in-depth study of these
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techniques see [26].

2.5.2 Energy Estimation

There are a couple of energy estimation algorithms that havebeen used with Mila-

gro. There is an event-by-event estimator which is based on gamma-ray simulations

and is discussed in detail in [27]. For the analysis in this thesis the energy estima-

tion is based on an the natural log of an energy dependent parameter( ln(fOut) ).

The parameter fOut is defined as the fraction of live outrigger PMTs hit for a given

event. In practice the data is split into eight bins of width 0.5 in ln(fOut). The

first bin has ln(fOut)< −3.5 and the last−0.5 ≤ ln(fOut) ≤ 0.0. Since all of the

analyses in this thesis are based on data that use the same quality cuts, this discus-

sion will include the same cuts which are:Nf it ≥ 50 and zenith angle≤ 50◦. The

reasons for these specific constraints will be discussed in the data analysis section.

With these cuts, Figure 2.8 shows the event rate for the four years of Milagro data

after the outrigger array was installed as a function of the eight ln(fOut) bins as

well as the correlation between ln(fOut) and energy determined by MC. The MC

uses the fluxes and spectral indices for Hydrogen to Iron as determined by the ATIC

experiment [28]. The median energy of triggers is found using the MC simulation

to be 6 TeV. As can be seen the energy resolution is quite poor at low ln(fOut) and

improves slightly at higher ln(fOut).
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2.5.3 Effective Area

The detection area of Milagro is not explicitly defined by itsphysical size due to

the size of the showers and the fact that the shower core need not land within the

detector boundaries in order to trigger an event. For this reason the concept of

effective area is defined which gives a measure of the efficiency of particle detection

as a function of energy and zenith angle. The effective are isdefined as:

dN
dt

=

Z Z Z

dΩdAdEAe f f(E,θ)Φ(E,θ) (2.5)

whereΦ(E,θ) is the differential primary flux as a function of energy and zenith

angle.

This effective area is calculated from MC simulation in an energy rangeE to

E +δE, and a zenith angle rangeθ to θ+δθ using:

Ae f f(E,θ) = Athrow
Ntrig(E,θ)

Nthrown(E,θ)
(2.6)

whereAthrow is the area over which the simulated particles were thrown ,Nthrown

is the total number of simulated particles, andNtrig is the total number of simulated

particles which actually trigger an event in the detector.
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Figure 2.8: Top: Number of events vs. the eight ln(fOut) binsfor actual Milagro
data taken from 2004-2007. Bottom: The monte carlo simulated correlation be-
tween the eight ln(fOut) bins and median energy. The asymmetric error bars are
calculated using the inner 68% of simulated data.
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Chapter 3

Data Analysis

3.1 Celestial Coordinate Systems

The distance to astronomical objects outside the solar system is sufficiently large

with respect to the Earth’s size and orbit that they appear tolie on the surface of an

imaginary sphere termed the “Celestial Sphere”. There are anumber of different

coordinate systems that astronomers have defined to describe the location of objects

on this sphere. The equatorial coordinate system is the mostrelevant to future

discussion in this work and will be discussed now.

3.1.1 Equatorial Coordinate System

The equatorial coordinate system, a star-fixed or “sidereal” coordinate system, can

be thought of as the projection of the Earth’s coordinate system (latitude and lon-

gitude) onto the Celestial Sphere at a specific instant in time (See Figure 3.1). The

projection of the equator defines the Celestial Equator (CE)and the projection of
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the poles defines the North and South Celestial Poles (NCP andSCP).

Figure 3.1: Diagram of the equatorial coordinate system. Figure taken from [5].

The two coordinates of the equatorial system are: right ascension (r.a.), and

declination (dec.). The dec. of a point on the Celestial Sphere is simply the analog

of latitude on Earth. The dec. of the NCP is 90◦, the dec. of the SCP is−90◦ and

the dec. of the CE is 0◦. Right ascension is the analog of Earth’s longitude with zero

right ascension fixed by the apparent position of the Sun on the Celestial Sphere at

the vernal equinox. The vernal equinox occurs around March 21st and is the point

when the Sun crosses the CE moving south to north. Right ascension increases

from west to east, following the unfolding of the sky from an astronomer’s point of
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view on Earth as time passes. For this reason r.a. is often given in units of hours,

minutes, and seconds. It is also acceptable to use units of degrees (with 24 hours

being equivalent to 360◦) which will be the convention used here.

Since the stars fixed on the Celestial Sphere appears to move from the perspec-

tive of an observer on Earth as the Earth rotates, it is also convenient to define

another equatorial coordinate system which follows the rotation of the Earth called

local hour angle (HA). This system uses the same definition ofdeclination as the

previous one. The longitudinal coordinate is now called hour angle. As the Earth

rotates, a star, fixed at some r.a. and dec., will follow its fixed declination but change

in hour angle. To define HA it is necessary to introduce the concept of local sidereal

time (LST). Sidereal time (ST) is equivalent to r.a. and can be used interchangeably,

local sidereal time on the other hand is defined as being the right ascension of the

celestial meridian for an observer at a given point in time. The celestial meridian

being the semi-circle of right ascension running from the NCP to the SCP contain-

ing the point at which the line extending from an observer’s location on the surface

of the Earth in the direction opposite to the force of gravity, intersects with the Ce-

lestial Sphere (this point is also called the “zenith”). Therelationship between HA

and ST (or r.a.) and LST is then defined as: HA = LST - ST. The HA-DEC coor-

dinate system, thus defined, rotates with the Earth and is a fixed coordinate system

for an observer or observatory (e.g. Milagro) at a fixed location on Earth.

3.1.2 J2000 Reference

The equatorial coordinate system, being based on the projection of the Earth’s co-

ordinate system, is not fixed in time. The apparent position of an object in the sky
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from Earth changes over time due to changes in the Earth’s orientation relative to

the Celestial Sphere. These changes are caused by processessuch as: precession,

nutation etc. These are admittedly slow changing effects but need to be corrected

for. The way this problem is solved is by fixing the equatorialcoordinates with

respect to the Earth’s orientation at a specified moment in time which is called an

epoch. Every epoch is 50 years long. The current epoch is called J2000 and is

defined by the position of the Earth at noon on January 1st, 2000. In this work, all

coordinates will be given with respect to this J2000 reference.

3.1.3 Modified Julian Date

To standardize the notion of date, independent of any specific calendar, the Julian

Date (JD) convention was introduced. The JD is defined as the number of days

since noon (Greenwich mean) January 1st, 4713 BC. Given morethan 2 million

days have passed since this time, another definition is used called Modified Julian

Date (MJD) which is calculated as: MJD = JD - 2400000.5. Sincethis number

also tends to have leading digits which do not change for decades, it is common

to truncate the MJD. For example, midnight September 9th 2008 has a MJD of

54718.0. This is the convention that will be used henceforth.
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3.2 Overview of Forward-Backward Asymmetry

Method

The size of the effect we are looking for is around 1 part in a thousand. The varying

detector conditions alone lead to rate variations around 100 times larger than this

expected signal. For this reason the forward-backward asymmetry method, also

used in particle physics (e.g. a search for CP violation using collider data in [29])

but easily adapted for use in this context, is used to remove problems arising from

the short term variations in trigger rates due to effects which cannot be accurately

modeled (weather, detector etc.).

Since Milagro scans the sky with the rotation of the Earth, the analysis method

was designed to search for a coherent modulation of the cosmic-ray rate in the

direction of this rotation. Figure 3.2 and Equation 3.1 define the forward-backward

asymmetry (FB).

The quantityRΘ,δ(ξ) is defined as the number of cosmic-ray events collected

during a particular time interval (Θ) in an angular bin at a given declination (δ) and

local hour angle (ξ). The asymmetry is measured by subtracting two bins which are

symmetric, inξ, with respect to the local meridian. For a pair of bins centered atξ,

−ξ, andδ, the asymmetry is:

FBδ(Θ,ξ) =
RΘ,δ(+ξ)−RΘ,δ(−ξ)

RΘ,δ(+ξ)+RΘ,δ(−ξ)
(3.1)

The time intervals are parameterized by an angleΘ which specifies the relative

advance of the local meridian through the sky for three different time frames:
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Figure 3.2: Diagram showing the definition ofξ used in the calculation of the
forward-backward asymmetry for a single declination band and a given 30 minute
histogr am.ξ is in the direction of hour angle.

Θ = 3.75◦+7.5◦× IST

Θ = 3.75◦ +7.5◦× IUT

Θ = 3.75◦ +7.5◦× IAST

IST, IUT, and IAST are integers, from zero to 47, denoting half hour intervals

of sidereal time, UT, and anti-sidereal time (defined below). In the above equations,

the constants convert an integration time interval (1/2 hour) into degrees (7.5◦) with

the angle given at the center of each interval.

FB, being independent of overall detector rate, allows for the removal of trigger
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rate variations, which can be as large as 20%, arising from changing atmospheric

conditions as well as detector thresholds. In addition, since the method was de-

signed to look at the rotational modulation of FB, any inherent asymmetry in the

detector response will be removed; it is in fact independentof the observed asym-

metry of the detector response which is at the level of 10%. Finally, by averaging

many full days, each tracing out a full 2π in Θ, the daily atmospheric and detec-

tor variations, which are assumed to be completely random, are averaged out while

a coherent signal is preserved. This entire approach allowsa search for coherent

signals in the data set down to the level of 10−4−10−3.

Given that this method measures the modulation in the direction of Earth’s rota-

tion, the modulation in the declination (dec) direction cannot be observed. For this

reason the anisotropy results determined using the FB method will show projections

of the anisotropy in the direction of right ascension (r.a.)rather than the full 2-D

anisotropy of the sky. Projections can be created for any dec. band visible to the

detector. Since each dec. band traces a completely independent circle of the sky

and contains statistically independent data, each dec. band is treated as a separate

observation and is analyzed separately from the others. Anymodel of the true 2-D

anisotropy can be confronted with, or constrained by, our data (given in Table 4.1)

by projecting the model along r.a. in our dec. bands. The nextsections show how

this method is implemented using Milagro data.
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3.3 Data Selection

There are a number of cuts on the data that are performed in order to limit systematic

effects and improve the quality of the data sets. Only eventswith a zenith angle

θ ≤ 50◦ are accepted. This zenith angle cut is used to limit contamination from

large zenith angle muons. In addition to the zenith angle cut, accepted events are

required to have used at least 50 PMTs in the angular fit. This particular cut was

settled upon as it gives better agreement with Monte Carlo simulation of trigger

rates and reduces the systematic effects dramatically due to the rejection of the

lowest energy events.

Before the data are analyzed we also look for trouble spots which will be ex-

cluded from the analysis. Beyond the obvious times where there were repairs we

look for large deviations in the zenith and azimuthal (φ) angle distributions. The

way this is accomplished is by reading through the data and creating histograms

of theθ andφ distributions, forcing each histogram to contain an equal number of

events. The number of events is fixed to avoid picking out periods of dead time and

is determined by calculating the number of events in a∼ 30 minute interval given

our average trigger rate of∼ 1700Hz. These intervals are collected over a period

consisting of about three days. The individual phi and thetadistributions are then

compared to the three day average by computing the chi squaredifference between

them after normalization. If the chi square is larger than 23for theθ dist. or larger

than 5 for theφ dist. the failing histogram is sent to a file along with the time in-

terval it corresponds to. These cutoffs were chosen becausethey give a reasonably

low number of false failures without missing the problem spots. This procedure is
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repeated for the entire data set. The output intervals can then be inspected by hand

and compared to entries in the daily Milagro shift log. Many times these intervals

will have associated log entries involving hardware failures, extreme weather etc.

If the interval appears to be legitimately corrupted, determined from the log book

or by visual inspection of the distributions, it is excluded. Cuts made in this fashion

correspond to∼ 5% of the total number of events collected.

3.4 Organization of Event Data

The cosmic-ray events are binned in 2-D histograms according to their arrival di-

rection (in local coordinates) from−10◦ to 80◦ in declination and−50◦ to +50◦ in

hour angle (see Fig. 3.3 for an example). The events are collected over 30 ”minute”

periods, where ”minute” is defined in the following three time frames: sidereal

(366.25 days/year), universal (365.25 days/year), anti-sidereal (364.25 days/year).

The events are placed into histograms with 5◦×5◦ bins giving us 48 half hour his-

tograms per day (in one of the three time frames). Each of the 48 histograms are

binned the same for each day and can be summed over any number of days. This

averaging scheme is used with the forward-backward asymmetry method described

earlier in order to remove random anisotropies induced by changing atmospheric

and detector conditions.

The time frames mentioned above correspond to different views of the sky. Uni-

versal time (UT) shows the sky in sun fixed coordinates (i.e. at Milagro longitude

noon is at 195◦). Sidereal time (ST) is the usual equatorial coordinate system of r.a.

and dec. Anti-sidereal time (AST) corresponds to no physical viewpoint. As such
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Figure 3.3: Sample of a histogram showing the number of events as a function of
dec. vs. hour angle for a single 30 minute period. The black disks show an example
pair of pixels shown in Fig. 3.2 forξ = ±42.5◦ used in the calculation of the FB
defined by Eq. 3.1

it should have no signal present but is included for symmetryand as a check on

systematics (more on this later). A ST day is 3 minutes and 56.56 seconds longer

than a UT day. An AST day is shorter than a UT day by the same amount.

In order to minimize contamination of the signal between thethree time frames

the data should be analyzed in sets of an integral number of years. For example, a

fixed signal in sidereal time, this signal’s position in UT shifts by about 4 minutes

per day returning to the original position after exactly oneyear. When the analysis

is done the mean value is subtracted out and therefore this fixed ST signal will

average to zero in the UT map. The same holds true for AST except in AST a fixed

sidereal signal will transit twice in one year.
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3.5 Harmonic Fit

While the method used is FB, the desired result is the anisotropy in the cosmic-ray

rates. The anisotropy (Aδ(Θ)) is defined as the fractional difference from the mean

cosmic-ray rate. The assumption is made that the large-scale anisotropy in any

given dec. band can be modeled by a Fourier series and that it is a small modulation

of a nearly isotropic signal. Three harmonics are used in this analysis which allows

us to see large-scale effects having a width in r. a. of greater than∼ 40◦.

For this model, the equation for the (normalized) rate becomes:

RΘ,δ(±ξ) = 1+Aδ(Θ) = 1+
3

∑
n=1

γδ,ncosn(Θ±ξ−Φδ,n) (3.2)

Using this model for the cosmic-ray rates, the expected FB iscalculated and

used in the fit to data in order to obtain the anisotropy parameters in 3.2.

The first step in finding the fourier coefficients (γδ,n and Φδ,n) is calculating

the FB asymmetry (Eq. 3.1) for each half hour histogram (parameterized byΘ) as

a function ofξ. The values ofξ used range from 2.5◦ to 47.5◦ in 5◦ steps. The

observed values of FB are binned in a 2-D histogram ofξ vs.Θ which then has the

mean value of the FB for each slice inΘ subtracted out to remove any constant bias

in the detector response (See Fig. 3.4 for an example).

The fourier coefficients are obtained from these histogramsby fitting to the

following function, predicted by the model, obtained by substituting (3.2) in (3.1),

applying the appropriate trigonometric identities and using the fact thatγn � 1.
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Figure 3.4: Sample histograms showing the forward-backward asymmetry as a
function of ξ and hour angle for a single dec. band. The top plot shows the data
and the bottom shows the result of the fit. A modulation of the FB as a function of
Θ is clearly seen.
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Figure 3.5: Sample histogram showing the result of the 2-D fitto the forward-back
ward asymmetry (shown in the previous Figure) for a single slice in ξ = 40◦−45◦

and a single slice in declinationδ = 35◦−40◦.

FBδ(θ,ξ) ≈
3

∑
n=1

−γδ,nsin(nξ)sin(n(θ−φδ,n)) (3.3)

A measurement can be made for any fixedξ. The values ofξ described above

were chosen to make each measurement statistically independent. Given this inde-

pendence and the fact that eachξ is sampling the same sky, the above equation may

then be used to fit allξ as well as r.a. at the same time in a 2-D fit.

The result of the full 2-D FB fit and a sample for a single slice in ξ is shown

here for actual data (Figs. 3.4 & 3.5). The output of the fit is the set of coefficients

corresponding to the amplitude and phase of the three Fourier harmonics describing

the anisotropy.

It is noted that this method averages over differentξi and that this translates into

an averaging over any difference of energy in the data due to the dependence of

atmospheric depth onξ. An examination of this dependence is discussed in a later
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section (5.0.2) and shows that this averaging is well justified.

3.6 Reconstruction

The six Fourier coefficients thus obtained in the fit are used to reconstruct the

anisotropy projection as a fractional difference from isotropic in a given dec. band

as follows:

Aδ(θ) =
3

∑
n=1

γδ,ncos(n(θ−φδ,n)) (3.4)

This reconstruction is performed for all 18 dec. bands independently which can

then be combined to give a 2-D display of the anisotropy projection in the sky.

3.7 Number of Harmonics

The optimal number of fourier harmonics was determined by examining the chi

square per degree of freedom for the 2-D fits as a function of declination. These

results are plotted in Fig. 3.6. As can be seen the three harmonic fit gives a chi

square/ndf of∼ 1 with no significant improvement for four harmonics and therefore

was deemed sufficient.

3.8 Statistical and Systematic Errors

The statistical errors are obtained by the usual propagation method. Assuming the

error during event collection obeys a poisson distribution, for a bin with a large
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Figure 3.6:χ2/nd f vs. dec. for different number of fit harmonics.

number of N events the error is
√

N. From the fit we obtain the errors on the fit

parameters from which the error in the reconstructed signalis calculated using:

σ2
signal(θ) =

3

∑
n=1

[

σ2
γn

(

∂A(θ)

∂γn

)2

+σ2
φn

(

∂A(θ)

∂φn

)2
]

(3.5)

The systematic errors are estimated by examining the AST time plots for an

integral number of years. For an integral number of years a static signal in one

time frame will not affect the others. The reason for this is explained in Section

3.4. Monte Carlo simulations show that if there is a time varying signal in one

frame it will induce a signal in the adjacent frames since it doesn’t average out over
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the course of the year. The induced signal is attenuated greatly for slowly varying

signals. Furthermore, MCs show that if the signal varies in universal time it will

affect both anti-sidereal and sidereal time with equal magnitude but not necessarily

the same phase. Given that anti-sidereal time corresponds to no physical frame of

reference we expect to see no signal here. If a signal does appear here the cause

is assumed to be due to random, residual variations, left over after averaging over

many days, in the universal time signal. We can rule out the sidereal time variation

as the origin of the AST signal because the sidereal signal, although not constant,

only varies on the order of a factor of two over the entire seven year data set and

therefore cannot induce the AST variations at the level we dosee. Since we know

this same AST signal will be superimposed on the sidereal signal but with unknown

phase, we use the r.m.s. of these fluctuations to estimate thesystematic errors of

the sidereal anisotropy. The Monte Carlos mentioned above and a more detailed

investigation of systematic errors is given in Section 5.0.6.
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Chapter 4

Results

4.1 Sidereal Map

The results of the analysis for seven years worth of data is shown in Figure 1.

This figure is constructed by placing the anisotropy projections for 18 declination

bands, each band having a width of 5◦, in their respective positions. Figures 4.2 &

4.3 show the individual declination projection profiles with the width of the curves

corresponding to the statistical error. Table 4.1 containsthe amplitude and phase fit

parameters for each of the 18 declination bands. Theχ2/d.o. f . and the number of

events is also given in this table.

Figures 4.4 & 4.5 show six years worth of data split (2000 - 2007) into two

three-year periods. The main features are still present butthere appears to be an

increase in the magnitude of the anisotropy in the second three years.
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Figure 4.1: Measured Anisotropy: fractional deviation from isotropic cosmic ray
flux in r.a. vs. dec. for data collected from 7/2001 through 7/2007. The solid line
shows the Galactic Equator and the disk shows the location ofthe North Galactic
Pole. The width of the color gradations is the size of the average statistical error
(∼ 1×10−5).
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Figure 4.2: Anisotropy vs. r.a. for individual dec. bands from −10◦ to 35◦. The
dec. bands are arranged in increasing order from upper left to lower right. Each
band represents 5◦ of dec. The line width corresponds to the statistical error.
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Figure 4.3: Anisotropy vs. r.a. for individual dec. bands from 35◦−80◦. The dec.
bands are arranged in increasing order from upper left to lower right. Each band
represents 5◦ of dec. The line width corresponds to the statistical error.
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1st Harm. 2nd Harm. 3rd Harm. χ2/d.o.f. Number
Dec. Amplitude Phase Amplitude Phase Amplitude Phase of events

(mean) (×10−3) (deg) (×10−3) (deg) (×10−3) (deg) (×109)

77.5 0.54±0.26 2±27 0.37±0.14 13±11 0.10±0.11 -39±19 262.57/234 0.65
72.5 0.73±0.14 22±11 0.19±0.08 -25±12 0.06±0.06 11±19 266.50/282 1.38
67.5 0.72±0.09 23±7 0.06±0.05 -24±26 -0.01±0.04 208±116 308.67/330 2.39
62.5 0.83±0.07 19±5 0.12±0.04 -65±10 0.15±0.04 -2±4 355.61/330 3.63
57.5 0.99±0.06 6±3 -0.12±0.03 -312±8 0.15±0.03 3±4 379.61/378 4.98
52.5 1.10±0.05 8±3 0.22±0.03 -60±4 0.17±0.03 6±3 406.42/378 6.31
47.5 1.31±0.04 8±2 0.33±0.03 -63±2 0.21±0.02 2±2 498.02/426 7.51
42.5 1.71±0.04 8±1 0.44±0.02 -68±2 0.26±0.02 1±2 475.85/426 8.46
37.5 1.95±0.04 6±1 0.45±0.02 -73±1 0.24±0.02 3±2 472.71/426 9.07
32.5 2.04±0.04 10±1 0.47±0.02 -76±1 0.20±0.02 1±2 520.47/426 9.28
27.5 2.17±0.04 9±1 0.53±0.02 -78±1 0.14±0.02 0±3 551.53/426 9.07
22.5 2.39±0.04 11±1 0.52±0.02 -81±1 0.12±0.02 -12±3 564.14/426 8.44
17.5 2.56±0.05 12±1 0.57±0.03 -81±1 0.10±0.02 -32±5 523.45/378 7.45
12.5 2.62±0.06 9±1 0.61±0.03 -85±2 -0.05±0.03 -208±9 397.37/330 6.17
7.5 2.81±0.07 5±1 0.58±0.04 -80±2 0.08±0.03 -39±7 355.24/282 4.74
2.5 3.05±0.10 7±2 0.61±0.05 -80±3 0.14±0.04 54±5 280.00/234 3.31

Table 4.1: The six fit parameters,χ2/d.o.f. and number of events for each dec. band.
The quoted errors are statistical and are included in the calculation ofχ2.
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Figure 4.4: Anisotropy in r.a. vs. dec. for the first and second three year periods
(2000-2003 and 2003-2006 respectively).
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Figure 4.5: Anisotropy vs. r.a. profiles for the first and second three year periods.
The profiles are given in 5◦ dec. bands increasing from top left to bottom right. The
first and last three bands are not included for brevity. The red curve denotes the first
three years and the blue the second.
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In order to investigate this time dependence further, the data were split into sets

corresponding to two month and one year averages. Using these data sets, we can

examine the amplitude and stability of the position of the dominant feature in our

data, the “central-deficit” region, located at approximately 190◦ right ascension.

This deficit region has also been observed by other studies and is a good marker

to focus on given its large area, seemingly small variation in its position over time,

and coherent behavior in adjacent dec. bands. The central-deficit region was chosen

by eye and is defined as the area from 5◦−35◦ in declination and 160◦−210◦ in

r.a. Averaging over this region in the seven year data set gives a value of (-2.85±

0.06 stat.± 0.08 syst.)×10−3 corresponding to a 19.9σ signal after the systematic

and statistical errors are added linearly to be conservative.

4.2 Temporal Evolution

The apparent stability in position of the central deficit region over time is examined

by plotting the average minimum in the declination bands corresponding to 5◦−

35◦ for two month and yearly periods. The results are shown in Figures 4.6 &

4.7. The error bars on each minimum are calculated from a distribution containing

100,000 minima obtained by monte carlo simulation. The simulation takes the six

parameters given by the fit to actual data for the dec. bands used above as the means

of six gaussians with widths given by their associated errors. These gaussians are

in turn used to randomly generate a new set of parameters which are used to create

a simulated curve in which the minima are found and histogrammed. The r.m.s. of

each histogram is calculated and interpreted as the statistical error on the minimum.
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The systematic error is estimated as being equal to the statistical error which is

approximately true for all of the data as is discussed in Section 5.0.6.
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Figure 4.6: Position of minimum in degrees vs. median date oftwo month averages
for a seven year period. The error bars are the linear combination of statistical &
systematic.
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As can be seen in Figure 4.6 the position of the valley is fairly stable throughout

the seven year period. Fitting a constant to Figure 4.7 results in a mean of 188◦±2◦

with a χ2/d.o. f . = 3.6/6. This small variation over the yearly periods is what one

would expect from a true sidereal feature.
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Figure 4.7: Position of the minimum anisotropy in r.a. averaged over declinations
5◦ to 35◦ for yearly sets from 2000-2007. The error bars are the linearcombination
of the statistical & systematic errors. The fit to a constant value is 188◦±2◦ The
χ2/ndf is 3.6/6.

Given this stability in position it is natural to examine thevariation of the depth

of the central-deficit region w.r.t. time. Figure 4.8 shows the variations for two

month averages. In each of these plots the error bars are calculated by adding the

statistical and systematic errors linearly in order to be conservative. The systematic

errors are estimated using the procedures shown in Section 5.0.6. The errors make
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Figure 4.8: Average depth of the central valley vs. time for data sets consisting of
two month periods.

it difficult to make any definitive statement about time evolution on this time scale

although a definite trend is seen. For this reason we choose tofocus on the yearly

averages given that the contamination from other effects should be minimized as

explained in Sec. 3.8. The central-deficit depth for the yearly averages are plotted

in Figure 4.9. Included in this figure are the the results of a fit to a constant as well

as a fit to a two-parameter linear function. Given the difference inχ2 for the two fits

it is clear that the two-parameter fit is much better and implies a definite temporal

dependence.

Although it was stated in Section 3.2 that each declination band is to be treated

as an independent observation, the averaging done in this temporal analysis is rea-
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Figure 4.9: Mean depth of the central-deficit region vs. MJD for yearly sets from
2000-2007. The error bars are the linear sum of the stat. & sys. errors. The mean
is taken from 5◦ to 35◦ in dec. and 160◦ to 210◦ in r.a. The solid line is the
fit to a constant value and the dashed is the linear two-parameter fit. Theχ2/ndf
for the fits are 54.6/6 and 3.4/5 respectively. The fit parameter in the flat case is
(−2.81±0.10)×10−3; the two fit parameters to the functionA(MJD)= p0(MJD−
53000)+ p1 are: p0 = (−9.85±1.38)×10−7 andp1 = (−2.73±0.10)×10−3.

sonable given that the depth and position in the various dec.band correlates with

one another very well. This correlation can be seen in the position of the minimum

for each independent dec. band (for yearly sets) seen in Figure 4.10 and in the time

evolution of the depth for the same bands seen in Figure 4.11.
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Figure 4.10: Position of minimum anisotropy in r.a. for the six individual dec. bands
used in the calculation of the central-deficit region. The error bars are statistical +
systematic.
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Figure 4.11: Value of the anisotropy at the minimum for the six individual dec.
bands used in the calculation of the central-deficit region.The error bars are statis-
tical + systematic.
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In all of the plots there is a “deepening” of the anisotropy inthis region while

not showing a shift in position. There are two main concerns about these results:

• The yearly averages show a definite increase of almost a factor of two over

the seven years. This is not consistent with the expectationof a time-invariant

sidereal sky anisotropy.

• Are these results actually indicative of some “sky-physics” or are they the

result of systematic effects?

These questions will be explored in Section 5.0.7.

4.3 Energy Dependence

In order to see whether the anisotropy depends on energy we bin the data accord-

ing to an energy dependent parameter, natural log of the fraction of outriggers hit

(ln(fOut)). Only the last four years of data can be included in this energy analysis

given the outrigger array was not completed until 2003.

More specifically, the data is split into eight bins of width 0.5 in ln(fOut). The

first bin has ln(fOut)< −3.5 and the last−0.5≤ ln(fOut)≤ 0.0. In the calculation

of fOut only the fraction of live photomultiplier tubes is considered.

The anisotropy is reconstructed for each of the eight ln(fOut) bins and the value

of the central-deficit region is found as before. The result is shown in Figure 4.12(a).

In order to determine the correlation of ln(fOut) with energy a Monte Carlo sim-

ulation is performed. This Monte Carlo (outlined in Section2.5) simulates the Mila-

gro detector’s observation of an event produced by cosmic-ray primaries composed
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of elements from Hydrogen to Iron assuming fluxes and spectragiven by the ATIC

experiment [28]. For each ln(fOut) bin the simulated eventsare histogrammed ac-

cording to energy. The median energy can then be calculated as well as the error

on the median. The error is asymmetric and is calculated by finding the highest and

lowest energies contained within the inner 68% of events. The correlation between

ln(fOut) and energy is shown in Figure 4.12(b).

Visual inspection of the dependence of the central-deficit depth on ln(fOut) and

of ln(fOut) with energy suggests an energy dependence of theanisotropy signal.

If the fractional anisotropy in this region were independent of energy one would

expect the data in Figure 4.12(a) to have a constant value, that is they should not

depend on ln(fOut). Fitting Figure 4.12(a) to a constant gives aχ2/d.o. f . = 50.5/7

which is clearly a poor fit. The data are thus not consistent with no energy depen-

dence.

The suspected energy dependence is examined by assuming a model of the total

cosmic-ray flux composed of a background component, which isconstant over the

entire sky, and an anisotropic component; each of these components are assumed to

have an energy dependence given by a power law. The equation for this model (for

a given declination band) is therefore:

dN(E,Θ)/dEdΩ = ΦCRE−γCR+ΦAniE
−γAni f (Θ) (4.1)

N(Θ,E) is the observed cosmic-ray counts as a function of r.a. (Θ) and energy

(E) in a single dec. band.ΦCR, γCR andΦAni, γAni are the fluxes and spectral in-

dices for the cosmic-ray background and the anisotropy respectively. f (Θ) contains
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Figure 4.12: a) Mean depth of the central-deficit vs. ln(fOut) for data collected f
rom 2004-2007. b) Median energy of Milagro triggered eventspassing cuts for the
ln(fOut) bins shown above obtained from simulation. The asymmetric error bars
are calculated by finding the highest and lowest energy containing the inner 68% of
the total simulated events.
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the r.a. dependence of the anisotropy component for a given dec. band. Since the

central-deficit region we average over has a small extent in r.a. compared to the full

sky, f (Θ) will be considered to have a constant valueF.

This can be easily converted into a form giving the fractional difference from

isotropic for the central-deficit regionA(E):

dA(E)/dE =
dN(E,Θ)/dEdΩ

ΦCRE−γCR
−1 =

ΦAni

ΦCR
E−δF (4.2)

Whereδ = γAni − γCR. As can be seen explicitly from this equation, if the

spectral indices are equal the fractional anisotropy should be a constant. From the

equation and the figure, the anisotropy in this region appears to be flatter than the

cosmic-rays at lower energies and steeper at higher energies. In order to make a

more quantitative statement we can perform a Monte Carlo simulation assuming a

broken power-law (two different power-laws spliced together at some break energy)

for the anisotropy in the equation given above. The output ofthis simulation gives

the shape of the ln(fOut) distribution for different valuesof the break energy andδ

above and below the break. Aχ2 optimization is then performed for the four fit pa-

rameters. The fourth parameter,ΦAni
ΦCR

F, is the normalization which is of no physical

interest in this discussion and subsequently is always set to the value which gives

the lowestχ2 for any given triple of the other parameters. Since the correlation

between ln(fOut) and energy is poor, especially at low energies, the determination

of the break energy and power-law parameters is not highly significant. Figure 4.13

shows the one sigmaχ2 contours of the Monte Carlo simulated anisotropy fit to

the observational data for different values ofδ above and below, using the mini-
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mum χ2 of all break energies. Figure 4.14 shows theχ2 vs. break energy as well

as theχ2 contours of the individual parameters vs. break energy. Thebest fit for

this model gives a break energy ofEbreak = 2+1.3
−1.0 TeV, δ = −2.7+2.1

−0.3 for energies

below the break, andδ = 0.1±0.07 for energies above the break (these errors are

the single-parameter errors). Although these errors deviate from zero at less than

two sigma, the anisotropy spectrum deviates from that of thenominal cosmic-ray

background (δbelow = δabove= 0) at the level of∼ 5σ. Repeating the simulation

assuming a power law without a break, the fit becomes much worse. Figure 4.15

shows the observational data as well as the best fit to data forthe broken power-law

and non-broken power-law simulations. The optimal fit to theobserved distribution

for the broken spectrum gives aχ2/d.o. f . = 0.33/4 while the non-broken spectrum

gives aχ2/d.o. f . = 24.62/6. An F-test yields a probability of 1×10−3 that the

improvement in thisχ2 is due to random chance.

To see if there is a correlation between the temporal and energy dependencies,

the last four years of data were split into five sets with integral ln(fOut), each con-

taining events with ln(fOut)≥ the following: -3.0, -2.0, -1.5, -1.0, -0.5. The yearly

time dependence of the central-deficit region is calculatedfor these different inte-

gral ln(fOut) sets. The results are shown in Figures 4.16 through 4.20. In these plots

theχ2/nd f values are shown for a fit to a constant and a fit to a line of fixed slope.

The fit to a constant is expected to become better as the medianenergy increases

if the cause of the temporal dependence becomes less dominant at higher energies.

The fit to a fixed slope is expected to remain good if the temporal dependence is

completely independent of energy. The assumption made in this case is that the

cause of the temporal evolution amounts to a modulation of the anisotropy over
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Figure 4.13:χ2 contours corresponding to a probability content of 1 to 5σ for 2
parameters (χ2−χ2

min = 2.3,6.2,11.8,19.3,28.7) obtained from the fit of simulated
fractional anisotropy vs. eight ln(fOut) bins to observational data. The delta param-
eter is defined as being the difference between the spectral indices of the nominal
cosmic-ray background and the simulated anisotropy. The crosshair shows the lo-
cation of the best fit.

time which results in the same percent change in the anisotropy for each ln(fOut)

set. The slopes are calculated as following: the slope for the data with ln(fOut)≥

-3.0 is fixed to be the value determined by the seven year data (given in Figure 4.9).

In the subsequent four ln(fOut) sets, the slope in a given plot is calculated by scaling

the slope of the seven year data by the ratio of the average value of the anisotropy

in the plot of interest vs. the average value in the initial plot.

As can be seen in the figures, the fit to a line of fixed slope is always better than
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Figure 4.14: Top:χ2 vs break energy. Middle: One sigmaχ2 contours (as defined
in the previous figure) for delta below the break vs. break energy. Bottom: One
sigmaχ2 contours for delta above the break vs. break energy. The crosshairs show
the location of the minimumχ2.
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a fit to a constant. This implies that the cause of the temporaldependence is not

dependent on the ln(fOut) parameter. However, since the errors grow large, this is

not a very statistically significant observation.

MJD
53000 53200 53400 53600 53800 54000 54200

M
ea

n
 A

n
is

o
tr

o
p

y 
(C

en
tr

al
-D

ef
ic

it
 R

eg
io

n
)

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

/ndf = 38/32χ
/ndf = 5.1/32χ

Mean Central-Deficit Depth vs. MJD   fOut Bins >= 3

Figure 4.16: Mean anisotropy for the central-deficit regionfor the last four years of
data consisting of events having ln(fOut)≥ -3.0.
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Figure 4.17: Mean anisotropy for the central-deficit regionfor the last four years of
data consisting of events having ln(fOut)≥ -2.0.
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Figure 4.18: Mean anisotropy for the central-deficit regionfor the last four years of
data consisting of events having ln(fOut)≥ -1.5.
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Figure 4.19: Mean anisotropy for the central-deficit regionfor the last four years of
data consisting of events having ln(fOut)≥ -1.0.
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Figure 4.20: Mean anisotropy for the central-deficit regionfor the last four years of
data consisting of events having ln(fOut)≥ -0.5.
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4.4 Compton-Getting Effect

Assuming an isotropic and homogeneous sea of cosmic-rays, the Compton-Getting

(C-G) effect amounts to an anisotropy induced by the motion of the Earth around

the Sun or the Sun around the Galactic center with an enhancement of the cosmic

ray flux in the direction of motion (see Sec. 1.2.3). The C-G effect due to the

Earth’s motion around the Sun will appear as a UT dipole effect and is calculated

to be 3.8×10−4 at Milagro’s zenith (dec. of 36◦) with a maximum at 6h universal

time and a minimum at 18h.

As can be seen in Figures 4.21 and 4.22, the data shows an effect with an am-

plitude consistent with the solar C-G expectation. The phase is off slightly by about

1.5 hours. This could be due to day-night effects for which there is no cancella-

tion. An observed UT anisotropy is always a superposition ofthe average daily

variations due to atmospheric effects and the expected C-G effect from the Earth’s

motion around the Sun. It is noted that the expected and observed amplitude of

the UT anisotropy is about an order of magnitude smaller thanthe amplitude of the

observed sidereal anisotropy while the magnitude of the sidereal systematic effects

are around the same size. A more thorough analysis of UT systematic effects is

therefore needed to understand the phase difference. This analysis is deferred at

this time.

In the case of the Sun’s motion around the Galactic center theeffect is more

complicated. The Galactic cosmic-ray sea could in principle co-rotate with the

Galactic magnetic field affecting the magnitude and direction of the C-G effect. In

the instance of full co-rotation there would be no Galactic C-G effect. A measure-
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Figure 4.21: Map of the universal time anisotropy for seven years worth of data.
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ment of this Galactic C-G effect is more difficult given the fact that we see only

measure the projection of the anisotropy in the r.a. direction. In order to understand

how this affects the observation, a monte carlo was performed, using the technique

outlined in Appendix A, for one possible set of parameters.

For this example the assumption is made that the cosmic-raysare isotropic and

do not co-rotate with the Galaxy. Therefore the Sun’s velocity in the Galaxy is the

velocity used in the calculation of the C-G effect. In this case the magnitude of this

anisotropy is calculated to be 0.35% given our speed of∼ 220km/s. This dipole

should then have a maximum at r.a. = 315◦ and dec. = 48◦, and a minimum at r.a.

= 135◦ and dec. =−48◦. Figure 4.23 shows the theoretical value of the anisotropy

with these parameters for the sky observable to Milagro.
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Figure 4.23: Map of the expected Galactic Compton-Getting effect as calculated
from theory. See text for the parameters used.

This theoretical map is used as input to the monte carlo and the resulting one
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year of simulated data is analyzed as the actual data would be. Figure 4.24 shows

the result of this analysis.
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Figure 4.24: Map of the expected Galactic Compton-Getting effect created using
one year of simulated data.

As can be seen, the dipole structure remains intact. The effect of looking at

projections reduces the magnitude (to∼ 0.14%) but retains the maximum and min-

imum directionality. Given that the dipole structure is notlost it is possible to test

for the Galactic C-G effect by fitting a single dipole to the sidereal map. How-

ever, there is a large signal at lower declinations which would obstruct seeing this

effect directly. To try and reduce effects from the central-deficit region, the dec.

range from 50◦ to 60◦ is considered. Fitting a single harmonic to this region gives

a χ2/d.o. f . = 11505/998 which is clearly a poor fit. Although this suggests that

the observed anisotropy is not dominated by the galactic Compton-Getting effect,
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its contribution to the anisotropy cannot be ruled out. It may be possible to re-

move other effects with measurements at high enough energy since the C-G effect

is energy independent whereas the anisotropy in the central-deficit region appears

to reduce with increasing energy.
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Chapter 5

Systematic Checks

5.0.1 Monte Carlo Checks of the Analysis Method

To test the stability of the analysis method, monte carlo (MC) simulations, using

the method described in Appendix A, were performed. All of the following MCs

are simulations of one year’s worth of data.

The first test run was a sky with no anisotropy. The output shows consistency

with zero in all three time systems. There is some structure which appears in the

highest declination band but from the profiles it is shown to be consistent with

zero due to the large statistical errors. This fact supportswhat we suspect from the

observed data in that the statistical power is limited in thehighest and lowest dec.

bands.

Taking the three year (2001-2003) sidereal map as input (Figure 4.4), the output

is given in the following figure. There are no significant deviations between the two

as can be seen also from the profile plots. The UT and AST time analyses are both
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Figure 5.1: Sky maps of the fractional anisotropy generatedusing one year of monte
carlo simulated data assuming no anisotropy. Top, middle and bottom are sidereal,
universal and anti-sidereal respectively.
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flat which is what one would expect from the fact that there wasno UT or AST

structure input in the MC and due to the use of one full year of simulated data.

The next MC is designed to check for induced effects caused bylarge input

signals. As input the three year map in used in the previous test has every point

scaled by a factor of five. The output shown in Figure 5.3 is consistent with the

input.

In another Milagro analysis [30], an excess of gamma-rays isseen coming from

the inner galaxy, dubbed the “Galactic Ridge”. There is expected to be an enhance-

ment in extensive air showers coming from this direction which could affect this

analysis. To see how this Galactic Ridge enhancement affects the anisotropy, a

MC input map is created with a 0.1 % anisotropy±5◦ around the inner galactic

plane. The output shows a slight effect, but it is smaller than that which was input.

From this it is confirmed that the analysis method is less sensitive to features of the

anisotropy which have small extent in r.a. This also shows that the flux from the

galactic plane is not going to have a significant effect on thesidereal analysis.

To check on the possibility of the analysis inducing symmetry in the sky map,

the three year map (2001-2003) is taken as input and altered so that everything

located at an r.a. larger than 250◦ is equal to zero. The result reproduces the input

showing that the symmetry observed in the seven year sidereal map is not a product

of the analysis method.

The next tests involve creating a square hole of size -0.003 at Dec. -10◦ −

30◦ and R.A. 150◦−210◦. This will give us a test of how the analysis deals with

discontinuous features as well as gives a well controlled input with which to test

UT effects. The sidereal square hole is shown Figure 5.6. Thepositive values of
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Figure 5.2: Sky maps for sidereal, universal and anti-sidereal time (top to bottom
respectively) generated from one year of monte carlo data using the sky map of the
first three years (Figure 4.4) as the true anisotropy.
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Figure 5.3: Dec. profiles of one years worth of monte carlo data using the first three
years map (Fig. 4.4) scaled by five as input.
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Figure 5.4: Anisotropy of one years worth of MC data taking asinput a 0.001
fractional excess±5◦ around the inner galactic plane.
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Figure 5.5: Monte carlo of first three year map with the anisotropy of the region
with r.a. larger than the central valley set to zero.

the anisotropy in places where none was input are just artifacts of the discontinuity

stemming from the use of three harmonics as is expected from Fourier theory.

Given that this plot was generated with one full year of simulated data we expect

the sidereal effect to wash out in UT and AST. Any fixed point insidereal time

traverses the entire UT sky in one year and the AST sky in half ayear. When we

normalize each Dec. band these effects should disappear. Indeed they do as seen

in Fig. 5.7. With this controlled input it is possible to explicitly see what happens

on shorter time scales. The plots for 1/3 year sections are given. Here we can

see some of the sidereal structure “leaking” into the ”sidebands”, in the parlance of

radio. The effect however is diminished and smeared out in r.a. as is expected. It

is also clear in these three that when they are added together, forming a set of an

integral number of years, the effect of structure on the sidebands will average to

zero.

To see the effect of seasonal variations one final MC was run where the square
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Figure 5.6: Sidereal map of m.c. data with a square hole of depth -0.003.
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Figure 5.7: Universal and anti-sidereal maps from m.c. datausing the sidereal
square hole input.
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Figure 5.8: The same data as in the previous universal time plot but split into three
four month periods.
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Figure 5.9: The same data as in the anti-sidereal plot above but split into three four
month periods.
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hole above is taken as a UT input rather than a ST input. The seasonal variation is

modeled as a sine wave modulation of the amplitude with a period of one year. The

depth of the square hole was chosen to range from 0.000 to -0.006 so that the mean

value for one year would be about the same as the observed sidereal effect. From the

plots we can see that now rather than the effect cancelling out in sidereal and AST

plots there is some (small) residual effect. The consequence of this is that there will

be some contamination of the sidereal plots due to weather effects. But the effect

will be subdominant to the actual sidereal sky signal unlessthere is a tendency for

the weather effects to “conspire” over the six year period tobe coherent in sidereal

time. From checks on the actual data this appears to be very unlikely. This does

however show that a time dependent UT signal has the ability to contaminate the

anisotropy present in the ST and AST time frames. This contamination is at the

same level in both of these time frames but the phases are different. Since the

AST time frame has no definite physical definition the phase isindeterminate. For

this reason the contamination cannot be directly removed from the sidereal signal,

but does allow for a way to estimate errors in the sidereal signal arising from UT

systematic variations. This systematic error estimation will be explored in Section

5.0.6.

5.0.2 Stability of Fitting Procedure

In order to check the possibility that the large changes in the anisotropy are the

result of an instability in the fitting procedure the data were split into two sets. The

first is created by taking the odd numbered events and the second by taking the

even. This splitting of the data yields two statistically independent data sets which
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Figure 5.10: ST, UT and AST time maps for an amplitude modulated universal time
square hole input. The AM has a period of one year and a range 0.000 to -0.006.

91



0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 1  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 2  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 3  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 4  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 5  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 6  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 7  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 8  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 9  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 10  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 11  Yr 1 (Red = Even, Blue = Odd)

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Anis. vs. R.A.  Decband = 12  Yr 1 (Red = Even, Blue = Odd)

Figure 5.11: Declination profiles of the anisotropy for the first year of data. The red
line is the even numbered events and the blue is the odd events.

are guaranteed to have been taken with the same signal and systematic effects. The

profiles are given with the odd set as blue and the even as red for both the first and

last years worth of data.

In both figures the anisotropy results of the two independentsets are identical

with no differences larger than the statistical error (width of the curves). I conclude

that the fitting procedure produces statistical errors which are reasonable when exe-

cuted with data taken under the same conditions. This also implies that the changes

in amplitude of the anisotropy observed are due to changes inthe either the sky-

signal or the atmosphere.

In Section 3.5 it is mentioned that the analysis method averages over differ-
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Figure 5.12: Declination profiles of the anisotropy for yearsix data. With red being
even and blue being odd numbered events.
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Figure 5.13: Declination profiles of the anisotropy for seven years worth of data.
The red curve shows the result of the analysis for events withξ from 0◦ to 25◦. The
blue shows the result forξ from 25◦ to 50◦.

ent values of the zenith angleξ. Since the atmospheric depth is dependent onξ

(lower values ofξ translate to less atmospheric overburden than higher values), this

amounts to an averaging over energy of the primary cosmic rays. To see if this has

an effect on the analysis, the seven-year data were split into two sets: one contain-

ing events with a range inξ from 0◦ to 25◦, and the other withξ from 25◦ to 50◦.

Figure 5.13 shows a comparison of the analysis results for these two sets. There is

no difference between the two sets within statistical errors, therefore the procedure

of averaging overξ is considered well justified.
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5.0.3 Stability of Sidereal Signal

In order to determine whether or not the observed sidereal signal (with it’s constant

phase) is an actual sidereal time effect, the minimum value of the anisotropy is

examined in universal as well as anti-sidereal time for two month periods. In a

two month period the differences would be expected to be slight, with a sidereal

effect being “smeared” in universal time by about 60 degrees. In other words,

taking a constant position in sidereal time, we can calculate where this point falls in

universal and anti-sidereal time for a given two month period. Below are the plots

of the minima in universal and anti-sidereal time with the theoretical prediction

superimposed.

As can be seen the data agrees well with the expectation of a dominant side-

real effect. If, on the other hand, the UT (or AST) variationswere dominant, there

should be no correlation between the observed minima and thepredicted “saw-

tooth” curves. There are some deviations from the predictedvalues which could

be attributed to weather or possibly solar effects. These systematic effects will be

discussed in a later section.

5.0.4 Seasonal Effects

In order to check for coherent seasonal effects in the sidereal signal, I split the seven

years worth of data into three “seasons”. Winter-Spring (wisp) corresponds to the

period between November and April. Spring-Summer (spsu) corresponds to April

through July. Summer-Fall (sufa) corresponds to July through November. This

particular definition of “seasons” was chosen as the three sets reflect average local
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Figure 5.14: Universal and anti-sidereal plots of minimum vs. date for two month
periods. The dotted lines are the theoretical prediction ofan effect which is a con-
stant in sidereal time located at 188◦ r.a.
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weather periods of: ice and snow, warm with low precipitation, and high precip-

itation respectively. We can see in the sidereal plots that there is some difference

between the seasons. The spsu period has a smaller overall effect than the oth-

ers. Looking at the plots directly comparing projections ofthe anisotropy for the

different seasons we see that these variations are not statistically significant.

5.0.5 Day/Night Separation

One can ask the question of how does the analysis differ when looking at data taken

during daylight hours from data taken during nighttime hours? There is almost

certainly a difference expected given the change in atmospheric conditions between

these two periods. In fact, splitting the data like this should introduce a very large

fake anisotropy. The two periods are set to be 10am-10pm (±1 hour) for daytime

and 10pm-10am (±1 hour) for nighttime. Given these 12 hour sets are fixed in UT,

this separation cannot be analyzed in the UT frame since a full 48 half hours is

required for the analysis method to work. This analysis can be performed in ST and

AST. As explained in Section 3.4, the data are organized in two month sets, each

containing 48 half hour histograms in the ST and AST frames. The 24 half hour

histograms, for the ST or AST frames, corresponding to the above day/night sets

can be calculated for each two month period. Since a fixed point in UT traverses

a full 24 hours in one year in both the ST and AST frames, by combining the

appropriate 24 half hour histograms for each two month period over an entire year,

the resulting data sets will be guaranteed to contain a full 48 half hours (in ST or

AST) consisting of data collected only during daytime (or nighttime) hours. Figures

5.19 & 5.20 show declination profiles comparing the result ofthe sidereal (in red)
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Figure 5.15: Sidereal time maps of seasonal data for the seven year data set. The
maps are winter-spring, spring-summer, and summer-fall respectively.
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Figure 5.16: Sidereal profiles comparing seasonal data for the seven year data set.
The red line is the winter-spring data. The blue curve is the spring-summer data.
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Figure 5.17: Sidereal profiles comparing seasonal data for the seven year data set.
The red line is the winter-spring data. The blue curve is the summer-fall data.
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Figure 5.18: Sidereal profiles comparing seasonal data for the seven year data set.
The red line is the spring-summer data. The blue curve is the summer-fall data.
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and anti-sidereal (in blue) analyses for daytime and nighttime respectively using

data from 2006 (as an example). In these plots the X axis serves dual purpose for

both ST and AST and are plotted together to show the relationship between the

signals. As can be seen the sidereal anisotropy has changed by a large amount,

in both amplitude and phase. Also the anti-sidereal strength roughly reflects the

magnitude of this difference for the expected year six amplitude (∼ 0.35%). The

reason for this change is that by splitting the data into these sets, there has been

an introduction of a bias. The event rate independence of theFB method has been

destroyed. Take for example a seasonal drift of event rate, due to the appearance

of ice for part of the year for instance, since this drift is not averaged out by using

a full 24 hours (of ST or AST data) during this period, an artificial anisotropy is

induced by this rate drift since a given set of 24 ST half hours(or AST half hours)

comes from different parts of the year. The important resultof this analysis is that

it confirms that time dependent systematic effects leading to an artificial sidereal

signal will also lead to an analogous anti-sidereal signal.The use of the anti-sidereal

signal in the estimation of the systematic errors is the topic of the next section.

5.0.6 Systematic Error Estimation

There are two sources of fake anisotropy signals in the averaged data, both from

atmospheric effects. Coherent and seasonally varying UT variations, discussed in

Sections 5.0.1 and 5.0.4, and the residual anisotropy due tothe daily, random at-

mospheric effects. Both will show up with the same signal size in the AST and ST

frames.

In Sections 3.2 & 5.0.1 it is explained that the anti-sidereal analysis should
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Figure 5.19: Declination profiles of the anisotropy for the year 2006 using data
collected between the hours of 10am and 10pm±1 hour local UT. The red curve is
the sidereal signal and the blue the anti-sidereal.
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Figure 5.20: Declination profiles of the anisotropy for the year 2006 using data
collected between the hours of 10pm and 10am±1 hour local UT. The red curve is
the sidereal signal and the blue the anti-sidereal.
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show no structure given that AST corresponds to no physical co-ordinate system.

If there are large UT effects that are localized in time therewill be some signal that

could ”leak” into this time frame and that this signal can be used to estimate the

systematic error. Since the observed sidereal signal is fairly stable and only shows

a variation over long time scales, any AST signal is expectedto be mainly due to

UT (or random) effects. The plot below shows there to be some structure of the

order of±10−4. for the seven year data set, much smaller than the sidereal signal.
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Figure 5.21: Map of the anti-sidereal time anisotropy for seven years worth of data.

Since the known AST signal cannot be directly translated to ST, given the un-

known phase difference, all possible phases are considered. To convert this AST

signal to a systematic error on the sidereal signal we project the AST signal for a

given dec. band along the anisotropy axis and take the r.m.s.An example for 35◦ ≤

dec.≤ 40◦ is shown in Figure 5.22. The systematic error estimated is seen to be of

the same order as the statistical error on the sidereal signal. This is further confir-

mation that the analysis method is effective at dramatically reducing structure due
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to detector variations.

To better understand the behavior of the systematic effects, the data were split

into sets of different time lengths. Figure 5.23 shows a sample of nine consecutive

single day anisotropy projections for 35◦ ≤ dec.≤ 40◦. On this time scale there

is no discernible difference between ST, UT, and AST in this analysis given that

each of these time frames differ by∼ 1◦ in hour angle. It is seen that the vari-

ations are almost an order of magnitude larger than the observed sidereal signal.

These variations are interpreted as being due to changes in the detector (including

atmospheric variations) and form an unavoidable systematic error in the results of

the longer data sets. Since these variations are largely incoherent the residual er-

ror arising from them should exhibit 1/
√

Ndays behavior as expected from basic

statistical analysis.

The systematic error can be estimated for sets containing anintegral number of

years by using the AST procedure previously described, which in essence random-

izes the phases of the ST signal. For smaller time periods another method must be

used given the contamination from other time frames. In thisinstance I have taken

60 single day anisotropy projections and averaged them together after randomizing

their phases. Any coherent signal will be lost and only the random variations should

remain. The r.m.s. of these variations are interpreted as the systematic error for the

two month time period. Figure 5.24 shows the observed systematic error for mul-

tiple time scales as well as the expected error calculated byextrapolating the seven

year value to shorter scales using the 1/
√

Ndays behavior. The rough agreement

between the expected and observed errors show that this is the dominant systematic

error in the anisotropy results.
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Figure 5.22: Top: Profile of the anti-sidereal time anisotropy for seven years worth
of data at dec. from 35◦ to 40◦. Bottom: Projection of above signal onto anisotropy
axis. The r.m.s. of this plot is 1.00×10−4 which gives the estimate of systematic
error for this dec. band.
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Figure 5.23: Anisotropy analysis for dec.∼ 36◦ for a 9 consecutive day sample.
The width of the lines correspond to the statistical errors on the fit function. The
scale is±1%. These plots show the large daily variations present due to weather
effects.
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Figure 5.24: Plot showingσ−2
sys vs. number of months calculated using real data.

The dashed line is the extrapolation of the error according to the expected 1/
√

Ndays

behavior.
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5.0.7 Temporal Evolution

The time evolution of the signal in the central-deficit region is an unexpected result

and requires a number of checks to rule out the possibility that it is simply an artifact

of time dependent detector effects. This section will address this concern.

For most years of operation, Milagro had a shutdown lasting on the order of ten

days during the month of September. To look for a possible effect induced by this

down time, a much larger period was removed (Sept- Nov.) fromeach of the yearly

sets. Figure 5.25 shows the time evolution of the yearly datawith and without

the artificially large amount of down time. The difference inthe signals is clearly

insignificant.

The trigger threshold of the Milagro detector is not constant over time. There

are long term rate variations that can be seen in Figure 5.26.In this plot there

can be seen a temporal evolution, however this evolution does not correlate with

the observed time dependence of the anisotropy. In order to test for a possible

dependence on trigger threshold, the data were constrainedby requiring each event

to have hit some number of PMTs in the top layer (AS) of the pondin order to be

counted. Figure 5.27 shows the average value for six years worth of data in the

central-deficit region for eight values of this constraint.As can be seen, the depth

is relatively independent of this constraint up to large values. Figure 5.28 shows

the time evolution, over six years, for these two particularvalues (90 and 260) of

this constraint. The relevant message of these plots is thatalthough at higher values

of the trigger cut the statistics get worse, the anisotropy is stable and the yearly

trend does not disappear. Given the large difference between these trigger cuts,
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Figure 5.25: Top: Yearly mean central-deficit value with simulated down time of
two months (Sept.-Nov.). Bottom: Yearly mean central-deficit value using the full
data set (same as Fig. 4.9).

the variation in time cannot be caused by the comparatively small variations in the

Milagro trigger.

To check that this effect is in fact strictly a sidereal effect and not something

which is a general characteristic of the detector we look at yearly projections of the

UT and AST signals. These signals are seen in Figures 5.29 & 5.30 and do not

show a consistent year-to-year trend as the sidereal signaldoes.

The combination of these tests gives good evidence that the monotonic increase

in the magnitude of the sidereal anisotropy seen over the seven years cannot be

accounted for simply by time dependent detector effects.
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Figure 5.27: Mean central-deficit value for six years of datafor events hitting at
least some given number of PMTs in the top layer. The error bars are statistical
only.
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Figure 5.28: Yearly mean central-deficit value for six yearsfor top layer cuts of 90
PMTs and 260 PMTs (top and bottom respectively). The error bars are statistical
only.
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Figure 5.29: Yearly profiles of anisotropy vs. UT obtained byanalyzing the projec-
tion of the 18 dec. bands.
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Figure 5.30: Yearly profiles of anisotropy vs. AST obtained by analyzing the pro-
jection of the 18 dec. bands.
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5.0.8 Universal Time Energy Dependence

The energy dependence of the sidereal signal examined in Section 4.3 shows a

specific change in the value of the anisotropy in the central-deficit region over time.

It is therefore also important to look at the energy dependence of the UT signal to be

sure that this change is not a detector effect. Figure 5.31 shows an analysis of the 18

declination band projection for the eight ln(fOut) bins used in the energy analysis

of the sidereal signal. In this case looking at the value of the anisotropy at the

maximum, which for the Compton-Getting effect is calculated to be 3.8×10−4 and

is energy independent, does not show a significant dependence on this parameter.
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Figure 5.31: Anisotropy vs. UT for the last four years of datacreated by analyzing
the projection of the 18 dec. bands for the eight fOut bins defined in Section 4.3.

116



5.0.9 Coronal Mass Ejections

One possible effect that may obscure our analysis which we studied was coronal

mass ejections(CMEs). CMEs are thought to produce large anisotropies as they

pass around the earth. To examine the effect on our data we picked three large

CMEs that happened within our data set. The dates of these CMEs are: 4/12/2001,

10/29/2003 and 1/20/2005. When a CME reaches the earth thereis what is called

a Forbush decrease. This can be seen clearly in neutron monitor data as a decrease

in neutron rates starting about 12 hours before the event followed by a period of

relaxation lasting for about 36 hours. We cut out the sectioncorresponding to the

large deviations in neutron rates as read off of the data fromthe Jung Frau Joch

monitoring station. There were no noticeable changes to thelarge scale anisotropy.

From this we determined that it was acceptable to not correctour data for CMEs.

Looking at the data that was excised in the case of the 2001 CMEhowever, there

was evidence of a significant difference in the anisotropy before and after the event.

This is something worth investigating further.
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Chapter 6

Conclusions

Results have been presented of a harmonic analysis of the large scale cosmic-ray

anisotropy for the observational period between July 2000 to July 2007. A 2-D

map of anisotropy projections in r.a. was generated using the 9.59×1010 cosmic-

ray events collected during this period, which have a medianenergy of 6 TeV.

The dominant feature is a central-deficit region of depth (−2.85±0.06 stat.±0.08

syst.)×10−3 in the direction of the Galactic North Pole with a range in declination

of -10 to 45 degrees and 150 to 225 degrees in right ascension.

Observations of the sidereal anisotropy at TeV energies done by previous experi-

ments have identified two coincident regions of interest: anexcess located at∼ 75◦

r.a. or “tail-in” anisotropy, and a deficit at∼ 200◦ r.a. or “loss-cone” anisotropy.

Both of these regions are consistent with the observation presented here. The “loss-

cone” is coincident with the central-deficit region seen in this analysis. The “tail-in”

region is more clearly defined in another Milagro analysis sensitive to features with

smaller extent in r.a. Also, a number of experiments have done harmonic analy-
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ses of the anisotropy. Table 6.1 shows the first harmonic results for a few of these

experiments.

Experiment Amplitude (×10−3) Phase (Deg.) Energy (TeV)
Poatina (um) [31] 0.81±0.13 60.0±9.0 1
Baksan (um) [32] 1.20±0.20 30.0±7.5 3

Milagro (as) 1.99±0.01 9.0±0.4 6
Super-K (um) [21] 0.53±0.12 40.0±14.0 10

Tibet (as) [33] 1.13±0.07 24.0±3.0 12
Mt. Norikura (as) [22] 0.74±0.04 12.0±4.5 15

MACRO (um) [34] 1.10±0.36 −12.0±19.5 30
Musala (as) [35] 1.05±0.30 51.0±15.0 60

EAS-TOP (as) [36] 0.36±0.04 64.5±7.5 100

Table 6.1: Amplitudes and phases of fundamental harmonic fits to the sidereal
cosmic-ray anisotropy for a sample of experiments at different energies. The am-
plitudes are divided bycos(dec.) to account for differences in the declination of
each experiment. The abbreviations after the experiment names indicated the type
of detector: um - for an underground muon detector and as - foran extensive air
shower detector.

The energy dependence of the signal in the central-deficit region has been stud-

ied and shows evidence that the spectral index differs from that of the nominal

cosmic-ray background at the level of 5σ. The spectrum of this anisotropy was

modeled as a broken power-law and the best fit to data gives a break energy of

Ebreak= 2+1.3
−1.0 TeV, δ = −2.7+2.1

−0.3 for energies below the break, andδ = 0.1±0.07

for energies above the break whereδ is the difference between the spectral indices

of the nominal cosmic-ray background and the anisotropy. The determination of

these parameters is however not very significant given the poor energy resolution.

The signal expected due to the Galactic Compton-Getting effect cannot be iden-

tified given the large contribution from the observed signalin the central region. It

may be possible to make a more definitive statement about thiseffect with a mea-
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surement at higher energies since the Compton-Getting effect is energy independent

while the anisotropy in the central-deficit region appears to decrease with increasing

energy.

The Compton-Getting effect expected from the Earth’s motion around the sun is

observed as a dipole with a maximum amplitude of(3.6×10−4 at 7.5 hr universal

time. This maximum occurs 1.5 hrs later than expected and requires more study to

understand possible systematic effects.

A unique result to this analysis is the observation of a strengthening, by a factor

of two, of the depletion in the central-deficit region over this seven year period. It

is noted that the minimum anisotropy occurs at solar maximum, and the maximum

anisotropy occurs as the solar minimum approaches. The simplest hypothesis for

this time dependence is that when solar activity is high, theheliosphere has the ca-

pability to isotropize cosmic-rays with higher efficiency than when solar activity is

low. It is as of yet unclear how the heliosphere can have such an effect on cosmic-

rays at TeV energies. One possibility for this observation is that, given the poor

energy resolution, this is simply an effect coming from low energy events. Collect-

ing more years of data is an obvious step in seeing if the correlation between the

solar cycle and anisotropy magnitude holds. A large improvement in energy deter-

mination is also necessary in order to help understand the time dependence and the

possible origins of this anisotropy.
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Appendix A

Monte Carlo of Anisotropy for

Analysis Method Tests

In order to better understand the analysis method and possible systematic effects, it

was necessary to develop a monte carlo (MC) method which would simulate data

coming from the Milagro detector with the proper statisticsand an arbitrary, user

defined anisotropy.

This MC takes two inputs: a 2-D histogram of the detector acceptance, and a 2-

D histogram of the desired anisotropy. The detector acceptance histogram is used to

ensure that the MC events have the same declination and hour angle dependencies

that the Milagro detector has over a 30 minute period of time.This histogram is

generated by averaging all of the 48 half-hour dec. vs. HA histograms described

in Section 3.4 for data accumulated over seven years. This averaging is done to

remove any signal (forward-backward asymmetry) that is present in any given 30

minute interval while retaining any inherent detector asymmetries.
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The second histogram used as input is simply a 2-D anisotropymap as seen

throughout this work. One may use the output from an analysisof actual data or

create a unique anisotropy.

These histograms are normalized and treated as probabilitydistributions as in

any MC. The way events are generated is by stepping though time in five minute

intervals. In each interval a uniform distribution of random time stamps (in UT)

is generated. For each time stamp, an event is created with a random dec. and

r.a. (also uniformly distributed). The r.a. of this event isconverted to an HA and

checked against the acceptance histogram. Passing this check, the event is then

checked against the anisotropy map. If the event passes bothtests it is treated as

any normal event would be and goes through the analysis as described starting in

Section 3.4.

In order to have the correct statistics, this generation of events continues until the

number of passing events collected over the five minute period corresponds to the

average Milagro trigger rate (∼ 1500Hz). This rate may be fixed or randomly varied

if so desired. This process then continues for each five minute interval present in

the desired number of simulated days. The performance of this MC can be seen in

Section 5.0.1.
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